

WELCOME REMARKS

Andreas Boschen

Executive Director | SESAR 3 JU

5-8 December 2022, Budapest

Hosted by

EUROPEAN PARTNERSHIP

FAA KEYNOTE

Steve Bradford

Chief Scientist | FAA

5-8 December 2022, Budapest

Hosted by

EUROPEAN PARTNERSHIP

PLENARY 2: ENVIRONMENT/MET ER PROJECT SHOWCASE

Olivia Nunez

ATM Expert | SESAR 3 JU

5-8 December 2022, Budapest

Hosted by

EUROPEAN PARTNERSHIP

ENV/MET PROJECT SHOWCASE

Moderated by: **Olivia Nunez** SESAR 3 JU)

DLR DYNCAT CREATE

ALARM

Sevilla **FMPMet**

PLENARY 2: ENVIRONMENT/MET ER PROJECT SHOWCASE

Tobias BauerResearch ScientistDLR

5-8 December 2022, Budapest

Hosted by

EUROPEAN PARTNERSHIP

Dynamic Aircraft Energy and Configuration Management with DYNCAT

> Tobias BAUER & Fethi ABDELMOULA

> > DLR

5-8 December 2022, Budapest

Hosted by

EUROPEAN PARTNERSHIP

Glideslope capture 1'000 ft

The challenge of aircraft energy management

- descent and landing approach: reduce potential and kinetic energy from cruise (high and fast) to touchdown (low and slow)
- *configure* flaps and landing gear
- the theory: Continuous Descent Operation (CDO) in idle from top of descent to stabilisation altitude (typically 1000 ft above threshold)
- the practice: wide variation of fuel consumption and noise for nominally identical transitions

what are the reasons for these differences?

12th SESAR Innovation Days

5-8 December 2022, Budapest

IOINT UNDERTAKING

example: noise monitoring data for nominally identical trajectories

example: height/airspeed of landing gear extension

HungaroControl

Top of Descent

DYNCAT project approach

12th SESAR Innovation Days

5-8 December 2022, Budapest

JOINT UNDERTAKING

exemplary approach: LSZH (ZRH) runway 14, A320-214

Data analysis and operational concept

identified points for improvements

- missing information about the expected route to the runway
- missing information about the expectable speed / altitude instructions
- changing / unknown wind conditions
- compromise of efficiency vs. reserves

IOINT UNDERTAKING

- experience / skills and pilot knowledge about the approaching airport
- unnecessarily rigid instructions from ATC
- ATC lack of knowledge about the specific aircraft performance characteristics

12th SESAR Innovation Days

5-8 December 2022, Budapest

DYNCAT operational concept

- *improved communication / information exchange:*
 - meteo data
 - ATC restrictions
 - aircraft capabilities and precise flight plan downlink
 - distance-to-go / time of arrival
- aircraft configuration and speed schedule optimisation
- improved display concept
 - energy awareness
 - pseudo waypoints for optimal changes

experimental implementation of selected components

FMS prototype testing in RTS on test bench

JOINT UNDERTAKING

• scenario: typical overenergy situation caused by shortcut

5-8 December 2022, Budapest

experimental cockpit display system

• piloted simulation trials, 1 ATCo + 10 airline pilots

Engine thrust in the arrival phase

DIGITAL ACADEM

Quantified benefits of DYNCAT FMS function

better stabilisation ۲

DYNCAT RTS

JOINT UNDERTAKING

higher predictability of ٠ trajectory (in 4D)

5-8 December 2022, Budapest

Thank you

all deliverables available at https://www.dyncat.eu/

please visit poster #31

12th SESAR Innovation Days

5-8 December 2022, Budapest

PLENARY 2: ENVIRONMENT/MET ER PROJECT SHOWCASE

Angelo Riccio Associate Professor | University of Nar

5-8 December 2022, Budapest

Hosted by

EUROPEAN PARTNERSHIP

SESAR Innovation Days CREATE

innovative operations and Climate and weatheR modEls to improve ATm resiliencE and reduce impacts

5-8 December 2022, Budapest

Hosted by

EUROPEAN PARTNERSHIP

Project objectives

- Achieve innovative procedures in ATM to *reduce climate and environmental impacts*, taking advantage of high-resolution CTMs (Chemical Transport Models)
- Improve traffic flows and ATM resilience, taking benefit of weather information, especially in a climate change scenario, when weather extremes are expected to be more frequent in the future

Case studies

- TMA use case: Naples Capodichino, a mid-size European airport close to an urban area
- En-route use case: North-Atlantic domain, extending on the ECAC area

Project SOLUTIONS

- CREATE-SOL-1: Multi-scale multi-pollutant air quality system (AQS)
 - This solution enables the evaluation of the impact that the air traffic regulation policy options can have on the environment and climate, estimating the extent of the environmental impacts that current and future air traffic movements might have
- CREATE-SOL-2: Multi-aircraft environmentally-scored weather-resilient optimized 4D-trajectories (WAAP, Weather Avoidance for ATC Planning)
 - This solution aims to support the update and revision process of the reference business trajectory (RBT) in highly disrupted scenarios due to weather hazards or climate-sensitive zones, tackling (near) real-time aspects and the network and safety constraints arising in a multi-aircraft environment
- CREATE-SOL-3: CO₂ and non-CO₂ balanced Environmental Scores Module
 - The solution points to the "greenness" of aircraft trajectories related to flight and ATC sector environmental performance. Candidate trajectories are evaluated with respect to CO₂, NO_x and contrail probability formation

Multi-scale multi-pollutant air quality system (AQS) solution

Regional scale air quality (SILAM)

Environmental Scores Module (ESM) solution

The Environmental Scoring Module (ESM) assigns scores to each candidate trajectory:

 \checkmark CO₂ emission is linearly related to the fuel burnt

JOINT UNDERTAKING

- NO_x and H_2O emissions impact are related to altitude
- Contrail formation probability and impact are related to Climate Sensitive Areas and interference with other

Weather avoidance for ATC planning (WAAP) solution

Proposal for an ATC decision support tool (and associated ConOps), to support the RBT revision process in highly disrupted scenarios due to weather hazards or climate-sensitive zones

- Leverage from the most updated weather information to re-plan trajectories in the execution phase of the flight in heavily disrupted scenarios:
 - Bridging the gap between planning and execution
 - Increasing capacity (mitigate capacity loss) and maintain/increase safety
 - Increasing flight efficiency and improve the environmental impact

5-8 December 2022, Budapest

JOINT UNDERTAKING

12th SESAR Innovation Days

Main RESULTS

- Development and application of high-resolution CTMs (Chemical-Transport Models) for air quality assessment studies to test the advantages in terms of environmental impact in TMAs (Terminal Manoeuvring Areas) and on the regional and global scales
- New ATM concepts, i.e. 4D multi-aircraft trajectory optimisation and replanning algorithm, based on CTMs and weather forecasting models to estimate the impact on air quality and climate
 - The multi-aircraft optimization framework integrates short-range high-resolution meteorological information, so as to quickly respond to newly available meteorological information and improve the ATM system resilience to local weather
 - Also, air quality information is used to minimize the impact during descent/climbing phases in TMA areas
 - The first "nuclei" of an ATC decision support tool, in line with the SESAR "extended ATC planning" concept, has been designed, to find a system-wide global solution
- New environmental scoring methods to estimate the impact of non-CO₂ emissions in TMA areas, and the impact of CO₂ and non-CO₂ emissions in climate-sensitive zones

VALIDATION activities

- The multi-aircraft optimization framework allows to generate a set of alternative trajectories per flight in the execution phase with the trajectory optimisation module, avoiding weather related no-fly areas and contrail-sensitive areas located across the original trajectory
- It is fast enough to be used (and re-used) for real-time applications, given the background information on weather and air quality
- It can achieve an improvement in air quality, providing alternative trajectories as short as possible thus reducing the additional fuel consumption and delay associated to the modified trajectory to the minimum possible one

All validation activities and results have been presented to a wide audience of stakeholders, including climate/air quality modelers, ANSPs, experts in air traffic services and air space management, and international conferences

Climate and weatheR modEls to improve ATM resiliencE and reduce its impacts

For more details, all deliverables are available from the CREATE web site:

https://create-project.eu/

Thank you for your attention!

PLENARY 2: ENVIRONMENT/MET ER PROJECT SHOWCASE

Hughes Brenot Research scientist, BRIA

5-8 December 2022, Budapest

Hosted by

EUROPEAN PARTNERSHIP

ALERT PROJECT

Project information

 Horizon 2020 • ID: 891467

https://alarm-project.eu

Aviation safety can be jeopardized by multiple hazards. The overall objective of ALARM is to develop a prototype global multi-hazard monitoring and Early Warning System for these risks.

12th SESAR Innovation Days

A-IASB

5-8 December 2022, Budapest

ALERT SOLUTIONS

12th SESAR Innovation Days 5-8 December 2022, Budapest

ALERT SOLUTIONS

12th SESAR Innovation Days 5-8 December 2022, Budapest

ALERT SOLUTIONS

12th SESAR Innovation Days 5-8 December 2022, Budapest

PLENARY 2: ENVIRONMENT/MET ER PROJECT SHOWCASE

Riccardo Biondi Principal Researcher | UNIPD

5-8 December 2022, Budapest

Hosted by

EUROPEAN PARTNERSHIP

SESAR Innovation Days SINOPTICA

Satellite-borne and IN-situ Observations to Predict The Initiation of Convection for ATM

5-8 December 2022, Budapest

Hosted by

EUROPEAN PARTNERSHIP

Project Partners

Objectives

- Development of a near real-time data assimilation system into a highresolution Numerical Weather Prediction (NWP) Model
- Investigation of the usefulness of the augmented NWP Model nowcasting for Air Traffic Management (ATM) activities
- Integration of the NWP nowcasting into ATM procedures and decision-support systems

Hotspot selection

14/07/2021

Milano Malpensa - MXP

Datasets and experiments

GNSS

10 20 [°] E Longitude

	Experiment	Description		
	CTL	No assimilation		
	Radar	Radar data have been assimilated		
	Radar + GNSS	Radar and GNSS data have been assimilated		
	Radar + WS	Radar data and temperature measured by Civil Protection weather stations have been assimilated		
	Radar + Lightning	Radar and lightning data have been assimilated		

Domain	Horizontal	Horizontal	Vertical levels
	grid dimensions	grid spacing	
D01	216x191	22.5 km	50
D02	523x448	7.5 km	50
D03	430x469	2.5 km	50

35

30

25

-10

0

12th SESAR Innovation Days 5-8 December 2022, Budapest

40

30

0.5

Nowcasting experiments

Observed (blue) and forecast (red) clusters

Nowcasting a case study

Nowcasting with Machine Learning

12th SESAR Innovation Days 5-8 December 2022, Budapest

ML model performances

	WS+GNSS		WS+GNSS+LIGH		WS+GNSS+RADAR		WS+GNSS+RADAR+LIGH	
	POD	FAR	POD	FAR	POD	FAR	POD	FAR
10m	83.2	1.3	84.4	1.8	85.8	0.6	86.3	1.8
20m	92.1	1.7	89.6	1.1	90.5	1.7	91.1	1.7
30m	94.7	1.6	93.2	0.6	94.7	0.6	94.2	0.6
40m	95.3	1.1	93.8	0.6	95.3	0.5	95.3	0.5
50m	96.8	1.1	92.7	0.6	96.3	1.1	95.8	1.1
60m	94.7	1.6	93.2	1.1	95.8	2.2	94.2	0.6

Extreme rain nowcasting performances

Extreme winds nowcasting performances

POD - Probability Of Detection **FAR** – False Alarm Rate

12th SESAR Innovation Days 5-8 December 2022, Budapest

WS+GNSS+LIGH WS+GNSS WS+GNSS+RADAR+LIGH WS+GNSS+RADAR POD FAR POD FAR POD FAR POD FAR 87.5 87.5 10m 12.5 87.5 6.7 6.7 87.5 26.3 20m 81.3 7.1 75.0 25.0 93.8 21.1 81.3 35.0 30m 87.5 12.5 68.8 21.4 75.0 7.7 68.8 35.3 40m 87.5 50.0 50.0 20.0 81.3 7.1 62.5 37.5 50m 75.0 55.6 37.5 33.3 75.0 60.0 37.5 40.0 60m 75.0 36.8 6.3 50.0 62.5 63.0 25.0 50.0

Combined use of NWP and ML

PLENARY 2: ENVIRONMENT/MET ER PROJECT SHOWCASE

Antonio Franco Professor | University of Seville

5-8 December 2022, Budapest

Hosted by

EUROPEAN PARTNERSHIP

Operational Context

- FMP-Met focusses on the enhancement of ATM efficiency under adverse weather by integrating MET forecast uncertainty information into the decision-support tools used by Flow Management Positions (FMP).
- The FMP is an operational position in the ACC whose main role is to assist the ACC Supervisor to choose the best ATC sector configuration at the right time. The FMP:
 - monitors the level of traffic in airspace sectors
 - adjusts the value of capacity in view of adverse weather conditions or other contingencies, and
 - coordinates flow measures when an excess of demand over capacity is detected, that is, when the ROL (traffic to capacity ratio in %) is too large.

- The presence of **convective cells** makes **sector demand irregular** and not easy to predict, **increases traffic complexity** and **reduces sector capacity**.
- In FMP's current practice:
 - MET conditions are obtained from **separate MET-briefing systems** (not CIFLO), and FMP must convert this information into impact on sector capacity and integrate it manually into the current CHMI.
 - To mitigate weather effects, FMP actions are often reactionary and too late, considered as the last option and applied when most flights are no longer subject to ATFCM measures.

There is clearly room for improvement!

Project scope and objective

• Overall objective: Provide the FMP with an intuitive and interpretable probabilistic assessment of the impact of CW, with 8 hours in advance. This assessment will consist of probabilistic forecasts of demand, complexity, and capacity reduction.

Such an enhanced product would support the FMP in taking anticipated, appropriate, and timely flow measures that contribute to increase the ATM efficiency and reduce delays.

- Key research challenge: Analysis of a traffic flow management problem with an extended time horizon.
 - Important levels of uncertainty \rightarrow Probabilistic approach.
 - Integrating different probabilistic MET products is needed.
- In FMP-Met, **uncertainty management** is based on ensemble forecasting:
 - Several sources of MET uncertainty: wind and air temperature, exposure to convection, and storm cell location.
 - Other uncertainty sources: **operational uncertainty** (storm avoidance strategy) and **uncertainty in the TOT**.

Work Performed

Key Project Results (I)

FINAL FMP-MET CONCEPT

Time evolution of the DCB for a specific sector configuration broken down into its constituting traffic volumes

le	Z ₅₀ >110				
	100< Z ₅₀ ≤110				
	90< Z ₅₀ ≤100				
	Z ₅₀ ≤90				
		Z ₉₅ ≤90	90< Z ₉₅ ≤100	100< Z ₉₅ ≤110	Z ₉₅ >110

Probabilistic color code based on the 50th and 95th percentiles of the ROL distribution (Z_{50} and Z_{95}).

Key Project Results (II)

FMP Expert Feedback

- A validation exercise was conducted with FMP experts from ACG and CCL, intended to validate the probabilistic operational concept.
- Validation tool used: Judgmental technique (expert opinion) via questionnaires. Results are qualitative.
- Main result: The FMP-Met concept has been assessed positively.
 - The FMPs recognized that the FMP process in adverse weather can be operationally improved: FMP-Met concept developed is a good first step.
 - Good choice of the **graphical displays** selected for the tool concept developed: The experts consulted were **comfortable**.
 - FMPs suggested improvements for future development.

FMP-Met Project Consortium

ENV/MET PROJECT SHOWCASE

Moderated by: **Olivia Nunez** SESAR 3 JU)

DLR DYNCAT CREATE

ALARM

Sevilla **FMPMet**

ARTISTIC INTERLUDE

5-8 December 2022, Budapest

Hosted by

EUROPEAN PARTNERSHIP

