
Time-Minimal Aircraft Trajectory
in the Presence of Unsteady Wind

by Shape Optimization
James M. Shihua, Chris HC. Nguyen, and Rhea P. Liem

Department of Mechanical and Aerospace Engineering
The Hong Kong University of Science and Technology

Clear Water Bay, Kowloon, Hong Kong SAR.

Abstract—Consideration of wind effect in airline operations
has become crucial for saving travel time, maximizing operational
efficiency, and reducing fuel consumption. In this paper, we
propose a new approach to solve the time-minimal trajectory
problem by formulating it as a shape optimization problem,
accounting for unsteady wind conditions. Unlike traditional
methods, our approach works on parameterized trajectory in
a continuous spatio-temporal domain, which does not require
a discretization in the two-dimensional domain. Furthermore,
the approach also simplifies the cost function evaluation, with
only one co-dimension along the trajectory. Hence, our approach
guarantees continuity of flight states, and is independent of
network (also referred to as a mesh or a grid in the literature)
quality and constraints. Through a suite of simulations and case
studies, we demonstrate the effectiveness of our approach in
reducing travel time for various flight types, including long-haul,
medium-haul, and short-haul flights. The obtained optimized
trajectory is shown to achieve a balance between headwind
avoidance and distance minimization, leading to a time-minimal
solution. A statistical analysis is performed on three popular flight
sectors, HKG-LHR, HKG-ICN, and HKG-TPE, to validate the
effectiveness of the developed algorithm in reducing flight time,
using flight information extracted from real airline operations.
Optimized trajectories are then compared with those from Quick
Access Recorder (QAR) data shared by Cathay Pacific Airways.
Our findings offer practical implications for airlines seeking to
enhance operational efficiency and reduce environmental impact.

Keywords—Trajectory optimization, airline operation, un-
steady wind, shape optimization.

I. INTRODUCTION

In an era of increasing air travel demand and growing
environmental concerns, striving towards more efficient op-
erations has emerged as a crucial aspect in the aviation
industry. Efficiency in aviation operations encompasses various
dimensions, including fuel economy, operational efficiency,
resource management, to name a few. Fuel efficiency is a
key area of focus, as it directly impacts both economic and
environmental aspects of air transportation. The International
Air Transport Association (IATA) reports that fuel costs ac-
count for a substantial portion of airlines’ operating expenses,
and improving fuel efficiency can notably reduce operating
costs [1]. In addition, improving fuel efficiency contributes
to the reduction of greenhouse gas emissions, thus mitigating
the environmental impact of air travel [2]. In order to reduce

fuel consumption and maximize operational productivity for a
route, airlines nowadays are paying attention to wind field to
take advantage of tailwinds when planing flight trajectories [3].
When cruising with tailwinds, ground speed increases, reduc-
ing travel time and fuel consumption.

Trajectory optimization in the presence of wind or current
is a long-standing problem in the fields of aviation [4],
underwater robotics [5], ship navigation [6], etc. Generally
speaking, the problem can be categorized into two, namely
(spatially) varying wind and unsteady wind. The same applies
to ocean current, but the scope of this work is limited to aircraft
and wind. Variable wind means that there exists only a spatial
variation of wind direction and magnitude, but is constant in
time. Unsteady wind, on the other hand, has both spatial and
temporal variation. In this paper, we are particularly interested
in the latter, especially when long-haul flights are considered,
where the variation of wind duration over the flight duration
is non-negligible.

Two families of algorithms can be applied to solve the
wind-optimal trajectory problem, namely grid-based or grid-
free. Grid based algorithms, such as Dijkstra [7] algorithm,
A* algorithm [8], D* algorithm [9], etc., discretize the two-
dimensional (2-D) spatial domain into a network, or grid, and
try to find the nodes (or waypoints) that constitute an optimal
path. Dijkstra algorithm is also extended to 3-D by Wang
et al. [10] to solve unsteady wind problems. This family of
algorithms efficiently traverses all nodes in the network and
ensures global optimality and completeness [8], and is popular
among path-finding problems with complex obstacles. The
main drawback of this type of algorithms is that the solution
is network-dependent, in that the solution can exist only in the
configuration space permissible by the network. In addition,
the practicality of the solution depends greatly on the network
generation procedure, quality, and spatial resolution, especially
for commercial aircraft or ships that are not agile nor easy to
maneuver. Last but not least, as the whole 2-D domain needs to
be discretized, the algorithm becomes both time- and memory-
consuming when the spatial resolution is high.

The above-mentioned algorithms have a competitive edge
especially for problems where the nodes and edges must be
clearly defined, such as ground transportation. However, for
airlines operations, an aircraft does not necessarily always
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Figure 1. Formulation of the wind-optimal trajectory as a shape optimization problem.

follow links between nodes, especially during the cruising
stage. In this situation, algorithms that work in a continuous
space are preferred. The traditional approach is to find the best
function to represent the shape of the trajectory. Very often,
the trajectory optimization problem is converted to a partial
differential equation (PDE), called the Eikonal equation

||∇u|| = τ, (1)

where u is the distance function and τ is the cost function [11].
Such algorithms include the level set method [12], the fast
marching method [5], the ordered upwind method [13], etc.
However, solving a PDE is still computationally costly, and
typically requires 2-D discretization of the whole spatial
domain. In addition, this equation is steady-state (no temporal
marching term du

dt ), hence it is not suitable for resolving the
optimal trajectory in the presence of unsteady wind.

In this research, we develop a travel-time minimization
procedure that can consider the effect of unsteady wind. We
assume that the fuel consumption is proportional to the travel
time, hence minimizing either quantity will yield the same
result. By representing the trajectory as a continuous shape,
the method is grid-free and suitable for continuous spatio-
temporal domain. The cost-function evaluation (i.e., travel-
time calculation) only necessitates the discretization along the
continuous trajectory; hence, the problem’s co-dimension is
one. Such discretization (complexity of O(n)) is much more
efficient than the two families of algorithms mentioned above
(complexity of O(n2)). The trajectory is controlled by several
design points, which are allowed to move continuously in the
2-D domain. The grid-free property of this approach allows for
more flexibility in path planning, which is suitable for aircraft
flight operations.

This paper is structured as follows. In Section II, we provide
details on the formulation of the trajectory optimization prob-
lem, algorithms for trajectory deformation, and computation
of the cost function, followed by a brief description of the
optimization algorithm. In Section III, we demonstrate the
effectiveness of such algorithm by comparing the travel time
between optimal trajectory, great circle trajectory, and real
operational data obtained from our airline partner, Cathay

Pacific Airways Limited (CX). Finally, Section IV summarizes
what we have achieved in this research.

II. METHODOLOGY

A. Wind-Optimal Trajectory as a Shape Optimization Problem

In this section, we describe the methodology used to
optimize the aircraft cruising trajectory in the presence of
unsteady wind. This methodology is inspired by airfoil shape
design optimization in the context of aircraft design, which is
another important branch of aerospace engineering. In airfoil
shape optimization, the shape of an airfoil (i.e, the cross
section of an aircraft wing) is optimized to achieve a desired
performance, which is generally related to its aerodynamic
efficiency. To optimize a shape, a parametrization technique
must be used to deform or generate a shape. In this research,
we adopt the shape parameterization approach by means of
deformation [14], where the baseline design is continuously
deformed into a new shape as the optimization progresses.
Some popular methods belonging to this category include
Hicks-Henne function [15], free-form deformation (FFD) [16],
etc. The new method developed in this work belongs to the
FFD category, and its details are presented as follows.

The trajectory T = [x(s), y(s), t(s)]
⊤, or its curve shape

[x(s), y(s)]
⊤ (i.e., the shape of the solid black curve in Fig. 1),

is controlled by several design points Pi = (xi, yi), called
control points (a vector of all design points is denoted as P
accordingly). Here, x is longitude, y is latitude, t is time,
i = 1, 2, 3, . . . , n is the index of control points, s is an arbitrary
parametrization, and n is the number of control points. It
is worth mentioning that, there is no time information in a
shape; however, time is implied by the shape and aircraft
dynamics. To create a shape from several control points,
an interpolation technique is necessary, such as polynomial
interpolation, Bezier curve, B-spline, and etc. As a time
minimization problem, a great circle (GC) trajectory is filled
between two control points, which is the shortest path between
two points on the earth sphere. By adding a displacement to a
control point (changing its (x, y) coordinate), the trajectory
shape can be modified. This type of operation is usually
referred to as a free-form deformation (FFD) [17]. With its
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shape defined, it is possible to determine the travel time
required to follow this path: the trajectory will be further
discretized into N ≫ n finer segments to perform a time
integration. However, the travel time ∆ti between two points
(xi, yi) and (xi+1, yi+1), in the presence of unsteady wind,
is unknown. This is because the arrival time at (xi, yi) is
unknown and depends on all previous travel time ∆tj where
j ≤ i − 1. Hence, ∆ti has to be solved by a sequential or
an iterative process in a vectorized manner. For a large N ,
iterative process has a clear performance advantage over the
sequential one, which is adopted in this work and will be
explained in Section II-C. Fig. 1 depicts the concept mentioned
above: the trajectory (solid dark blue line) from origin to
destination (red dots) is generated by control points (solid
orange circle) with a GC trajectory filled in between. Time
integration points (green dots) are used to calculate the travel
time fragments, and their summation is the total travel time.

Having explained the formulation of the optimization prob-
lem, here we present the optimization statement:

minimize
x,y

tf = f{T[P(x,y)]}

subject to xl
i ≤ xi ≤ xu

i , i = 1, 2, . . . , n

yli ≤ yi ≤ yui , i = 1, 2, . . . , n,

(2)

where tf is the total travel time as a function of trajectory T,
thus control points P. xl

i, x
u
i and yli, y

u
i are the lower and upper

bound of xi and yi, respectively. The problem is formulated
to explore the potential time saving by optimizing the flight
trajectory without the constraints of waypoints, which exist
in reality. Furthermore, no-fly zone and air traffic volume
(congestion) along the path are not taken into consideration
at this stage of research.
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Figure 2. XDSM of the the optimization process.

Fig. 2 illustrates the optimization process using an extended
design structure matrix (XDSM) diagram1. In this figure,
thin black lines with arrows and bold gray lines represent
the process flow of the optimization loop and data flow,
respectively. A more detailed documentation can be found
in its repository. Following the diagram, the shape optimizer

1https://github.com/mdolab/pyXDSM (last accessed on 13 September 2023)

iteratively deforms the shape of the trajectory, and evaluate the
cost function (tf ) and its gradient. Inside the function call, tf
is calculated by solving the residual equation, which will be
further explained in Section II-C.

B. Wind Data Processing and Interpolation

Though this research proposes a grid-free trajectory op-
timization method, wind data from available resources still
come in a grid format (matrix). In our study, we use the ERA5
dataset from European Centre for Medium-Range Weather
Forecasts (ECMWF) 2. These wind data have a resolution of
0.25◦ in latitude, 0.25◦ in longitude, and 1 h in time, with
coverage of the entire globe every day. Hence, for every cal-
endar day, the wind data matrix Wx and Wy has a dimension
of Nx ×Ny ×Nz = 1,440× 721× 24, where Wx is the east
wind and Wy is the north wind. 3-D interpolation using the
gridded data is performed to calculate the wind information
on each spatio-temporal state u = (x, y, t)⊤. For most robust
and efficient implementation, trilinear interpolation is used,
which linearly interpolates the value between nodes on a 3-
dimensional regular grid. The output of such an interpolation
is C0 continuous, but is once-differentiable everywhere except
on the edge and node of the gridded data. Fig. 3 illustrates
the continuity and differentiability of a trilinear interpolation.
The differentiability of wind data facilitates gradient descent
(GD) in the optimizer. The concept is that, the total derivative
of the cost function (tf ) with respect to design variables (x
and y) can be computed by the chain rule, which requires all
intermediate functions to be at least once differentiable. More
details about the optimization subroutine will be explained
further in Section II-D.

Figure 3. Trilinear interpolation.

C. Travel Time Calculation

To initiate the computation, the algorithm (as illustrated
in Algorithm 1) first generates the trajectory using n design
points (x,y). A great circle segment is used to connect
two adjacent design points, enriched with N additional time
integration points per segment as shown in Fig. 1. The great

2https://cds.climate.copernicus.eu/cdsapp#!/dataset/
reanalysis-era5-pressure-levels?tab=overvie (last accessed on 13 September
2023)
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Figure 4. Superposition of wind velocity and true airspeed.

circle distance between two adjacent waypoints (xk, yk) and
(xk+1, yk+1) can be calculated by

dxk = R cos−1 (cos yk cos yk+1 cos (xk − xk+1)

+ sin yk sin yk+1) ,
(3)

where R = 6,371 km is the Earth radius and k ∈ [1, N − 1].
Afterwards, the algorithm derives an initial estimation of the
travel time between waypoints, denoted as dt, by

dt =
dx√

V 2
TAS −W 2

c +Wt

. (4)

where Wt is the track wind (tangential to T ) and Wc is the
cross wind (normal to T ). Because Wt and Wc are not yet
known, they are initialized to 0 as an initial guess. The time
stamp at each waypoint t can be computed as the cumulative
sum of dt. Now, we can interpolate the east wind Wx(t) and
north wind Wy(t) at (x,y, t), by trilinear interpolation. Fig. 3
depicts the eight grid points used for interpolating the value on
the target location. The function value is C1 continuous (blue
region) everywhere except on the grid points and the edges
where it is C0 continuous (orange region). As a numerical
method, this continuity condition is adequate for the gradient-
based optimizer to perform finite-difference by sampling from
interior points (blue region). Having computed Wx(t) and
Wy(t), we can compute the Wt and Wc along T by

Wt = Wx sinθ +Wy cosθ

Wc = −Wx cosθ +Wy sinθ,
(5)

where

θ = tan−1 sin(x2 − x2) cosy2

cosy1 siny2 − siny1 cosy2 cos(x2 − x1)
(6)

is the navigational bearing angle. Now, we notice that the t
obtained from this newly interpolated wind is inconsistent with
the initial guess. To ensure consistency, Algorithm 1 iteratively
updates the values of dt, its cumulative sum t, and wind
velocity at t until they converge. These quantities are updated
in a vectorized way instead of solving one time step at a time
sequentially. The convergence is checked by evaluating the
residual R(t) between the previous and updated time steps
using the residual function; the convergence is achieved when

the residual value falls below a predefined threshold ϵ. Finally,
the total travel time tf is calculated by summing the time
intervals dT.

Algorithm 1 Travel Time Computation with Variable Wind
Input:
• Trajectory T
• True airspeed VTAS
• Wind data W(t)
• Integration fineness N

Output:
Travel time tf

1: Generate T based on x and y;
2: Calculate GC distance dx between N integration points

(Eq. (3));
3: Estimate travel time dt (Eq. (4));
4: Calculate bearing θ along T (Eq. (6));
5: Interpolate and calculate Wt(t) and Wc(t) at an initial

guess t (Eq. (5));
6: Estimate time stamp tj =

∑j
i=1 dti, denoted as t;

7: Set count k = 0;
8: while R(t) ≥ ε do
9: Interpolate Wk

t (t) and Wk
c (t) based on tk (Eq. (5));

10: Estimate dtk+1 based on dxk, VTAS, Wk
t (t), and

Wk
c (t) (Eq. (4));

11: Estimate tk+1 =
∑j

i=1 dt
k+1;

12: R(t) = ||tk+1 − tk||2 (L2-norm);
13: k ← k + 1
14: end while
15: tf =

∑
dt.

D. Optimization Algorithm

To find the optimum trajectory (as defined by the
control point coordinates), we use a gradient-based non-
linear programming algorithm, which is known to be
more efficient than the gradient-free counterparts. As the
problem is box-constrained (i.e., only lower and upper
bound of design variables are present as constraints),
we use a quasi-Newton algorithm, namely the Broy-
den [18]–Fletcher [19]–Goldfarb [20]–Shanno [21] (BFGS)
algorithm. As a second-order algorithm, the Jacobian and
Hessian of the function are needed. The Jacobian is obtained
by performing finite-difference on the design variable, while
the Hessian is calculated using a dense quasi-Newton approx-
imation. The update rule of the approximated Hessian B is

B+ = B+
(y −Bs)(y −Bs)⊤

(y −Bs)⊤s
, (7)

where y = ∇f(x+)−∇f(x) is the change in Jacobian, s =
x+ − x is the update step, and the superscript + refers to
the next iteration. However, it is preferable to directly update
the inverse of the approximated Hessian H = B−1, instead
of updating B first and calculating its inverse. By applying
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Sherman-Morrison-Woodbury formula on Eq. (7), the update
rule of H is

H+ = H+
(s−Hy)(s−Hy)⊤

(s−Hy)⊤y
. (8)

Having obtained Eq. (8), the descent direction can then be
calculated as

d = −H∇f(x), (9)

and a line search is applied along d to get the maximum de-
scent in the function value. Assuming the line search returned
an optimal step length of α, the design variable will be updated
by

x+ = x+ αd. (10)

III. RESULTS

We apply the developed methodology to several popular
flights destinations from the Hong Kong International Airport
(HKG), including London Heathrow Airport (LHR), Seoul
Incheon International Airport (ICN), and Taipei Taoyuan In-
ternational Airport (TPE). These flight sectors represent long-,
medium-, and short-haul flights, respectively. Trajectories for
these flights are optimized under a wide range of date and
time to capture the seasonality and variation of how weather
conditions affect travel time.

A. Case Study of Single Trajectory

We use 19 design points to optimize the trajectory between
HKG and LHR on the day of 12 Jan 2022. Along the trajectory,
1,000 integration points are used to evaluate the travel time,
with an average time step of 35.2 s for LHR–HKG and 40.8 for
HKG–LHR.

Sector OPT GC QAR

LHR–HKG 9h 46.8m 9h 28.2m 10h 49.2m
HKG–LHR 11h 51.6m 11h 18.6m 13h 9.0m

TABLE I. TRAVEL TIME (IN HOURS AND MINUTES) FOR THE OPTIMIZED
(OPT), GREAT CIRCLE (GC), AND QUICK ACCESS RECORD (QAR) TRA-
JECTORY.

Travel time for the optimized (OPT), great circle (GC), and
quick access recorder (QAR) trajectory (from our airline part-
ner) of LHR–HKG (mostly tailwind) and HKG–LHR (mostly
headwind) are tabulated in Table I. For a fair comparison,
travel time of QAR is re-calculated using the same method
as in our optimization procedure, instead of the raw QAR
data. The optimal travel time is several minutes faster than
the GC trajectory, and much less than that of the QAR
trajectory. These three trajectories of LHR–HKG and HKG–
LHR are plotted in Figs. 5a and 5b, respectively, for a visual
comparison. Note that in reality, there might be several factors
that hinder aircraft from flying their most fuel efficient routes.
For example, the aircraft might want to avoid the Maastricht
Upper Area Control Centre (MUAC) area, which is considered
one of the busiest and most complex airspace. Also, only
part of the airspace in China is open of civil aviation, so
aircraft are required to strictly follow certain waypoints and

paths, where further unconstrained optimization might not be
possible. However, as mentioned in Section I, we would like
to explore the largest potential in time saving by optimizing
the cruise trajectory, as the air traffic management regulations
keep evolving with the advancement of technology.

To visually demonstrate the effectiveness of our algorithm,
Fig. 6 overlays the trajectory presented in Fig. 5b on the time-
dependent wind field. The trajectory and wind field is plotted
from T = 0 to T = tf at nine equally distributed time stamps.
The great circle is plotted in red, the optimized the trajectory
is plotted in black, while the blue star marks the destination
(LHR). The background shows wind field, where green and
red color indicate the favorability of the location, while black
arrows show the local wind magnitude and direction at T .
Areas with tailwind (favourable) is shown in green, while that
with headwind (unfavourable) is shown in red. The idea of
favorability is inspired by the velocity superposition principle
explained in Fig. 4. Conceptually, favorability is the additional
velocity that an aircraft can gain (or lose) from the tailwind (or
headwind), which can be calculated by using Eq. (4). White
area means the wind does not change aircraft ground speed
(but may still cause its heading to be misaligned with the
trajectory). We observe that the optimized trajectory avoids
strong headwind experienced by the GC when T ≤ 7.48 h,
and leads to a zone of strong tailwind afterward.

B. Statistical Study of Airline Operations

Having demonstrated the effectiveness of the developed
algorithm, we further investigate its benefits to airline by eval-
uating the travel time reductions on actual trajectories, using
the three flight sectors mentioned above. In particular, we use
representative flights operated by CX to the above-mentioned
three destinations within the period of 1 January 2020 to 31
December 2020, including 621 HKG–TPE flights, 172 HKG–
ICN flights, and 527 HKG–LHR flights. These 1,320 flight
trajectories are optimized using the newly developed algorithm
based on information obtained from QAR data, including
the date and time of the flight, the starting and ending
position of the cruise segment, and the average true airspeed.
The optimized travel time is then compared against the one
calculated by the corresponding trajectory recorded in QAR;
the distribution of the travel time reduction is shown in Fig. 7
for the three flight sectors. Not surprisingly, the travel time
reduction (in hours) is shown to be proportional to the total
travel time, where more substantial travel time reduction is
observed on long-haul flights. Taking the average value of the
relative time reduction (in percentage), our algorithm reduces
10%, 14%, and 6% of the travel time for HKG-TPE, HKG-
ICN, and HKG-LHR sector, respectively. We observe that for
HKG-TPE flights, the very short cruising range limits the room
for improvement. On the other hand, the baseline travel time
for HKG-LHR is relatively long, so the resultant percentage
time reduction is less substantial. These observations might
explain why the gains achieved in these two sectors are
relatively lower than that of HKG-TPE. In airline operations,
where both financial and environmental considerations are
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(a) Optimal tf from LHR to HKG is 9 hours 46.8 minutes. (b) Optimal tf from HKG to LHR is 11 hours and 18.8 minutes.

Figure 5. Comparison of the optimized trajectory and the GC trajectory between HKG and LHR on 12 Jan 2022.

Figure 6. Trajectory from T = 0 to T = tf at nine equally distributed time stamps. The background color indicates the favorability of the location, with
green and red corresponding to favorable (with tailwind) and unfavorable (with headwind) condition, respectively. Within the wind field, the black arrows
show the local wind magnitude and direction at T .

vitally important, this outcome can contribute to a substantial
reduction in operating cost and operational block time, thereby
increasing overall efficiency and customer satisfaction.

IV. CONCLUSION

In summary, this research paper presented a new method to
solve for the time-minimal aircraft trajectory problem in the
presence of unsteady wind conditions. The proposed approach
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Figure 7. Histogram of reduced travel time between HKG–TPE, HKG–ICN,
and HKG–LHR.

formulates the problem as a shape optimization task to enhance
flexibility in flight planning compared to traditional grid-based
algorithms. This algorithm works on a continuous domain,
which reduces error and computational cost associated with
spatial discretization. By accurately considering the dynamic,
time-dependent wind conditions, the optimized trajectories
achieve a balance between minimizing distance and avoiding
headwinds, as shown in the case study involving flights
between HKG and LHR. We further demonstrated the effec-
tiveness of our approach on 1,320 flights that represent long-,
medium-, and short-haul sectors, which consistently showed
notable travel time reduction. To conclude, this research can
bring practical benefits to the airline industry with its potential
to enhance operational efficiency, reduce fuel consumption,
and mitigate environmental impact. Future work will focus
on incorporating considerations such as no-fly zones and
mountainous areas for more realistic trajectory optimizations,
as well as exploring a two-stage optimizer that combines a
grid-based pre-optimization and grid-free methods to assure
global optimality.
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