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Abstract—Collaborative decision making airports are ex-
tremely dependent on the precision of the target off-block time
(TOBT) which is the target time set by an airline or ground
handler agents for the off-block departure. This value reflects
any delays that can be attributed to the aircraft operator or to
the ground handling operations and must be updated by +/- 5
minutes when differing from the previous released value. Last-
minute changes of the TOBT are undesired as they might alter
the pre-departure sequencing resulting in very late air traffic
flow management departure slots. Therefore, accurate predictions
of turnaround times and last TOBT values are essential for
better planning and tactical management of stands. This paper
presents a set of probabilistic machine learning models to predict
turnaround time and last TOBT values in nominal operational
conditions at Prague, Geneve, Arlanda and Fiumicino airports.
The turnaround models exhibit mean absolute errors ranging
from 9 to 7 minutes during the strategic/pre-tactical planning
phase, and from 6 to 4 minutes during the tactical planning
phase. A validation exercise using ground handlers’ data shows
potential benefits for airport operations. Finally, a model trained
on all the available data from the four airports demonstrates
the potential to generalise the approach without compromising
the quality of predictions. Prague and Fiumicino airports will
deploy the model in the operational environment during the first
quarter 2024.

Keywords—Turnaround; Target Off-Block Time; Machine
learning

I. INTRODUCTION

The concept of airport collaborative decision making (A-
CDM) was introduced at the end of the 90s to improve
the efficiency and resilience of airport operations, and it
is implemented at 33 European airports nowadays. A-CDM
allows the airport partners, such as airport operators, aircraft
operators, ground handlers, air traffic controllers (ATCs) and
the Network Manager to work more transparently and col-
laboratively, whilst exchanging relevant, accurate and timely
information focusing on predictability and pre-departure pro-
cesses [1]. In A-CDM a target time relates to a milestone
and serves as an agreement between partners who are thus
committed to achieving a milestone at a specified time. These
milestones are expected to trigger the decision-making process
for downstream events and influence both the further progress
of the flight and the accuracy with which the progress can be
predicted [2].

One of the A-CDM milestones is the target off-block time
(TOBT) which is defined as the time when an aircraft operator
or ground handler agent estimates that an aircraft will be
ready to depart (doors should be closed, boarding bridge
removed and pushback vehicles available and ready to start-
up). TOBTs are made available via a CDM Platform to the
ATCs and other CDM partners. ATCs can confirm the TOBT
of each flight by providing a corresponding target start-up
approval time (TSAT) which is either equal to or later than the
TOBT according to the possible air traffic flow management
(ATFM) regulations or to the need of maximizing the runway
throughput and ground movement interactions [1].

The TOBT must be updated by the turnaround coordinator
based on the progress of the turnaround processes (such as
catering, cleaning, fueling, and boarding of passengers) by +/-
5 minutes. The TOBT coordinator is at the very heart of the
A-CDM process. Indeed, the achievement of substantial levels
of local and network predictability requires that a culture of
early and accurate TOBT updates is embedded at the CDM
airport [3]. Although the common effort towards sharing more
accurate information is well recognised, the TOBT coordinator
might be reluctant to provide early TOBT updates to avoid
that a flight become subject to ATFM delay upon its update
or because additional TSAT delay maybe incurred by moving
the flight into a period of higher departure demand [3]. While
regular and accurate updates of early TOBTs are important,
the final update of TOBT requires the highest accuracy and
timeliness since it ties up the largest number of resources
such as airspace, ground handling equipment, airport facilities,
personnel, and passengers’ time [2]. Current manual input
of TOBT is prone to deficiencies because of human factor
limitations, typos, and inefficient information flow, resulting in
last-minute changes of TOBT. As the operational complexity
on the ground increases, the effort of turnaround coordinators
responsible for updating the TOBT also increases while trying
to keep pace with the micro-adjustments for each aircraft.
Consequently, the number of last-minute TOBT updates grows
in such scenarios. It is during these critical moments that
substantial delays in the network are triggered. Indeed, it has
been experienced that very last-minute changes of TOBT tend
to shift the TSAT value and trigger very late calculated take-



off time (CTOT) with small chances for improvement.
Possible reasons for delay during the turnaround can be

allocated to: aircraft and ramp handling, cargo and mail,
damaged aircraft, flight operations and crewing, passengers
and baggage, and aircraft equipment. In 2019 11.1 million
flights were recorded over Europe, including 8.3 million com-
mercial flights. According to the Eurocontrol CODA reports
[4], the average delay per flight was 13.1 minutes including 3.4
minutes (value provided by the CODA Eurocontrol team) of
delays occurring during the turnaround (IATA delay codes 11-
19, 21-29, 31-39). Although, the cost of delay is non-linear [5],
a single average value can be used when making approximate
calculations. Using the value reported in [6], the cost of delay
per minute on the ground without network effect is C53.2
(values are computed from 2014 data), making the total cost
of delay due to turnaround operations of approximately C1.5
billion. Several airports have been recently facing operational
issues caused by a high rate of regulation and operations
close to infrastructural capacity. Despite this, the predictive
trend for next years is still rising thus indicating worsening
of the situation in the future. Covid outbreak only provided
some additional time to alleviate this saturation. Without any
major infrastructural changes, there is a need of accurate
predictions of turnaround time and TOBT values for better
planning and tactical management of stands contributing to
the cost reduction of delayed turnaround operations.

This paper presents the main results of the project OpTT
(Optimisation of Turnaround Time) which was initiated in
response to a proposal from Prague airport within one of
the Eurocontrol Air Transport Innovation Network (EATIN)
initiatives (https://www.eurocontrol.int/project/eatin). As more
airports have later joined the project, a set of machine learn-
ing (ML) models predicting the last release of TOBT and
turnaround time has been developed using data provided by
Prague, Geneva, Arlanda and Fiumicino airports from 2022.
The models are expected to be used at any planning phase
(Section III-A) by airport operators in nominal operational
conditions (e.g., low in-bound flight delays and non-critical
weather conditions). As a result of an approach combining
regression and classification algorithms, the output of the
models is a probability distribution of the turnaround time
(TT), and the level of prediction uncertainty is quantified. The
predictions in the test set, which includes observations never
seen by the model during training, are compared to a baseline
that assumes turnaround time being equal to the scheduled
one. Furthermore, some of the models have been validated
using ground handler data from Prague and Arlanda airports.
As a generalization of the approach, a final model has been
developed combining the four airports’ datasets.

The paper is organised as follows: a literature review on
turnaround time predictions is presented in Section II; Section
III provides the description of the models developed for each
airport and of the metrics that are used for their performances
assessment. In Section IV a description of the main results is
provided. Section V shows the results of a generalised model
while Section VI provides an overview of the operational

benefits and model implementation at Prague airport. Finally,
Section VII includes the discussion and conclusions.

II. LITERATURE REVIEW

There are several works in literature on the modelling of
turnaround sub-processes [7], [8], [9]. These studies generally
use stochastic probability functions based on historic data,
discrete event simulation and synthetic data generated by
agent-based simulation approaches [10].

Models predicting single turnaround processes, that are
not based on synthetic data, require historical data which
are typically collected manually. Because of human be-
haviour during the acquisition phase, the usage of these data
in predictive models might introduce aleatory uncertainty
[11]. Recent initiatives focus on the monitoring and pre-
diction of turnaround processes using camera systems over-
coming this limitation (https://www.schiphol.nl/nl/aviation-
solutions/pagina/deep-turnaround/; https://www.assaia.com/).
However, for these technologies the quality of predictions
is highly dependent on the capability to label accurately the
duration of the single processes.

A possible approach when scheduling turnaround time is
to add buffer time to the estimation of minimum turnaround
time. This additional time is typically used to absorb possible
delays from the inbound legs, although sometimes, it can
be imposed on the airline due to airport slot availability or
other scheduling constraints. In the POEM SESAR project,
the minimum turnaround was computed as the 2nd percentile
from turnaround distributions of historical data grouped by
aircraft operator, airport size and wake turbulence category
[12]. Studies on optimal buffer times to minimise delay prop-
agation were conducted in [13] using Monte Carlo simulations.
Here, it was highlighted dynamic buffering as a concept
to overcome deficiencies of the typical buffer strategies for
ground processes.

Turnaround time is affected by many random factors, such
as passenger behavior, airport resource availability, and short-
noticed maintenance activities. These factors make the re-
alisation and prediction of turnaround time uncertain. The
quantification of prediction uncertainty is an important task
as it might affect the decisions of the model user [14]. In [15]
the authors model the turnaround processes and compute the
probability that a turnaround is completed within a specific
TOBT by applying mathematical convolution and including
the uncertainties related to the single processes in the mod-
elling approach. Similarly, in [16] and [17] it was proposed
an approach based on Monte Carlo simulation to identify
critical paths of turnaround process and account for operational
uncertainties. In [18] turnaround predictions during the tactical
planning phase were approached with a regression model
predicting the aircraft ground time and with a classification
model predicting adherence levels of TOBT to the actual
off-block time. Results from the XGBoost regression model
show standard deviation values ranging from 4 to 7 minutes
approximately.
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III. MODEL DEVELOPMENT

This section presents the details of the models development.
First, a description of the input data is provided. Secondly,
a data-driven method to label and filter outliers is proposed.
Finally, the algorithms, the models’ output and the metrics for
the assessment of their performances are described.

A. Data availability and input features

There are limitations when training a model that should per-
form predictions during the strategic or pre-tactical planning
phase. Indeed, predictions can only be made using information
that is available at the inference time [19]. Some information,
such as weather or ATFM regulations is only available with
a certain level of accuracy on the day of operations. This
makes the set of features available for making predictions in
the strategic or pre-tactical phase rather limited. The models
proposed in this paper have been trained with the input
features described in Table I, where the acronyms SOBT, SIBT
and AIBT refer, respectively, to the schedule off-block time,
schedule in-block time and actual in-block time.

TABLE I. SET OF ATTRIBUTES USED TO TRAIN THE MODELS.

Attribute Description

Day of week Encoded as numerical
Hour of operations (at SOBT) Encoded as numerical
Month of operations (at SOBT) Encoded as numerical
Great circle distance (GCD) From origin airport (Km)
Scheduled Turnaround Time (STT) SOBT - SIBT
Available Turnaround Time (ATT) SOBT - AIBT
Aircraft type Encoded as numerical
Aircraft MTOW Maximum Take-off Weight (Kg)
Aircraft operator Encoded as numerical
Normalised congestion Numerical

The user will be requested at inference time to input the
most updated In-Block information for the feature Available
Turnaround Time. It is expected that in the strategic/pre-
tactical planning phases the user will adopt the SIBT while
for the tactical phase the AIBT (which has been used for the
model’s training) or its estimation. It is expected that the level
of congestion of ground operations for each airline is depen-
dent on the number of flights of a certain airline performing
the turnaround within a specific time frame. Therefore, the
feature normalised congestion in Table I has been computed
as the ratio between the hourly number of planned turnarounds
on a specific day and their overall average values per airline.

Data starting from January 2022 were provided by the four
airports covering the following amount of months: Prague:
9; Arlanda: 6; Geneve: 7; Fiumicino: 11. Prior to training
the models, data was pre-processed to reflect the operational
requests of the project partners. Specifically, only the occur-
rences with the following characteristics were kept:

• 15min ≤ TOBTlast - AIBT ≤ 200min
• 15min ≤ SOBT - SIBT ≤ 200min
• IATA Service categories: “Passenger only”, “Normal ser-

vice”, “Technical stop”, “Non-revenue”, ”Loose loaded
cargo”, “Cargo/Mail” and ”Cargo”

• −30min ≤ AIBT - SIBT ≤ 60min
Number of passengers, aircraft stand identifiers and weather

information such as, wind speed, temperature, visibility dis-
tance, dewpoint, rain, snow and fog intensity have been
included as input data in a first phase of model development.
These data were later removed to simplify the data extraction
at the airports during inference time since their contribution
to the predictions was negligible (assessed by SHAP analysis
[20] and metrics as in Section III-E). As a result of the
data selection, no attribute is specific to the layout or other
characteristics of a certain airport allowing a relatively easy
generalisation of the model (i.e., trained with all the available
data) as shown in a validation exercise later (Section V-B)

B. Probabilistic predictions
A method to compute probabilistic predictions has been

implemented in this study. The details of this method can
be found in [21] and [22], and are here described. First a
regression model is trained to predict the target variable. The
error distribution produced by this model is discretised into
a number of bins and used as a target for a classifier after
one-hot encoding. Finally, the outcome of the regression and
classification models are combined producing an individual
prediction as a discrete probability distribution. These steps
are summarised in Figure 1.

It is important to highlight that in this approach the number
of bins (i.e., number of classes for the classifier models) of the
probability distribution is a parameter that might be selected
to optimise the model performances. In the following sections
the results obtained using 20 bin distributions will be shown.
However, similar results were achieved when discretising the
error domain with 10, 25 and 30 bins. The model performances
will be derived from the probability distributions, as explained
in Section III-E.

Figure 1. Method for probabilistic predictions in regression problems. The
steps are: 1) Regression model predicting continuous target variable; 2)
Discretisation and binning of the error distribution produced by the regression
model; 3) One-Hot encoding of the error associated with each observation; 4)
Classification model to predict the one-hot encoded errors; 5) Combination
of the output of the two models

C. Machine Learning algorithm
Boosting is a machine learning ensemble technique that

combines the predictions of multiple weak learners to create
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a strong learner. XGBoost [23] is a boosting algorithm that
builds a strong learner by training decision trees sequentially,
with each tree correcting the errors made by the previous ones
using gradient descent optimization [24]. It has recently been
dominating applied machine learning and Kaggle competitions
and has been selected as a ML algorithm for the models here
presented.

In ML, a loss function is a crucial component that quantifies
the difference between the predicted values of a model and the
actual target values in the training dataset. The primary goal of
a ML algorithm is to minimise this loss function and make the
model’s predictions as accurate as possible. In this study, the
mean squared error (MSE) and the cross entropy loss functions
have been used [25], respectively, to train the regression and
classification models according to the methodology explained
in Section III-B.

Several hyper-parameters can be optimised when imple-
menting XGBoost allowing to control the learning process and
the model performances. In this study, the maximum depth and
the number of decision trees were optimised because they were
found to have the most significant impact on the loss function.
Cross-validation (CV) is a widely employed technique to
evaluate how well a model performs with specific hyper-
parameter settings. Among its variations, the fundamental
k-fold CV involves partitioning the training dataset into k
distinct subsets, referred to as folds. Subsequently, the ensuing
process is repeated for each of these k folds: a duplicate
of the model is trained using the remaining k-1 folds as
the training set, while the current fold serves as the test set
for calculating a performance score. The average of these k
scores determines the CV score, which quantifies the model’s
efficacy for the given hyper-parameter configuration. There
exist several methods to search the hyper-parameter space for
the best CV score. In this study, the GridSearchCV [26], which
evaluates all the possible combinations of hyper-parameters
and return the one minimising the CV score, was implemented.
The tuning process for the four models using five folds led to
one hundred estimators and three-five edges (maximum depth)
as optimal hyper-parameters.

D. Output target

The models output the probabilistic distribution and the
expected value of turnaround time defined by Equation 1,
where TOBTlast is the last release of TOBT. The term
TOBTlast can be also computed as an output by adding
the predictions of TT to the most updated in-block time
information at a specific time horizon (Section IV-A).

Turnaround time (TT) = TOBTlast −AIBT (1)

E. Metrics

For the assessment of the model performances, the Mean
Absolute Error (MAE) and Root Mean Squared Error (RMSE)
have been used (Equations 2 and 3). In the equations yi are
the target values, ŷi are the expected values of the probability

distributions resulting from the method described in Section
III-B and n is the number of data points.

MAE =

∑n
i=1 |yi − ŷi|

n
(2)

RMSE =

√∑n
i=1(yi − ŷi)2

n
(3)

As a new metric, we will refer to the term uncertainty
(Figure 2) as the time domain which is centred around the
peak of the distribution underlying the 95% of the probability
distribution [22]. Since this metric expresses the confidence
interval of single predictions, it is expected that the narrower
the confidence interval, the lower the level of uncertainty. The
results that will be shown in Section IV-A were computed on
a randomly selected testing dataset that the models have not
used for training.

Figure 2. Visual description of the metrics. Uncertainty is computed as range
of time covering the top 95% of the probability values. The MAE and RMSE
are computed from the difference between the target and expected value of
the distribution (respectively, yi and ŷi)

F. Outliers filtering

A data-driven methodology was implemented to identify
and filter outliers in the datasets, i.e., flights with unusual
turnaround time. The models are expected to be used in nom-
inal operational conditions. In these situations the presence
of outliers (data points that are significantly different from
the rest of the dataset) is undesired. In a decision tree the
values in the leaves (terminal nodes) are typically computed
as the average of the target values of the training samples
that reach that leaf node during the tree construction. In this
work, a regression decision tree model [27] was trained to
predict the turnaround time using the available input features
listed in Section III-A and the target described in Section
III-D. As a loss function the mean squared error was used
and as a constraint at least 5% of samples were forced to

4



fall in each leaf. The 2.5% and 97.5% percentiles of the target
distribution (i.e., turnaround time) in each leaf were computed.
In each leaf the data distributed between the maximum and the
97.5% percentile or between the minimum value and the 2.5%
percentile were labelled as outliers, if:

• the difference between the maximum value and the 97.5th
percentile was greater than 0.3 · 97.5th percentile, or

• the difference between the minimum value and the 2.5th
percentile was greater than 0.3 · 2.5th percentile.

The approach for the outlier labeling is described in Figure
3. When computing the resulting target distribution in each
leaf, the observations falling in the tails introduce the highest
variance. Specifically, the observations falling within heavy
tails introduce higher variance than the ones falling in light
tails since their difference with the mean value is expected
to be higher. Indeed, heavy tailed distributions tend to have
many outliers with very high values. The heavier the tail, the
larger the probability to find more disproportionate values in
a sample [28].

Figure 3. Description of the methodology for outlier labeling. An example of
the target distribution in a generic leaf of the decision tree is represented. All
the observations falling within the points C and D are labeled as outliers.

This methodology allowed to label as outliers 3 - 5% of
data and to improve the model predictions by approximately
15% when excluding these outliers from each of the airports’
dataset. In this approach, a set of parameters has been in-
troduced, such as the coefficient 0.3 that was used for the
identification of outliers. It is authors’ intention to perform a
full parametric analysis in a later work. However, an analysis
on the minimum number of sample in each leaf was conducted
using the value 4, 5 and 6%. Results show no significant
impact of this parameter on the amount of data labelled as
outliers.

Figure 4 shows the evolution over most of 2022 of the
amount of data samples that are detected as nominal and
non-nominal by using the data-driven approach described in
Section III-F. As an example, data from Fiumicino airport
were used. For this analysis the data were grouped by month
and the percentage of non-nominal turnaround operations was
computed from the ratio between all the turnaround operations
and the non-nominal ones. Interestingly, the peaks of non-
nominal turnaround operations (values are shown also in
percentages) were found in January and over the summer

months which are typically expected to be very challenging
for airport management.

Figure 4. Analysis of nominal and non-nominal turnaround operations that
were detected with the data-driven approach described in Section III-F for
Fiumicino airport during most of 2022. The percentage of non-nominal
turnaround operations is also shown.

IV. RESULTS

A. Predictions of turnaround time and TOBT

In this section a description of the model performances is
provided according to the metrics defined in Section III-E.

Results are shown in Figure 5 and Figure 6. As a baseline to
compare the model performances the term in Equation 4 was
used. Indeed, in a scenario where only schedule information
is available, the user might rely on the STT to assess the
duration of the turnaround. The model performances in the
Strategic/Pre-Tactical planning phase are obtained by substi-
tuting the term SIBT to the term AIBT when providing the
available turnaround time as an input feature (Table I) since
the SIBT is the only in-block information at that time horizon.

Baseline error = (SOBT − SIBT )− TT (4)

Figure 5. MAE values measuring the performances of the models for the four
airports.

Figures 5 and 6 show that the models perform better in
tactical rather than in strategic/pre-tactical planning phase, as
expected. Prague model is the most performing in the tactical
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Figure 6. RMSE and uncertainty values measuring the performances of the
models for the four airports. The uncertainty values are computed using the
approach in Section III-E. The values of the filled bars should be read on the
left y axis while the value of the hatched bars should be read on the right y
axis.

phase according to all the available metrics (MAE is 3.8
minutes, RMSE is 5.0 minutes and the uncertainty is 17.9
minutes). The performances of Fiumicino and Geneve models
in this planning phase are quite similar while Arlanda shows
the highest values in terms of MAE, RMSE and uncertainty
(respectively 5.9, 8.4 and 29.9 minutes). In the strategic/pre-
tactical phase, a similar analysis shows that Prague model
is still the most performing (MAE is 7.0 minutes, RMSE is
9.2 minutes, and the uncertainty is 31.9 minutes) although its
performances are very similar to the ones of Geneve model.

The percentage improvements of the model in the tacti-
cal and strategic/pre-tactical phases when compared to the
baseline (Equation 4) in terms of MAE and RMSE are,
respectively, 56.0% and 20.0% for Prague, 44.0% and 14.0%
for Arlanda, 52.3% and 24.8% for Fiumicino, and 44.2% and
23.2% for Geneve model. Interestingly, Figure 6 shows that
the average uncertainty of the models is proportional to their
RMSE.

The outcome of the models allows to compute also the
TOBTlast as an output. In the strategic/pre-tactical planning
phases the predicted TOBTlast was computed by adding the
predicted values of TT to the SIBT. This value has been later
compared to the corresponding actual TOBTlast leading to
the results reported in Table II. During the tactical planning
phase, instead, once the AIBT is available the TOBT can be
predicted with the same accuracy of the models (blue bars in
Figures 5 and 6).

TABLE II. MAE AND RMSE OF PREDICTED TOBTlast VALUES WHEN
USING THE MODEL DURING THE STRATEGIC/PRE-TACTICAL PLANNING
PHASE.

Airport MAE (min) RMSE (min)

Prague 10.8 23.9
Geneve 10.4 12.1
Fiumicino 14.4 21.2
Arlanda 11.1 38.9

B. Shapley analysis

Principles from game theory can be used to interpret the
prediction of a ML model for a given set of observations where
each input feature is a player and the model output is the
payout. Assuming that all the input features participate in the
game (i.e., are included for the model development) and join
the game in a random order, the contribution of a feature could
be calculated as the average change in the payout received by
the coalition which already joined the model when the feature
joins them. This contribution measure is commonly known in
the literature as the SHAP or Shapley value [20].

Computing Shapley values for an arbitrary model is an NP-
hard problem. In this paper, a new implementation (called
TreeExplainer) allowing for tractable computation of Shapley
values in polynomial time has been used [29].

For sake of simplicity, only the outcome of the SHAP
analysis that was performed on the testing dataset from Prague
airport is presented in Figure 7. However, similar qualitative
results have been observed for the other developed models.
According to Figure 7 the most relevant feature in terms of
mean absolute Shapley value is the Available Turnaround Time
(ATT).

Figure 7. SHAP analysis showing the importance of input features for Prague
model. On the vertical axis the name of the features is indicated, in order of
relevance from the top to the bottom. Each dot in the horizontal axis represents
the Shapley value of the associated feature for a single observation and the
colour indicates the magnitude of that feature ranging from blue (low values)
to red (high values).

V. VALIDATION EXERCISE

A. Model validation using operational metrics

This section provides a comparison of the model per-
formances with the operational TOBT values provided by
Prague and Arlanda ground handlers. Specifically, the first
TOBT release (TOBT1st) by ground handlers and the model
predictions are compared to the actual value of TOBTlast.
In the A-CDM implementation it is recommended (whenever
there is a need) to update the TOBT values by +/- 5 minutes.
According to this rule, the average number of TOBT updates
per flight and the percentage of flights requiring at least one
update of TOBT were estimated. For the first metric the
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average number of TOBT updates per flight was computed
as the ratio between the term TOBTlast − TOBT1st and the
5 minutes limit value which would trigger a new TOBT release
(rounded to the integer digit). For the second metric, the focus
shifted to consider only turnarounds where the time difference
between the initial and final TOBT values exceeded 5 minutes,
indicating the need for at least one TOBT update. Similar
metrics were computed by comparing the model predictions
of TOBTlast values and their actual values (Figures 8 and 9).

Figure 8. Average number of TOBT updates per flight. A comparison using
operational metrics and models predictions.

Figure 9. Percentage of flights requiring at least one TOBT update. A
comparison using operational metrics and models predictions.

Figure 8 shows that for Prague airport in a tactical phase
the model outperforms (by 59%) the performances of ground
handlers that were computed based on the first release of
TOBT while in the strategic/pre-tactical phase the model
would require slightly a higher number of TOBT updates
per flight (19% performance reduction). For Arlanda in both
scenarios the model outperform the values computed with the
ground handler’s data by respectively 49% and 6%.

Figure 9 shows that in the tactical phase for Prague air-
port the model outperforms (by 10%) the performances of
ground handlers that were computed based on the number of
flights requiring at least one TOBT update. Instead, in the
strategic/pre-tactical phase the model features 77% of perfor-

mance reduction. For Arlanda, in both phases, a reduction of
the performances by respectively 23% and 86% is recorded.

For Fiumicino and Geneve airports these two new metrics
were computed only using the model predictions since the
values of TOBT1st were not provided. Their average number
of TOBT updates and percentage of flights requiring at least
one TOBT update were 0.6 and approximately 40% in the
tactical phase and, respectively, 1-1.2 and 60-55% in the
strategic/pre-tactical planning phase (Figures 8 and 9).

B. Towards a generalised model

Training and maintaining several ML models could be com-
plex and inefficient. Therefore, it was decided to train a unique
model using all the available data from the four airports. The
datasets were combined to compare the performances of a
single generalised model with the ones of the models presented
in the previous sections that will be now referred to as ad-hoc.
As a common practice, the dataset was randomly split into a
training and testing set using the ratio 80:20, as for all the
models presented in this manuscript.

TABLE III. COMPARISON BETWEEN THE GENERALISED AND ad-hoc MOD-
ELS (PRESENTED IN THE PREVIOUS SECTIONS) WHEN USED IN THE TAC-
TICAL PHASE. THE METRICS FOR THE GENERALISED MODEL WERE COM-
PUTED ON DATA SAMPLES OF SPECIFIC AIRPORTS FROM THE TESTING
DATASETS.

Airport Model MAE (min) RMSE (min) Uncertainty (min)

Prague Ad-hoc 3.8 5.0 17.9
Gener. 3.9 5.3 23.4

Geneve Ad-hoc 5.3 7.2 25.7
Gener. 5.1 6.9 25.8

Fiumicino Ad-hoc 5.2 7.0 25.5
Gener. 5.2 7.0 26.5

Arlanda Ad-hoc 5.9 8.4 29.9
Gener. 5.6 7.9 26.1

For sake of simplicity, here only the performances of the
models in the tactical phase are compared. Table III shows
that the generalised model maintains overall similar levels of
performances of the ad-hoc models when tested on specific
airport datasets. It is interesting to notice that the performances
of the generalised models improve (by 5% in terms of MAE)
for Arlanda (vice versa for Prague airport which shows a
reduction of 3% in terms of MAE). The outcome of this
analysis triggered a follow-up EATIN project called OpTT
2.0, which is currently running and aims to develop a unique
predictive model of turnaround time and TOBT for all the
European CDM airports.

VI. MODEL IMPLEMENTATION AT PRAGUE AND
FIUMICINO AIRPORTS

Prague and Fiumicino airports has decided to implement the
model in their operations centre. The model will be a crucial
part of the automatic TOBT calculation algorithm that will
be incorporated in the live operations by Q1 2024. While the
technological solution for the deployment at Fiumicino airport
is under study, Prague airport will use its infrastructure in the
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means of the Integration Service Hub, where the predictive
model will be one of its micro-services. Such implemented
model would lower the ground handler’s workload and in
return should decrease the number of late TOBT updates
which cause late CTOTs. In result, this should support optimal
stand allocation planning and better turnaround predictability.

VII. DISCUSSION & CONCLUSIONS

Machine learning models require a set of input information
during inference. A key aspect is the availability, at a specific
time horizon of interest, of this information that feeds the
model. The air traffic management (ATM) system is char-
acterised by three phases: strategic, pre-tactical and tactical.
The strategic phase encompasses measures taken earlier a few
days prior to the day of operation up to two months or more in
advance. The pre-tactical phase encompasses measures taken
a few days or one day prior to the operation (in certain cases
up to few hours before operations) and the tactical measures
are adopted during the day of operations. In this paper a set
of models has been presented to predict the turnaround time
and the last release of TOBT during any of the three planning
phases. The input feature differentiating the usability of the
model in the tactical rather than in the strategic/pre-tactical
phases is the ATT = SOBT–AIBT .

These ML models provide predictions in nominal conditions
(i.e., in absence of high delayed inbound flights, etc.) accord-
ing to the points described in Section III-F. The inclusion of
outliers in the final dataset could be problematic especially
when the model is intended to provide predictions in nominal
conditions. A new data-driven approach for outlier identifica-
tion has been developed during this project allowing to filter
a small percentage of data samples (3-5% of the total) and
improve significantly the model performances (Section III-F)
Since the models are intended for deployment in operational
environments, it becomes crucial to inform the user on the
potential occurrence of certain exceptional events that were
labelled as outliers. Therefore, the authors believe that, first,
the user should have access to a detailed analysis of the
operations that were detected as non-nominal by the approach
described in Section III-F. This will allow to prepare in
advance and to know the characteristics of the turnarounds that
are more likely to present challenges as being non-nominal.
Secondly, as an additional information to the user, a binary
classifier with the newly labelled data could be later developed
to inform the user on the probability of a specific observation
to be an outlier or not. Overall, it is expected that the model
will provide a support to the operations without excluding the
intervention of the user in the process of TOBT updates.

A two-step approach has been developed to provide the
potential user with additional information on each prediction
(Section III-B). This approach allowed to introduce a new
metric (uncertainty) which is defined as the time domain
(centred around the peak) containing 95% of the probability
distribution. While conventional metrics allow to assess the
quality of the overall performances of a model, the uncertainty
metric quantifies the level of confidence of each prediction.

Interestingly it was found that the overall uncertainty of
the testing data sample is proportional to the RMSE of the
predictions (Figure 6).

The models have been validated on the testing datasets ac-
cording to several indicators. In a hypothetical scenario where
neither the model predictions nor complementary information
is available, the user might rely on scheduled turnaround to
assess the actual duration of turnarounds. As shown in Section
IV-A, the predictions of the developed models lead to an
improvement of 44.2-56.0% for the four models in the tactical
phase and of 14.0-24.8% in the strategic/pre-tactical phases in
terms of MAE when compared to the MAE derived from the
use of scheduled turnarounds (baselines). However, it could be
also interesting to compare the overall accuracy of the models
with the error that a user would make by relying on the first
(or following) TOBT release of the ground handlers as the
final TOBT. A generic recommendation is to update the TOBT
when varying by +/- 5 minutes. Using this criterion, we built
two metrics for Prague and Arlanda airports demonstrating the
validity of the predictions for operational purposes (Section
V-A).

From an airport perspective, TT predictions could be used
to improve airport capacity for level 3 coordinated airports
that still have a linear declared capacity throughout the day.
The model predictions could also be used to identify optimal
turnaround buffers as well as to evaluate the investment for
the creation of new aircraft positions. Based on the presented
results, the authors believe that the development of a complete
generalised model, that will be trained using the data from all
the CDM airports, could become a useful tool not only for the
operation planning of single airports but also for the operations
of the Network Manager. In this implementation new input
features could be potentially included. As an example, the
duration of handling operations such as refuelling, catering,
cleaning, etc. could be used as an input for the model. How-
ever, gathering this information might be problematic due to
poor data sharing between the companies managing the ground
handling activities and the other ATM stakeholders. Improv-
ing the predictability of turnaround duration might lead to
reduction of delay due to ground operations and, therefore, to
potential cost saving for all the stakeholders in ATM. Whether
such a predictive model will lead to these results could be
tested in a later work using simulators such as the Eurocontrol
R-NEST (https://www.eurocontrol.int/solution/rnest).
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