Seasonal Variability of Aircraft Trajectories reducing NO_x -climate Impacts under a Multitude of Weather Patterns

Federica Castino¹, Feijia Yin¹, Volker Grewe^{1,2}, Hiroshi Yamashita², Sigrun Matthes², Sabine Baumann², Simone Dietmüller², Manuel Soler³, Abolfazl Simorgh³, Florian Linke⁴, Benjamin Lührs⁴

Climate Effects of Aviation, Faculty of Aerospace Engineering, TU Delft, The Netherlands
 Deutsches Zentrum für Luft- und Raumfahrt, Institut für Physik der Atmosphäre, Germany
 U. Carlos III de Madrid, Department of Bioeng. and Aerospace Engineering, Spain

4. Hamburg University of Technology Institute of Air Transportation Systems, Germany

*T***UDelft**

Introduction

Figure: Aviation-induced Radiative Forcing terms from different components (*from Grewe et al., 2017, updating Lee et al., 2010*).

- Aviation climate impact is due to CO₂ and non-CO₂ effects, including:
 - →NO_x emissions (ozone and methane perturbations)
 - \rightarrow Water vapour
 - \rightarrow Formation of contrails

Non-CO₂ effects of aviation are highly dependent on time and location of emission

 \rightarrow potential of mitigating the climate impact of aviation by optimizing the aircraft trajectories.

Engage

2

Motivation

Previous projects results:

- REACT4C: 25% reduction in the climate impact with 0.5% increase in the operational costs (one winter day, westbound trans-Atlantic flights)¹.
- ATM4E: 75% 85% of the overall climate impact mitigation potential can already be achieved modifying 25% of the routes (one winter day, European air traffic)².

Figure: Optimal climate-cost relations obtained optimizing the trans-Atlantic air traffic, under the weather conditions of a representative winter day¹.

Fudade

¹Grewe, V. et al. (2014), ²Lührs, B. et al. (2021)

founding members

Objective

• Objective of this study:

Enhance the understanding of the relation between NO_x-climate impacts and routing strategies considering a multitude of weather patterns.

- In particular, here we focus on:
 - 1. the **effects** of optimizing aircraft trajectories w.r.t. the impact of their NO_x emissions on climate.
 - 2. the **seasonal variability** of these optimised trajectories, caused by the **natural atmospheric variability**.
- Initial step towards objective of FlyATM4E project:

Identify trajectories leading to a **significant reduction** of aviation **climate impact**, while leaving the **economic costs nearly unchanged**.

11th SESAR Innovation Days

4

Methods – EMAC and ACCFs

- **Base model:** ECHAM5/MESSy2 Atmospheric Chemistry Model (EMAC).
- A set of prototype algorithmic Climate Change Functions (aCCFs) estimate the flight climate impact in terms of Average Temperature Response over a time horizon of 20 years (ATR20):
- Example: NO_x- climate impact on ozone*:

$$\begin{split} aCCF_{O_3} &= -\; 5.20 \cdot 10^{-11} + 2.30 \cdot 10^{-13}T \\ &+ 4.85 \, \cdot 10^{-16} \Phi \, - \, 2.04 \, \cdot 10^{-18}T \Phi, \\ &\text{if } aCCF_{O_3} > 0 \text{ (} = 0 \text{ otherwise)} \end{split}$$

where T is atm. temp., and Φ is the geopotential.

$$\Rightarrow$$
 ATR20₀₃ = aCCF₀₃ × emitted NO_x

aCCFs of NO_x- O₃ \rightarrow aCCFs of NO_x- CH₄ \rightarrow aCCFs of NO_x- CH₄ \rightarrow

 $[K/kg(NO_2)]$

Figure: Values computed with EMAC at FL350 (\sim 10.7 km) on 1 Dec. 2015 at 12:00:00 UTC (supplement of *).

Methods - AirTraf 2.0

- AirTraf: air traffic simulator coupled with EMAC.
- Optimizer: Genetic algorithm (ARMOGA)

• Design variables:

- 6 coordinates (x₁, ..., x₆)
- 5 altitudes (x₇, ..., x₁₁)

8 control points define the B-spline curve representing the trajectory.

• Available strategies minimise e.g. flight time, fuel use, simple operating cost, climate impact (using aCCFs)*.

Figure: Geometry definition of flight trajectory. From H. Yamashita et al. (2016).

*Yamashita et al., 2020.

6

founding members

Engage

Methods - Simulations set-up

	ECHAM5
Horizontal resolution	T42 (2.81°× 2.81°)
Vertical resolution	L31ECMWF (31 vertical pressure levels up to 10 hPa \sim 30 km)
Time step	20 min
Duration	1 year (from 1 Dec. 2015 to 1 Dec. 2016)
	AirTraf
Flight-plan	85 flights in the European airspace (ATM4E flight plan on 2015-12-18 with all A33x aircraft models)
Waypoints	101

Figure: Location of the origindestination pairs.

• Trajectory optimization strategies:

▷ NO_x -climate optimal traj. → minimize: $ATR20_{NO_x} = ATR20_{O_3} + ATR20_{CH_4}$

- \succ Cost-optimal trajectories \rightarrow minimize: SOC = $c_t \sum_{i=1}^{n_{wp}-1} TIME_i + c_f \sum_{i=1}^{n_{wp}-1} FUEL_i$
 - $c_t = 0.75$ [\$/s] is the unit time cost and $c_f = 0.51$ [\$/kg] is the unit fuel cost (Burris, 2015)
 - n_{wp} = 101 is the number of waypoints
 - $TIME_i$ and $FUEL_i$ are flight time and fuel used at the i^{th} flight segment.

11th SESAR Innovation Days

founding members

-ngage

Results - seasonal mean horizontal paths

Annual zonal mean aCCFs of NO_x-O₃ (10⁻¹² K/kg(NO₂) *

- Left figure: Comparison of winter (DJF) seasonal mean horizontal paths.
- In general, northward shift of aircraft location.
- Warming effects from ozone are reduced moving to higher latitudes.
- Other seasons: similar behavior, effects have lower magnitude.

*Yin et al., 2021, in preparation.

founding members

Engage

Results - seasonal mean flight profiles

Annual zonal mean aCCFs of NO_x - O_3 (10⁻¹² K/kg(NO_2)*

- Figure: Comparison of winter (DJF) seasonal mean flight altitude vs. latitude.
- NO_x -climate optimal trajectories flying at lower altitudes \rightarrow relation with tropopause height.
- Warming effects of O₃ is lower at lower altitudes, with larger gradients at higher latitudes.

*Yin et al., 2021, in preparation.

founding members

Engage

Results - variability throughout 1 year

- Figure: The thick lines indicate the median values over the 85 flights. The shaded areas extend from the first to the third quartile.
- Reduction in the cruise altitude is smaller in summer.

→ Elevation of the average height of the tropopause during the summer season / lower mitigation potential.

- Fuel increase driven by the increase in aerodynamic drag caused by flying at lower altitudes.
- Larger variability in flight time during winter/spring.

10

Results - changes in NO_x-climate impact

Figure:

- Relative change in NO_x-climate impact.
- Baseline: yearly mean NO_x-climate impact of cost-optimal trajectories.

- NO_x-climate optimal trajectories successfully reduce the aviation climate impact from NO_x emissions.
- Larger mitigation potential in winter and spring.
- Interpretation: in winter jet stream stronger and located further south, leading to larger vertical and latitudinal gradients in temperature and geopotential.

11

founding members

Results - changes in NO_x-climate impact

- NO_x-ozone climate impact reaches a maximum in summer due to a higher photochemical activity (both optimization strategies).
- Seasonality of NO_x-ozone climate impact drives total NO_x-climate impact seasonality → dominant over methane effects.
- Cooling effects from methane depletion are always enhanced.

Engage

founding members

Conclusion

- The air traffic simulator AirTraf coupled with the Atmospheric Chemistry Model EMAC allowed us to analyze different routing strategies under the atmospheric conditions computed during one year of simulation.
- NO_x-climate optimal trajectories are:
 - flying at lower altitudes
 - and
 - affected by larger temporal and latitudinal dependencies than cost-optimal trajectories.
- The mitigation potential of NO_x-climate optimal trajectories is larger in winter/spring.

13

On-going research

- In this study, we employ prototype algorithmic Climate Change Functions.
- On-going research to extend the simulations in the following aspects:
 - Take into account all main components of aviation climate impact (CO₂ and non-CO₂ effects, i.e. NO_x, water vapour, and contrail cirrus)
 - Identify trajectories leading to a significant reduction of aviation climate impact, while leaving the economic costs nearly unchanged
 - Include uncertainty ranges.

11th SESAR Innovation Days

14

References and links

- Grewe, V., Champougny, T., Matthes, S., Frömming, C., Brinkop, S., Søvde, O. A., Irvine, E. A., & Halscheidt, L. (2014). *Reduction of the air traffic's contribution to climate change: A REACT4C case study*. Atmospheric Environment, *94*, 616–625.
 https://doi.org/10.1016/j.atmosenv.2014.05.059
- Grewe, V., Dahlmann, K., Flink, J., Frömming, C., et al. (2017). *Mitigating the climate impact from aviation: Achievements and results of the DLR WeCare project*. Aerospace, 4(3). <u>https://doi.org/10.3390/aerospace4030034</u>
- Lührs, B., Linke, F., Matthes, S., Grewe, V., and Yin, F. (2021). *Climate Impact Mitigation Potential of European Air Traffic in a Weather Situation with Strong Contrail Formation*. Aerospace 8, 50, doi:10.3390/aerospace8020050.
 https://doi.org/10.3390/aerospace8020050
- Yamashita, H., Grewe, V., Jöckel, P., Linke, F., Schaefer, M., & Sasaki, D. (2016). Air traffic simulation in chemistry-climate model EMAC 2.41: AirTraf 1.0. *Geoscientific Model Development*, 9(9), 3363–3392. <u>https://doi.org/10.5194/gmd-9-3363-2016</u>
- Yamashita, H., Yin, F., Grewe, V., Jöckel, P., Matthes, S., Kern, B., Dahlmann, K., & Frömming, C. (2020). Newly developed aircraft routing options for air traffic simulation in the chemistry-climate model EMAC 2.53: AirTraf 2.0. GMD, 13(10), 4869-4890. <u>https://doi.org/10.5194/gmd-13-4869-2020</u>
- LinkedIn <u>https://www.linkedin.com/company/flyatm4e</u>
- Project Homepage: <u>www.flyatm4e.eu</u>

11th SESAR Innovation Days

founding member

Seasonal variability of aircraft trajectories reducing NO_x-climate impacts under a multitude of weather patterns

Thank you very much

for your attention!

This project has received funding from the SESAR Joint Undertaking under the European Union's Horizon 2020 research and innovation programme under grant agreement No [number]

