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Abstract—Thanks to Alexa, Siri or Google Assistant automatic 

speech recognition (ASR) has changed our daily life during the last 

decade. Prototypic applications in the air traffic management 

(ATM) domain are available. Recently pre-filling radar label 

entries by ASR support has reached the technology readiness level 

before industrialization (TRL6). However, seldom spoken and 

airspace related words relevant in the ATM context remain a 

challenge for sophisticated applications. Open-source ASR toolkits 

or large pre-trained models for experts – allowing to tailor ASR to 

new domains – can be exploited with a typical constraint on 

availability of certain amount of domain specific training data, i.e., 

typically transcribed speech for adapting acoustic and/or language 

models. In general, it is sufficient for a “universal” ASR engine to 

reliably recognize a few hundred words that form the vocabulary 

of the voice communications between air traffic controllers and 

pilots. However, for each airport some hundred dependent words 

that are seldom spoken need to be integrated. These challenging 

word entities comprise special airline designators and waypoint 

names like “dexon” or “burok”, which only appear in a specific 

region. When used, they are highly informative and thus require 

high recognition accuracies. Allowing plug and play customization 

with a minimum expert manipulation assumes that no additional 

training is required, i.e., fine-tuning the universal ASR. This paper 

presents an innovative approach to automatically integrate new 

specific word entities to the universal ASR system. The recognition 

rate of these region-specific word entities with respect to the 

universal ASR increases by a factor of 6. 

Keywords—Speech Recognition; Model Adaptation; Integration 

of prior knowledge; Customization of model, Rare-word 

integration. 

I.  INTRODUCTION  

A. Problem and Challenges 

DLR and MITRE have analyzed millions of word entities 

from voice communication between air traffic controllers 

(ATCos) and pilots. The most frequently used words are typi-

cally the ten digits, viz., one, two, three, … nine, zero, which 

cover roughly 40% of the spoken words [1]. 550 words cover 

95% of the spoken words in the US data. Nevertheless, the dic-

tionary size that is used in ATCo–pilot voice communications 

is much larger (order of tens of thousands different word enti-

ties). Nearly 10,000 airline designators like speed bird, egyptian 

bird or ocean exist. The number of waypoints used across air-

ports and airspaces, fixes or navigation aid names all over the 

world like DEXON, MOBSA, or DOMUX is even bigger than 

10,000. To make it even more challenging, parts of this word 

list are typically updated every month, i.e., new word entities 

appear so that speech recognition and downstream understand-

ing engines deteriorate over time. This is a serious lifecycle 

maintenance issue. It is a particularly large challenge for appli-

cations that need to be scaled up to cover multiple air traffic 

control (ATC) sectors and facilities. 

One of the first applications of automatic speech recognition 

(ASR) in air traffic management was the support or replacement 

of simulation pilots by ASR [2]. The first applications were 

used by air navigation service providers (ANSPs), which simu-

lated one or two airspaces. The set of waypoints was rather 

static. When changing to a new airspace (e.g., simulation of 

Frankfurt approach instead of Heathrow approach), the list of 

waypoints completely changes. The DIAL project [3], con-

ducted by six DLR institutes, is supported by a universal ASR 

engine of Idiap that was originally developed for the Vienna 

approach area. DIAL, however, considers the Celle sector in 

upper airspace, usually controlled by Maastricht upper airspace 

center (UAC), as relevant airspace [4]. For the original Vienna 

approach use-case, 260 waypoints such as ABIRI or BALAD 

have been modelled. Later on, 565 different waypoints were re-

quired to be well recognized by ASR for the new use-case in 

DIAL, e.g., KOSEK, WYK, or DOR (DOR is pronounced as 

“wickede” being a village in western part of Germany and WYK 

is pronounced as “wipper”). Contrary to this, “kosek” for Celle 

sector or “abiri” for Vienna approach are artificial 5-letter 

words composed of vowels and consonants. All these words are 

typically not found in a dictionary of the universal ASR engine 

(since these words were not found in training material). Some-

times the pronunciation of these words can easily be derived 

from the spelling, while at other times this is very difficult. 

Sometimes the pronunciation is even ATCo dependent, espe-

cially for towns containing letters not part of the 26 letters used 
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in normal English e.g. “Osnabrück” in German or “Liège” in 

French. 

The DIAL project aims to develop a digital air traffic con-

troller assistant. The assistant is supposed to manage less chal-

lenging aircraft without the intervention of the ATCo. This way, 

the ATCo can concentrate on more challenging aircraft. Fur-

thermore, DIAL supports simulation pilots by a method called 

automatic speech recognition and understanding (ASRU). Inte-

gration of ASRU helps to reduce the number of required simu-

lation pilots per exercise. The past validation trials with a uni-

versal ASRU solution developed for Vienna approach in DLR’s 

lab environment were based on 120,000 word entities resulting 

in an overall word error rate (WER) of the ASR engine of 3.1% 

[5]. However, when applying this ASRU solution from past 

projects during the first trials of DIAL, WER has increased to a 

high WER of 13.9% (see TABLE VI. in subsection V.B). Such 

a degradation in performance is specifically due to the presence 

of waypoint names that were not seen during the ASR training. 

The statistical system that models the language structure relies 

on the surrounding context while generating the transcript for a 

specific speech segment. This implies that the poor detection of 

waypoints also degrades the detection of words around these 

waypoints. Conversely, retraining an ASR system for a new air-

space with a different set of waypoint names is challenging. 

This paper proposes an easy-to-use solution for tackling the 

aforementioned problem. 

B. Paper Structure 

This paper presents an overview on previous work to tackle 

the Out of Vocabulary (OOV) problem in Section II and briefly 

discusses the current state-of-the-art in ASR for ATC. Section 

III describes the experimental setup to test the recognition of 

OOV words after customization. Section IV describes different 

solutions, which have been implemented in the context of the 

DIAL project. Section V presents the results with respect to 

word level and semantic level performance. Section VI dis-

cusses the current status and suggestions, how others can bene-

fit from the already achieved results, before section VII presents 

the conclusions. 

II. CURRENT STATE-OF-THE-ART ASR SOLUTION FOR ATC 

A. Automatic Speech Recognition 

ASR, also often referred to as speech-to-text system, auto-

matically converts the input speech to a textual form, i.e., a se-

quence of words. In the case of ATC communication, we mean 

the voice conversation captured by microphones on the side of 

ATCos or pilots with input speech. The most advanced ASR 

technology developed in recent past for ASR for ATM applica-

tions comes from HAAWAII project [6] (HAAWAII = Highly 

Advanced Air Traffic Controller Workstation with Artificial In-

telligence Integration). The project, although focusing on inno-

vative ASR approaches in ATM, also required a certain level of 

maturity so that the developed ASR solution can provide 

needed recognition accuracies, which can then be used for sub-

sequent downstream applications, e.g., callsign highlighting 

[7], pre-filling radar label entries [5], or readback error detec-

tion [8]. Furthermore, we have decided to re-use a hybrid ASR 

solution that was trained on relatively large manually tran-

scribed speech data available from HAAWAII project as well 

as from other past projects. As shown in Fig. 1 the ASR engine 

consists of a combination of independently trained acoustic 

models (AM) and language models (LM). In this work, the 

acoustic model is trained as a classical deep neural network in-

stead of using new end-to-end architectures [9]. A hybrid-based 

ASR system employs separate AM and LM. The AM is trained 

with a set of speech recordings with a corresponding text tran-

script, while LM is trained on text only (e.g., the text corre-

sponding to the speech recordings available for training AM is 

typically used). However, in general much larger textual re-

sources are available than speech data. The AM represents the 

relationship between a speech signal and phonemes, or other 

linguistic units, that make up the speech. The LM is usually rep-

resented by a probability distribution over sequences of words. 

The LM in the form of a Finite State Transducer (FST) provides 

context to distinguish between words and phrases that sound 

similar. Using the knowledge of AM and LM, a decoding graph 

is usually built as a Weighted Finite State Transducer (WFST) 

[10],[11] using the open-source library called OpenFST [12]. 

The WFST graph generates text output given an observation se-

quence as shown in Fig. 1. A decoder module uses the decoding 

graph to predict the best probable transcript corresponding to 

an input speech signal.  

 

In order to train the hybrid-ASR, additional knowledge is 

required for its development. In case of monolingual ASR sys-

tem (English in this case), the minimum knowledge relevant for 

ATM is a set of phonemes and an input dictionary. Both play 

an important role in further model customizations. The ATC 

lexicon consists of words that usually do not appear in English 

conversations, but are specific to ATC. On the one hand, there 

are frequently used and static terms such as “QNH” and 

“wilco”. On the other hand, there are seldom used and dynami-

cally changing words (such as artificial waypoint names).  Such 

words may have never been seen during training the ASR 

model, but might occur in the field when the ASR system is 

deployed. This work proposes solutions to easily customize the 

running ASR system to better detect such words in the field. 

B. Acoustic Modelling (AM) 

The acoustic model in hybrid ASR is built around Hidden 

Markov Models (HMM) combined with Deep Neural Networks 

Figure 1. Hybrid-based ASR, where acoustic model combines hidden Markov 

models and modern deep neural network architectures. Language model is 

then used during the decoding phase. 
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(DNN) [13]. DNNs are an effective module allowing to esti-

mate the posterior probability of a given set of phonemes, or 

more specifically context-dependent phonemes called tri-

phones. These posterior probabilities can be seen as pseudo-

likelihoods or “scaled likelihoods”, which can be interfaced 

with HMM modules. HMMs provide a structure for mapping a 

temporal sequence of acoustic features extracted from the input 

speech, e.g., mel frequency cepstral coefficients (MFCC), to a 

sequence of states [14]. In recent years, end-to-end models are 

becoming popular as they can be trained as non-autoregressive 

systems that can model the long future context during training. 

Nevertheless, hybrid ASR systems still remain one of the best 

approaches for building production engines, allowing to reach 

high recognition accuracies. HMM-DNNs based ASR is the 

state-of-the-art systems for ASR in ATC domain. It was also 

used in HAAWAII project [8] as well as DIAL project. The 

acoustic model in those projects was trained in a supervised 

mode, i.e., manually transcribed data is needed for the target 

ATC domain. 

Some of the recent works have shown further improvements 

with semi-supervised model training.  Such a type of training 

relies on exploiting automatically labeled speech, i.e., using 

some universal ASR engine, or an ASR engine developed using 

a small amount of manually transcribed speech recordings. 

More details on leveraging non-transcribed ATC speech data 

by semi-supervised learning can be found in  [15], [16]. An ad-

vantage of semi-supervised learning is that a large set of unla-

beled speech data is easily available and can be employed for 

training. Large here means 10 or 100 times more than in case of 

manually transcribed data. 

One of the sources of reliable large-scale collection of ATC 

speech data from different airports worldwide is available from 

the ATCO2 project [17]. Additionally, innovative research tar-

geted to improve word recognition belonging to the callsign is 

possible by integrating surveillance data into the pipeline [16], 

[18]. 

C. Language Modeling (LM), Dictionary 

As part of hybrid-based ASR, LM still plays a crucial role 

[19]. The main advantage of deploying LM is its large power to 

bring the generic ASR technology to the target, i.e., the ATC 

domain. Standard hybrid-based ASR approaches still rely on 

word-based dictionary as is the case of ASR solution developed 

for HAAWAII and DIAL projects. The LM can directly be 

trained on word transcripts collected from the domain. There-

fore, word-based LM is used across the ATC scenarios in this 

paper. In our case, an n-gram LM is deployed with n equal to 3. 

One of the disadvantages of the word-based approach is that the 

ASR engine cannot directly recognize words not seen during 

the training. A set of a-priori known words is required and must 

be given to the ASR system as dictionary. Its typical size is 

thousands of words for ATC domain, and hundreds of thou-

sands of words for generic conversational English tasks. This 

issue is nevertheless addressed by a customization step de-

scribed later (see section IV). 

D. Recognition Process 

The process of recognition, i.e., generating the recognition 

output from the input speech is briefly described here. Trained 

acoustic and language models are combined together in case of 

hybrid-ASR solution applied for HAAWAII and DIAL pro-

jects. These models are combined using the concept of FST lev-

eraged through the Kaldi framework [20] one of the main 

streams applied by researchers and companies for ASR. 

Trained acoustic model, i.e., specifically the HMM topol-

ogy, and language models are combined through the concept of 

FST together with a dictionary and the final graph is used 

through the process called “decoding”. During decoding, the in-

put speech is first used to extract speech features (above men-

tioned MFCCs), which are then inferred through the DNN ar-

chitecture. The output set of phonemes represented by a set of 

posterior probabilities is passed to the decoder to map phoneme 

sequence to the most likely word sequence using the FST graph. 

The output then can be seen as a set of word recognition hy-

potheses, i.e., word sequences represented by data structures 

called lattices. The lattices carry not only information about 

word sequences, but also information about confidence for each 

word. Decoding can be run in an offline mode, i.e., after detect-

ing the end-point in utterance the speech is decoded and the rec-

ognized word sequence is returned. Whereas, in online decod-

ing mode, partial word recognition is available in real-time dur-

ing the process of decoding with a minimum latency of 200-

300ms. 

III. EXPERIMENTAL SETUP 

A. Data 

The data for training the AM for DIAL project is partially 

leveraged from the past works. This dataset stems from an ex-

ploratory research initiative with the goal of investigating and 

creating a dependable and flexible system for automatically 

transcribing voice commands provided by ATCos and pilots 

alike. The dialogues between ATCos and pilots were sourced 

from two air navigation service providers (ANSPs): (i) NATS 

for London approach and (ii) ISAVIA for Icelandic en-route. 

For training the acoustic models, in total 195 hours of labeled 

ATC data have been used [9]. The training data is augmented 

with other internal ATC databases and also using speed pertur-

bation during training. The corresponding reference text has 

been used to train the baseline language model. The language 

model is basically a 3-gram model trained using the SRILM 

toolkit in Kaldi.  

The testing data for evaluating the ASR system was col-

lected through proof-of-concept exercises involving ATC utter-

ances from ATCos to pilots. Despite the diverse English accents 

of the speakers, the recording conditions were generally clean. 

Furthermore, the exercises included spoken words that were not 

encountered often or at all during training. Additionally, utter-

ances that especially contain rare words, e.g., waypoints, in the 

correct context were recorded by different speakers, e.g., “air 

france two six alfa proceed hamm”. The test set consists of ap-

proximately 52 minutes of audio data with a total of 673 test 

utterances, comprising a total of 1157 commands (like CON-
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TACT, CONTACT_FREQUENCY, DIRECT_TO, etc.). Ac-

cording to the European annotation ontology [22], a “com-

mand” is a high-level concept that represents an instruction. 

The number of waypoints considered for boosting in this work 

are discussed in the next subsection. 

B. Waypoints 

The challenge addressed by this paper is related to the con-

textual mismatch of test data with respect to training data, spe-

cifically for the incorporation of waypoint (word) entities. Way-

points are specialized terms in the field of ATC, corresponding 

to coordinates. ATCos and pilots use these terms to follow or 

adjust flight paths. Typically, these waypoint terms are specific 

to particular areas. For example, if we focus on a specific do-

main like en-route navigation for Germany, the waypoints used 

are tailored to that region. However, if we were to apply this 

system to en-route navigation in Austria, the waypoints would 

likely change. Consequently, the system might not readily rec-

ognize them. In this context, our current work empowers cus-

tomers to easily incorporate these new waypoints into the sys-

tem, even without specialized expertise.  

Waypoints are names given to a latitude-longitude pair rep-

resenting a geographic location. A waypoint name such as 

“WYK” (pronounced as “wipper”) is represented by an abbre-

viation consisting of a sequence of letters or numbers like 

“DL455”. These waypoint names may appear in ATCo-pilot 

communication as “wipper”, “whisky yankee kilo” or “delta 

lima four five five”. When the waypoint is referred to by pro-

nouncing its sequence of letters, the ASR system can easily de-

tect it, as the ICAO phonetic alphabet is commonly encountered 

as part of the English dictionary during training. However, chal-

lenges arise when ATCos or pilots use the artificially created 

waypoint name like “wipper”, which are either newly intro-

duced or infrequently encountered during model training. 

TABLE I.  STATISTICS RELATED TO THE WORD BOOSTING TASK 

Test set size 
673 utterances / 

52 minutes audio 

Number of different words 

in Dictionary 
30,821 

Number of unique Waypoints 565 

Number of Waypoints in test set 83 

Total occurrences of Waypoints 443 

 

TABLE I. lists important statistics about the test data and 

the waypoints selected for boosting in the present case. The test 

dataset comprises 673 spoken statements, which correspond to 

52 minutes of audio data. The DIAL data base consists of a list 

of 565 rare words that were required to be detected correctly by 

the ASR system. From this list of rare words, 84 unique word 

entities were present in the test set collected for evaluating the 

ASR system and these occurred for a total of 443 times. How-

ever, a fraction of the rare words was never seen during training 

the LM and can be referred to as OOV words. Therefore, in or-

der to correctly evaluate the performance of the proposed word-

boosting methods in improving the detection of the 84 rare 

words in the test set, the set of OOV words were manually 

added (see section VI) to the LM and assigned the minimum 

possible probability. This step is important since the proposed 

customization methods assume that the words to be boosted are 

in the dictionary. Nevertheless, this step is easily performed 

with the tools developed in this work. Once all the 84 words are 

known to the ASR engine, we use the boosting methods pre-

sented in this work to improve the weights of all the 84 words. 

With this background on the training and testing data, we will 

present the baseline performance in the following subsection. 

C. Baseline ASR Performance 

In this subsection, the performance of the baseline ASR sys-

tem is described. Originally, an ASR system trained for differ-

ent airport/airspace scenarios was developed. However, when 

the same system was evaluated on the test data, it was observed 

that the important waypoints and other airport dependent names 

were not properly recognized. The required customization of 

this ASR system forms the crux of this work. However, before 

presenting the results obtained upon the model customization, 

it is necessary to discuss the results for the unmodified system 

that will serve as the baseline for this work. 

We use four metrics to report the results. The WER 

measures the percentage of erroneous insertions, substitutions 

and deletions caused by the ASR system with respect to the total 

number of reference words in the test data. This metric covers 

all words and not only the performance on the rare words. A 

lower WER is preferred. Next, we report the precision, recall 

and F1-score of detecting the rare words in the test data. For 

validating or falsifying the hypotheses of the last subsection we 

use the metrics introduced in [21] and detailed by Chen et al. 

[22], resulting in a simple scheme for measuring performance on 

semantic level. It is independent of semantic concept type or 

subcomponents and treats all semantic components with equal 

importance.  

TABLE II.   DEFINITION OF BASIC METRIC ELEMENTS 

Name Definition 

TP: True 

Positive  

Total number of True Positives: The concept is present and 

correctly and fully (including all subcomponents) detected.  

FP: False 

Positive  

Total number of False Positives: The concept is incorrectly 
detected, i.e., either the concept is not present at all or one or 

more of its subcomponents are incorrectly detected. 

TN: True 
Negative  

Total number of True Negatives: The concept is correctly not 
detected, because the concept is not present. 

FN: False 

Negative  

Total number of False Negatives: A concept is not detected 

when it should have been. 

TA: Total Total number of annotated concepts, i.e., gold concepts. 

 

We use the metric for both the performance for command 
extraction and also for callsign extraction. TABLE II. lists defi-
nitions that are the building blocks for the performance metrics. 
From the five building blocks we can derive recognition rate and 
recognition error rate Eq (1,2). Additionally, we define in Eq.4 
the F𝛼-Scores by defining Recall and Precision (Eq. 3). 

𝑅𝑐𝑅 =  𝑅𝑒𝑐𝑜𝑔𝑛𝑖𝑡𝑖𝑜𝑛 𝑅𝑎𝑡𝑒 =
𝑇𝑃 + 𝑇𝑁

𝑇𝐴
 (1) 

𝑅𝐸𝑅 =  𝑅𝑒𝑐𝑜𝑔𝑛𝑖𝑡𝑖𝑜𝑛 𝐸𝑟𝑟𝑜𝑟 𝑅𝑎𝑡𝑒 =
𝐹𝑃

𝑇𝐴
 (2) 
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𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
; 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =

𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 (3) 

F𝛼Score =  
(1 + α2) ∗  Recall ∗ Precision

(𝛼2 ∗ 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛) + 𝑅𝑒𝑐𝑎𝑙𝑙


(4) 

 

As observed from the F1-score in TABLE III. , the baseline 

ASR system fares quite poorly in detecting the rare words. Both 

performance values, WER as well as recall that are most im-

portant for correctly understanding the ATC message, are poor. 

Recall of ~0.05 roughly means that 95 (of 100) waypoints are 

substituted or deleted. Also, WER above 10% is significantly 

higher than observed on data such as those from HAAWAII 

project (3.1% from Table II in  [5]). In the section IV, we dis-

cuss the proposed customization algorithms applied to the base-

line ASR system to improve the performance of the rare words. 

TABLE III.  PERFORMANCE OF THE BASELINE ASR SYSTEM 

Method 
WER 

[%] 

Waypoint detection 

Precision Recall F1-score 

Baseline 13.85  0.92  0.05  0.10 

 

D. Baseline Performance on Semantic Level 

Measuring an accuracy of ASR (typically done on word 

level) is not directly related to the problem of speech under-

standing (i.e., extraction of information on semantic level). As 

a complementary evaluation to ASR, we measure performance 

on semantic level using the metrics presented in the paper of 

Chen et al. [22] considering the commonalities of ASRU for 

ATC applications on both sides of the Atlantic [1]. The above 

data set in total consists of 1157 commands with 85 commands 

of type CONTACT as shown also for types CLIMB, DI-

RECT_TO and STATION in TABLE IV. The test set is same 

as the one described in section III-A. We did not show all com-

mand types, like HEADING, SPEED etc. 

TABLE IV.  SEMANTIC PERFORMANCE OF THE BASELINE SYSTEM 

 
According to European annotation ontology [22] CON-

TACT result, e.g., from the utterance “contact boerde”. DI-

RECT_TO results from “proceed to nienburg” and STATION 

is the semantic interpretation of “speed bird four one maas-

tricht radar identified”. The airspace dependent words are 

marked in bold face. The mixture of command types is not rep-

resentative for real life utterances. We added much more air-

space dependent names to our test set. We see bad performance 

with recognition rates far below 50% for the CONTACT, DI-

RECT, and STATION command, whereas CLIMB is much bet-

ter. It just consists of keywords, numbers, units, which are are 

not airspace dependent. 

IV. CUSTOMIZATION OF ASR FOR NEW DOMAINS 

This section describes the process of ASR adaptation or cus-

tomization necessary to port the ASR engine to new domains or 

use cases. The main concept targeted by our work is to mini-

mize the requirements for expert knowledge, allowing target us-

ers to customize the ASR technology on their premises. The 

process of customization can be done in several ways, as de-

scribed below. 

A. Adaptation using In-domain Data 

The most obvious way of adapting the ASR is to use the 

concept of model adaptation by applying data-driven ap-

proaches leveraging set of speech and/or text transcripts from 

target domain. More specifically, the AM can be efficiently 

adapted to a new domain, e.g., to a target use-case airport/air-

space, by exploiting some target data from the domain to fine-

tuning the AM parameters and the LM statistics. In case of LM, 

the same data-driven concept can be easily applied, typically 

through the n-gram interpolation of an original LM with the one 

built from the target domain. However, both processes require 

certain expert knowledge, which is usually not part of an ATM 

personnel’s skill-set. Thus, collaboration with the ASR devel-

opers is required. This also includes the collection of speech 

data sets from target domains, which could require certain 

amount of time. Additionally, the manual data transcription typ-

ically done by humans can take enormous amount of time. Fur-

thermore, this process also requires certain unit-testing to make 

sure the new set of models perform well and the target models 

are not over-trained. Also, when porting the ASR system to a 

new domain, for instance DIAL project for the Celle sector, 

new waypoints are expected to be included. 

B.  Model Customization 

The second method involves end-users customizing existing 

models to enhance the recognition of new words. In contrast to 

the aforementioned method, this paper presents an approach 

that enables the incorporation of a set of new words or word 

entities into the existing ASR framework without requiring ad-

ditional manual transcriptions or retraining of existing models. 

Typically, the original ASR models are trained on huge data 

sets, but data at similar scales are unavailable during customi-

zation. Hence, this work tackles the problem in a more user-

centric manner by providing the ATM personnel an easy-to-use 

utility. This utility lets ATM personnel to modify the ASR sys-

tem by performing some simple pre-defined steps without re-

quiring them to understand the background processes. There-

fore, we have not delved further into the adaptation approach. 

Instead we have concentrated on strategies for customizing 

models to recognize new waypoints within the Celle Sector for 

"en-route" positions. The customization of the model in this 

study involves two distinct approaches: the first is referred to as 

G-boosting, and the second is termed Lattice-Rescoring. Both 

of these approaches will be explained in the following sections. 

1) G-boosting 

The G-boosting approach modifies the baseline LM trained 

for the ASR task. The trained LM is also stored as an FST (as 

mentioned previously). The LM is trained in such a manner that 
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it learns the most likely sequences or the context in which a 

word appears in the data. During decoding, the acoustic model 

information is used to predict many possible word sequences 

for a given test utterance. The LM provides the likelihood score 

for a predicted word sequence to be present in the current con-

text. When there are many possible word sequences to select for 

a particular utterance, generally the one obtaining the highest 

LM score is selected. Although this is a very logical method to 

train and use the LM, it has its own disadvantages. The LM be-

ing a statistical model gets biased to the most frequent of the 

words seen during training data. In other words, a word seen 

many times during training will get higher LM score than a sim-

ilar, but less frequent word. Thus, in cases where the acoustic 

model is not very confident about the predicted word in a par-

ticular context, the LM would tend to select the most frequent 

among the probable options. Our approach tries to solve this 

particular problem for the waypoints we are concerned about.  

 

 

Since the words are not seen many times during training, the 

final ASR output rarely predicts these words. To customize the 

ASR system to recognize these words, we update the weights 

in a pre-trained LM in a certain way, so that the likelihood of 

the new words being predicted increases. Fig. 2 illustrates a toy-

example of the weight update step graphically. For instance, if 

the word “balad” is more frequently seen during LM training, it 

will be associated with a higher weight as compared to a less 

frequent “barmen”. In such a scenario, to improve the detection 

of “barmen”, we update the LM FST in such a manner that the 

word “barmen” also has a decent weight associated with it. The 

boosting factor is empirically decided based on the performance 

on a validation set. Basically, the LM FST discussed previously 

is a graph, where all the correct sequence of words is repre-

sented as arcs of the graph with their respective weights. Our 

approach searches the arcs in the FST corresponding to each of 

the new words and artificially boosts the weights of the words 

under consideration. The modified LM is then used to create a 

new decoding FST graph to replace the previous one. Subse-

quently, when the decoding is performed again using the new 

decoding FST graph, the new words are detected much better 

than earlier (see TABLE V. ). The best part of this approach is 

that there is no need for expert intervention to perform this op-

eration. An ATM personnel has to perform very basic steps (il-

lustrated in Fig. 3). G-boosting was observed to perform quite 

well during experiments in improving the detection of rare 

words. 

2) Lattice-Rescoring 

As the name suggests, the second approach of Lattice-

Rescoring is performed on the decoded word recognition lat-

tices (mentioned previously). The lattices are a data-structure 

that store the top most likely set of decoded paths or word se-

quences for a given test utterance, along with their scores from 

the AM and the LM. In a normal decoding setup, the transcript 

for a given test utterance is the path that obtains the overall best 

score among all the possible sentences present in the corre-

sponding lattice. As is the case with new and rare words dis-

cussed previously, even if they are present in one of the possible 

paths, they usually correspond to low LM scores and hence do 

not get selected as the best path. We observed that there is a 

scope to improve the recognition of rare words by modifying 

the decoded lattices and rescoring them. More specifically, we 

first create a small biased FST consisting of the set of rare words 

with boosted weights. Subsequently, a first pass decoding using 

the baseline LM is performed to obtain the initial lattices. These 

lattices are then composed with the biased FST in a manner that 

wherever the rare words are present in the decoded lattices, we 

update their corresponding LM scores with the boosted weight. 

After this operation, the modified lattice is used to compute the 

best path. The boost provided to the rare words’ LM scores im-

proves the chance of selecting the path that consists of the rare 

words. As with G-boosting, we avoid the need of expert inter-

vention in performing Lattice-Rescoring as well.  

The main distinction between G-boosting and Lattice-

Rescoring is that Lattice-Rescoring works on-the-fly while gen-

erating the text transcripts of a speech utterance. Whereas G-

boosting is performed in an offline manner before firing the 

ASR engine for generating the transcripts. Moreover, G-boost-

ing is a permanent modification of the LM, whereas Lattice-

Rescoring runs without permanently modifying the LM. In our 

experiments, we found Lattice-Rescoring improved the detec-

tion of rare words (see TABLE V. ). 

V. RESULTS AFTER BOOSTING THE WAYPOINTS 

A. Word Level Performance 

The performance of the word-boosting techniques is tabu-

lated in TABLE V. As can be observed, the G-boosting tech-

nique improves the overall WER of the system from 13.85% to 

9.55%. In terms of waypoint names detection, the baseline sys-

tem detects 24 out of 443 occurrences whereas the detection 

improves to 256 out of 443 after performing G-boosting. More-

over, G-boosting improves the precision, recall and F1-scores 

of detecting the rare words from 0.92, 0.05, and 0.1 to 0.93, 

0.55, and 0.69, respectively. 

Lattice-Rescoring improves the precision, recall and F1-

scores of detecting the rare words to 0.93, 0.09, and 0.17 re-

spectively. Combining the G-boosting and Lattice-Rescoring 

methods improve the overall WER to 9.43%, while the rare 

word detection recall and F1-scores improve to 0.58 and 0.70 

respectively. Interestingly, the overall WER increases to 

14.04% with the Lattice-Rescoring approach, which is worse 

Figure 2. Word-boosting Operation in the Language Model. 
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than baseline. Also, the combination of G-boosting and Lattice-

Rescoring reduces the precision of detecting the rare words. 

Such results indicate that the Lattice-Rescoring method intro-

duces some false negatives in the modified output. In other 

words, the combination of both methods in rare cases cause 

over-boosting of the waypoints such that they may get detected 

in wrong places in the speech. A possible reason for such over 

boosting might be because this work applies the Lattice-

Rescoring approach using a three-word context match around 

the rare words with a fixed boosting factor. A longer context 

would lead to a stricter match, thereby minimizing over boost-

ing, but could also cause poorer recognition in genuine cases. 

In the future, we will try to optimize the context length and the 

boosting factor for Lattice-Rescoring. Nevertheless, the im-

provements obtained using these two methods is far more sig-

nificant. Such results indicate the effectiveness of the proposed 

method in improving the detection performance of rare words 

in ASR. 

TABLE V.  PERFORMANCE OF THE CUSTOMIZATION TECHNIQUES 

Method 
WER 

[%] 

Waypoint detection 

Precision Recall F1-score 

Baseline 13.85  0.92  0.05  0.10 

G-boosting 9.55  0.93  0.55  0.69 

Lattice-Rescoring  14.04  0.93  0.09  0.17 

G-boosting +  

Lattice-Rescoring 
9.43  0.88  0.58  0.70 

 

B. Semantic Level Performance 

TABLE VI. shows the performance for all command types 

(Column “All”) and for the airspace dependent command types 

CONTACT, DIRECT_TO, and STATION for the different 

boosting techniques. The improvement of G-boosting and the 

combined technique is not only observed on word level, but also 

on the semantic level. A command is considered as recognized, 

if the callsign, the type, the value, the conditions etc. are cor-

rectly extracted from the recognized sequence of words. We see 

a dramatic improvement from baseline to the combined tech-

nique for CONTACT by almost 60% absolute and STATION 

with more than 75% absolute. Both command types have an F1-

score around 95%. The location names that are uttered in con-

nection with those two command types appear on a more regu-

lar basis and are of a low number so that it is easier to extract 

the semantics. The recognition rate of DIRECT_TO also im-

proved by a factor of two, but on a very low level. The list of 

potential waypoints that could be correct seems to be too big in 

order to choose the correct one. A potential solution to look into 

in the future would be to take the decision about the target way-

point on semantic level knowing the aircraft trajectory and the 

likelihood of mentioning one of the waypoints from the N-best 

hypotheses.  

TABLE VI.  SEMANTIC LEVEL PERFORMANCE 

 

VI. STEPS TO BE TAKEN BY END-USERS 

Thanks to our user-friendly solution proposed in this paper, 

the two previously mentioned word-boosting methods (G-

boosting and Lattice-Rescoring) are designed for easy imple-

mentation, requiring minimal effort and expertise. More specif-

ically, we developed scripts that empower anyone to make the 

necessary adjustments to the LM or the decoded word recogni-

tion lattices simply by providing a list of words in need of im-

provement. In cases, where these words are absent from the dic-

tionary, it may be necessary to supplement the list with pho-

neme sequences representing those words. Beyond these con-

siderations, end-users are not required to perform any additional 

complex steps when performing G-boosting. This process can 

be repeated as often as needed for any new set of words. Simi-

larly, for the lattice-rescoring scripts, only the new words to be 

boosted are necessary as input. The scripts handle the remaining 

steps, including the creation of the biased FST, its combination 

with the decoded first-pass lattices, and the recalculation of the 

best path. The list of steps that an end-user must follow to utilize 

the methods mentioned above are represented pictorially in Fig. 

3. 

 

Figure 3. Steps to be followed by ATM personnel to perform ASR 
customization. 
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VII. CONCLUSIONS 

This work describes two methods for customizing deployed 

ASR systems to new airports/airspaces to improve their perfor-

mance in detecting seldom occurring terms such as waypoint or 

frequency position names that were rarely or never seen during 

training. The two methods are known as G-boosting and Lat-

tice-Rescoring. In addition, we have developed scripts where 

these two methods are implemented in a user-friendly way that 

allows to perform the necessary adaptation without any expert 

knowledge of speech recognition. Such ease of use makes the 

methods an important utility if any user such as an ANSP needs 

to adapt their simulation environment or transfer operational 

environments including ASR functionality to new airports or 

airspaces or even for prototyping applications. The two meth-

ods are shown to provide significant improvement in detecting 

the rare words. G-boosting individually performs the best with 

more than 500% improvement in detecting rare words than the 

baseline system. Upon combining G-boosting and Lattice-

Rescoring methods, we even obtain a relative improvement by 

a factor of 7 in detecting rare words, i.e., from an F1-score of 

10% to 70%. Moreover, the command recognition rate of air-

port dependent names for different command types improve by 

a factor of two to three. 
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