
Using Relative State Transformer Models for
Multi-Agent Reinforcement Learning in Air Traffic

Control
D.J. Groot & J. Ellerbroek, and J. Hoekstra

Control and Simulation, Faculty of Aerospace Engineering
Delft University of Technology, The Netherlands

Abstract—Deep Reinforcement Learning has seen more usage
in the field of Air Traffic Control over the last couple of years.
As the number of aircraft in a given sector of airspace is not
constant, there is a need for methods to be invariant to the
number of agents in the system. Often this is done by making a
selection of the aircraft that will be included in the state, which
introduces human biases. Another option that has been used
is Recurrent Neural Networks to process the entire sequence of
aircraft present. These methods however are sequence-dependent
and can give different results depending on the order that the
aircraft are given, which is undesirable. Methods that solely rely
on attention mechanisms, such as transformers, allow sequential
data to be processed in a sequence-invariant manner by using
multi-head attention mechanisms. However, because traditional
Transformers operate on individual tokens, this does not allow
for relative state information to be encoded into the hidden state.
This paper shows that by performing a transformation operation
on the key and value tokens, it is possible to use Transformers on
relative states, at the cost of a factor (N-1) additional attention
computations, where N is the number of agents in the system.
This adaptation allows relative state Transformers to obtain
significantly higher performance than standard Transformers.
The results also showed that using attention mechanisms to
construct the initial observation vector out of a total of 20 agents
results in similar, but slightly lower, performance to handcrafted
observation vectors, without requiring manual selection of the
important agents. Future research should investigate whether
additional changes to the attention mechanisms and their training
can result in higher performance.

Keywords—Air Traffic Control, Multi-Agent Reinforcement
Learning, Transformers, Artificial Intelligence

I. INTRODUCTION

The last couple of years has shown increasing interest in
research on utilizing Deep Reinforcement Learning (DRL)
methods for conflict resolution and safe multi-agent navigation
for Air Traffic Control (ATC) operations [1]. One issue with
conventional neural networks underlying the DRL methods,
however, is the requirement of a fixed-length input vector.
Most of the current research therefore does a pre-selection
on the number of aircraft that will be considered for the
model’s input or keeps the number of agents/aircraft in the
environment constant in an artificial way, which limits the
application of trained models in environments with variable
number of aircraft [1].

One way to overcome this issue is by encoding the informa-
tion graphically in fixed-size images, and using Convolutional

Neural Networks (CNNs) to distill useful information, simi-
larly to ATC screens [2]. Another possibility is to use Recur-
rent Neural Networks (RNNs) that operate over the entire set
of aircraft in the environment, encoding relevant information
into a fixed-size hidden state. Both Long-Short Term Memory
networks (LSTMs) [3] and Gated Recurrent Units (GRUs)
[4], have been shown to work very well for the purpose of
conflict resolution. However, as RNNs go over the input data
sequentially, they have the issue that the output is sequence-
dependent [5]. This is important for data structures that have
an inherent sequence, such as natural language processing
(NLP) or time series, but can lead to unexpected behaviour
in situations where the input sequence should not matter,
for example in most Multi-Agent Reinforcement Learning
(MARL) applications, such as robot or traffic studies.

Transformers have been introduced as an alternative to
RNNs for sequential input processing to allow easier par-
allel training [6]. Since the introduction, it has seen a lot
of success in the area of NLP (for example all versions
of GPT [7] and Google’s Bard powered by PaLM 2 [8]).
Traditional Transformers are sequence invariant, removing the
sequence dependency that RNNs have for MARL applications.
Therefore, it is interesting to research the applicability of the
Transformer network architectures for the ATC.

Transformers compute the relative importance of so-called
tokens (aircraft states in this study) using a mechanism called
dot-product attention. This process results in a scalar weight
value for each token/aircraft state pair, which determines how
much of the other aircraft state gets stored in a hidden state.
As the relation between the two aircraft states gets reduced
to a single-weight scalar, this allows only the absolute state
information of the other aircraft to be stored in the hidden
state. This multiplicative attention has already been shown to
effectively control aircraft based on the absolute states [9].

However, most MARL applications in ATC utilize relative
states instead of absolute states. To accommodate this requires
an alteration of the conventional Transformer architecture.

This paper introduces a modification to the conventional
transformer architecture that allows it to operate on relative
states, at the cost of a factor of (N-1) additional attention com-
putations, where N is the number of agents in the system. This
modified transformer architecture is then tested against three
other network architectures on the task of conflict resolution

and navigation in high-density airspace, all trained with the
Soft Actor-Critic (SAC) DRL algorithm. The other network
architectures are a conventional transformer architecture and
two fully connected neural network architectures. One using
the absolute state of the three closest aircraft and the other
using the relative state of the three closest aircraft.

The resulting attention mechanism is similar to that used in
the recent work of Brittain et al., which has been developed
in parallel to this study and uses some relative states and
discrete actions [10]. This study already showed that including
additional relative information improves the performance over
conventional ‘absolute’ attention. The main goal of this re-
search is to identify whether Transformers can be used for
DRL application in ATC as an alternative to RNN based
methods. As a secondary goal, this research also investigates
the importance of relative states over absolute states in MARL
for ATC.

II. METHODS

In the Methods section, first the Markov Decision Process
(MDP) formulations of the problem are described, with
differences between the different observation vectors used.
Then the used Reinforcement Learning algorithm, Soft
Actor-Critic is briefly introduced, followed by the different
network architectures: a Fully Connected Feed Forward
Neural Network (FNN), a standard single-block Transformer
Network and a Transformer Network with relative state based
self-attention mechanisms.

A. Markov Decision Process Abstraction

To solve the problem of safely navigating through a dense
airspace, the problem is first abstracted into the form of a
(multi-agent) MDP. This requires a description of the state-
space representation, action-space and reward function, which
are all given in this section. Furthermore, the state-transition
function is required, which is obtained from the used ATC
simulator described in section III-A.

1) State-Space Representation
To provide the state-space representation, fixed size

observation vectors are created that contain information of
the ownship, and in the case of the FNN methods also
that of the three closest other agents. This does provide
limitations on the input, increasing the partial observability of
the problem for the FNN methods when compared with the
Transformer methods, which utilize the states of all agents
in the environment. For this research, two different types of
observation vectors are used, absolute and relative observation
vectors.

Absolute State Observation
The absolute state observation uses the coordinates and

velocities of the agents in an environment-centered reference
system. For each individual aircraft, their own observation is
given in Table I. Here x and y are the x- and y-positions with

respect to the origin of the environment in meters, with the
origin at the center of the environment and y pointing north.
vx, vy and v are the velocities in the x- and y-directions and
the overall magnitude respectively. Finally sin(δ) and cos(δ)
are the sine and cosine components of the drift angle, which
is the angular deviation of the optimal, scenario-dependent,
path in radians. The drift angle is transformed to ensure a
continuous derivative of the drift over all angles.

TABLE I. OBSERVATION VECTOR FOR THE ABSOLUTE STATE OBSERVA-
TIONS.

Variable symbol

x position of the ownship xi

y position of the ownship yi
x velocity of the ownship vxi

y velocity of the ownship vyi
own absolute velocity vi

sin of the drift sin(δi)
cos of the drift cos(δi)

information regarding 3 closest agents:
x position of the other agent xj

y position of the other agent yj
x velocity of the other agent vxj

y position of the other agent vyj

For the Fully Connected Feed Forward Network (see
section II-C1), additional information regarding the 3
closest agents is concatenated to the observation vector. The
concatenated vector for each aircraft j in the list of closest
aircraft is: [xj , yj , vxj

, vyj
]. Resulting in a total observation

vector per agent of size: (7 + 3*4) = 1x19.

Relative State Observation
The relative state observation vector uses the same

information as the absolute state observation vector, but
transformed into the ownship’s frame of reference, with
positive x pointing in the direction of flight. Additionally, the
relative distance is added for the 3 closest agents. Finally,
as the frame of reference is now the ownship’s frame of
reference, the x and y position and velocity information of the
ownship have been removed from the state vector as they will
always be equal to zero or redundant (e.g. velocity in the x
direction will be the same as the own absolute velocity). The
resulting state representation is given in table II. This results in
a total observation vector per agent of size: (3 + 3*5) = 1x18.

TABLE II. OBSERVATION VECTOR FOR THE RELATIVE STATE OBSERVA-
TIONS.

Variable symbol

own absolute velocity vi
sin of the drift sin(δi)
cos of the drift cos(δi)

information regarding 3 closest agents:
relative x position of the other agent xij

relative y position of the other agent yij
relative x velocity of the other agent vxij

relative y position of the other agent vyij
relative distance of the other agent dij

2

Normalization of the Observations
To enhance the stability of the learning process of the

neural networks, all of the observations are normalized [11].
This is done using z-score normalization where the mean
and standard deviation of the individual observation elements
are approximated through 50,000 state transitions under a
random actor.

2) Action Space
The action space of the environment is continuous and

allows for 2 types of actions per agent, a heading change and
a speed change. The bounds of these actions are given in
Table III. It is noted that the values given in this table are not
realistic considering actual aircraft dynamics, however, they
are used to allow more flexibility in the paths generated by
the agents, resulting in the performance only being evaluated
on the quality of the paths, and not the understanding of the
environment dynamics.

TABLE III. ACTION BOUNDS FOR THE DIFFERENT AVAILABLE ACTIONS
TO THE RL METHODS.

Action Bounds

Heading [-1,+1] transforms to [-25◦,+25◦]
Speed [-1,+1] transforms to [-50m/s,+50m/s]

3) Reward Function
The reward function consists of 2 individual cost functions

and is strictly negative. This ensures that the maximum reward
over an infinite time horizon for a perfect agent approaches
zero instead of positive infinity. Yielding more stable learning
as the gradient over time decreases instead of increases.

The total reward function can be seen in equation 1. The
first part of the equation penalizes the drift of the agent with
respect to its destination. The second part of the equation is a
simple boolean operation which equals 0 when the aircraft is
intrusion-free and -1 if the aircraft is not. The magnitude of the
weight wdrift is set at -0.1, to ensure that rotating in the same
spot yields a lower score than flying perfectly straight with the
maximum number of intrusions. (This behaviour was observed
as a local optimum for drift weight values magnitudes lower.)

r = wdrift · |δ|+
{
−1 if intrusion
0 if not intrusion (1)

B. Soft Actor-Critic Algorithm

For the training of the different models, a version of the
Soft Actor-Critic (SAC) algorithm with automatic entropy
regulation is used [12]. SAC is a widely used RL algorithm
that has been shown to be effective at previous RL applications
for intrusion-free navigation [13], [14].

In total, each model, indicated by their different network ar-
chitectures, is trained for a total of 10,000 episodes (1,500,000
steps), using the hyperparameters given in table IV. The mod-
els will then be compared for their best-obtained performance
under a window with a rolling average of 100 during training.

TABLE IV. HYPERPARAMETERS USED FOR THE SAC ALGORITHM

Parameter Value
Optimizer Adam

Alpha Learnrate 3e-4
Actor Learnrate 3e-4
Critic Learnrate 3e-3

Discount factor (γ) 1.0
Memory buffer size 20e6

Sample size 2048
Smoothing coefficient (τ) 5e-3
Network update frequency 8

C. Network Architectures

For this study, a total of 3 different network architectures
are used. Additionally, for the standard feed-forward network
architecture, both the absolute and relative state observation
vectors are used. This results in a total of 4 different methods
being used for this research. An overview of the 4 different
methods is given in Figure 1. The size of the different network
architectures in terms of memory allocation is given in Table
V, to ensure an equal comparison of the different architec-
tures in terms of computational complexity and approximation
power it is attempted to keep them similar in size.

TABLE V. SIZE OF THE DIFFERENT NETWORK ARCHITECTURES DUR-
ING TRAINING (ACTOR + CRITIC NETWORKS) AND EVALUATION (ACTOR
ONLY)

Network Architecture Training Size Evaluation Size
Absolute State, FNN 1436 kB 289 kB
Relative State, FNN 1436 kB 289 kB

Absolute State, Transformer 1447 kB 291 kB
Relative State, Transformer 1471 kB 296 kB

1) Standard Feed-Forward network architecture
The first two methods tested in this research use a standard

feed-forward network architecture. This means that the
observation vectors, according to the description of section
II-C2, are directly used as input into a simple network of 2
fully connected hidden layers with 256 neurons each. Both
hidden layers use the ReLU activation function. The output
of the last hidden layer then goes into a 1x2 output layer with
a tanh activation function to map it to a range of [-1,+1].

2) Transformer Architecture
The transformer network architecture, introduced by A.

Vaswani et al [6], uses scaled dot-product attention to compute
the weight/importance of the tokens1 (keys) in the input
with respect to a reference token, the query. The weights
for all of the tokens are then normalized using a soft-max
operation to ensure that the sum of all the weights equals 1.
Then, multiplying these weights with the tokens (values) and
summing them, results in a new token. This token is referred to
as the latent space of the Transformer, to stay consistent with
deep learning terminology. This process is graphically shown
in figure 2. For this method, the query tokens are the individual

1In this research the tokens are individual aircraft states, however, in the
original paper tokens are vector encodings of strings

3

Figure 1. The four different methods/network architectures used for this research. 1.) Standard feed-forward network with the concatenated absolute states
described in section II-A1. 2.) Standard feed-forward network with the concatenated relative states described in section II-A1. 3.) Default Transformer model
with the tokens for the attention mechanisms being the agent’s absolute state. 4.) Transformer model with modified attention mechanism that includes mapping
of the key and value tokens to the reference frame of the query token. Note that in this figure the relative state operation is only shown as a subtraction of
the different states, it however also includes a rotation operation that has been omitted for the clarity of the figure

‘ownship’ observations, and the key and value tokens are the
absolute intruder observations, both described in section II-A1.

Figure 2. Illustration of a single head of the dot-product attention mechanism
used for the transformer architecture. Illustration based on the illustration by
Peter Bloem: https://peterbloem.nl/blog/transformers

To ensure that relevant features are used for determining the
weights and the latent space, this attention network introduces
3 additional sets of learn-able weight matrices: the Query
(Q, size dq, dk), the Key (K, size dk, dk) and the Value (V,
size dv, dv) matrices. Here dq , dk and dv are the length of
the query q, key k and value v tokens respectively. For this
research the q tokens are the normalized absolute ownship
information given in table I and the k and v tokens are identical
tokens containing the normalized absolute intruder information
given in table I. Equations 2, 3 and 4 give a generalized
mathematical representation of the process illustrated in figure

2, using these matrices. In equation 2 a scaling factor of 1√
dk

is used to counter the growth of the potential absolute value
with increasing dimensionality dk, and is likely not necessary
for the input token sizes used in this research, but is still used
for completeness of the method.

wij =
Qqi ·KkTj√

dk
(2)

s(wij) =
ewij∑N

n=1 e
wnj

(3)

oi =
N∑

n=1

s(wnj)Vvn (4)

This process is then done in parallel h times, where h is the
number of ’heads’ of the architecture. Each head has a unique
set of Q, K and V matrices. The output of the heads are then
concatenated to obtain tokens of size (dk · h). In the original
implementation, these tokens are then projected back to size
dk using a learnable matrix of size (dk · h, dk), however, for
this research this step is skipped such that the dimensionality
of the latent space is similar in size to the observation vectors
used by the absolute and relative state FNN methods.

Finally, the original aircraft state, xi, is concatenated
to the latent space, giving the resulting observation vector
of size (dq + h · dv), that is used as input for a standard
FNN network shown in figure 1. Given the size of dq = 7,
dv = dk = 4 and the number of heads, h = 3, the
resulting observation vector is: (7 + 3*4) = 1x19, which is the
same as the observation vector used by the absolute state FNN.

4

3) Relative Attention Transformer Architecture
One of the issues with conventional transformers is that

scaled dot-product attention mechanisms are unable to store
the relative relation between the query and key tokens in the
latent space, because their relation gets reduced to a single
weight scalar. This weight scalar then gets multiplied with the
value token according to equation 4, which can only contribute
absolute state information to the latent space.

To counter this issue, this method applies the attention
mechanism to the relative state tokens, obtained by translating
and rotating the encoded state information, which is graphi-
cally shown in figure 3. Doing this transforms the coordinate
system of the key and value states from environment reference
frame to ‘query’ reference frame. Additionally, to the resulting
key and value tokens, a mapping of the relative distance is
added. This mapping function is given in equation 5 and
ensures that distances closer to 0 approach 1 and the value
asymptotically goes to zero for larger values of the relative
distance. For the relative state transformers the information in
the query token is reduced to the same information as given
in table II, combined with the addition of the distance results
in dq = 3, dv = dk = 5 and the number of heads, h = 3, the
resulting observation vector is: (3 + 3*5) = 1x18, which is the
same as the observation vector used by the relative state FNN
to ensure a fair comparison between the different methods.

f(d) =
1

e−1+5∗(d−0.2)
(5)

Figure 3. Graphical representation of the change added to the key and value
tokens in the relative state transformer models. Here R(θ) is the rotation
operation to the query reference frame.

This operation increases the input size for the attention
network from (N, T) to (N, N-1, T), where N is the number of
agents/tokens and T is the token length. Because the attention
matrices Q, K and V only operate on the T dimension, it
is possible to flatten the input into a shape of (N * (N-1),
T) before performing the initial matrix multiplications, which
does not introduce sequence-order effects due to the dot-
product operation. The resulting tokens can then be restored to
the original shape of (N, N-1, T) to compute the latent space
representations as shown in figure 2. This way, an increase of
factor N-1 for the number of attention calculations is required

for this method when compared with conventional multi-head
attention.

III. EXPERIMENT: IMPORTANCE OF RELATIVE STATES ON
RL METHOD EFFICACY FOR CONFLICT RESOLUTION

TASKS

A. Simulation Environment

To train the models and evaluate their performance, the
ATC environment, introduced for the Eurocontrol Innovation
Masterclass was used2. This simulator does not consider
aircraft dynamics, instead, the states are linearly propagated
in time with a time-step of 5 seconds and any changes to
the states are applied directly. Because of this, the trained
models will only be evaluated for the quality of their paths.
Future research will have to test the models in higher fidelity
simulators to see if similar results can be obtained when the
models also have to learn the environment dynamics.

B. Simulation Scenario

The simulation scenario consists of 20 aircraft flying in
procedurally generated airspace, with a given track that they
have to follow, whilst ensuring that a minimum separation of
5 Nautical Miles (9.26 km) is maintained. A violation of this
requirement is called an intrusion.

Each airspace is randomly generated to have an area of
10.000 km2 with a margin of 10%. Traffic is then initialized
with random positions and orientations such that the initial
conditions are intrusion-free. Each scenario is then rolled-out
for 150 time-steps before a new scenario is generated.

Figure 4 shows the initial conditions of an example scenario
that is generated, in this figure the circles have a radius of half
the minimum separation requirements. The traffic density and
number of aircraft for this research are higher than those used
in comparable studies to not trivialize the task of the attention
mechanisms.

C. Independent Variables

The only independent variable that is changed throughout
the experiments is the network architecture and state repre-
sentation used for the SAC algorithm. These methods are: 1.)
Absolute State FNN, 2.) Relative State FNN, 3.) Conventional
Transformer, and 4.) Relative Attention Transformer. More
information and details about these methods are given in
section II-C.

D. Dependent Measures

To analyse the performance of the different models,
3 different parameters, and their evolution over time are
evaluated.

2Source code for the original environment is available at:
”https://github.com/ramondalmau/atcenv”. The version used for this paper
can be found at: ”https://github.com/jangroter/atcenv/tree/Master”.

5

Figure 4. Initial conditions of an example scenario generated for training of
the different methods. The dotted lines indicate their destination, the thicker
lines the heading and the circles indicate their protected zone.

1) Reward
The reward parameter shows the mean of the total sum

of total rewards obtained by all agents in a single episode.
It therefore directly shows the performance of the model,
based on the given reward function. The reward is the only
objective measure of the model’s performance, as it is the
only information available to the model during training, and
is directly used for optimizing the policy.

2) Intrusions
The intrusions measure is given as the total number of

timesteps a single agent is, on average, in a state of intrusion
per episode. This measure is used to evaluate the safety of
the trained policy.

3) Drift
The drift is measured as the average deviation from the

optimal path at over the entire episode. It is measured in
absolute values such that a positive and negative drift will
not cancel each other out. This measure is used to evaluate
the path-efficiency of the policy.

E. Hypotheses

1) Transformer Network Architectures will outperform FFN
Because Transformers use attention mechanisms to learn

which tokens, and thus which aircraft contain relevant
information, it is hypothesized that they are capable of
constructing a better state representation of the environment
than the handcrafted state representation done by humans,
leading to better performance.

2) Relative State Observation Vectors will outperform Ab-
solute State Observation Vectors

Relative states effectively reduce the size of the problem
space, as illustrated in figure 5. Therefore it is hypothesized

that it is easier to learn patterns and generalize between
different scenarios than when using absolute states.

Figure 5. Illustration of 2 conflict situations that are identical when observed
in relative state space, but different in absolute state space.

IV. EXPERIMENT: RESULTS

A. Evolution of Reward over Time

Figure 6 shows the evolution of the reward over the number
of episodes. It can immediately be observed that the methods
utilizing relative state information have a much steeper initial
learning curve and higher asymptotic performance than the ab-
solute state methods. Another observation that can be made is
that the relative FNN method reaches the highest performance
much faster than the relative Transformer method, but then
starts to decrease in performance.

Table VI shows the maximum attained reward during train-
ing as a rolling average of 100 for the different methods, and
the episode at which this reward was attained. For reference,
this table also includes the values for a policy that always
flies with 0 degrees of drift, and for a fully random policy.
This table shows that the maximum attained performance of
the relative FNN method is higher than that of the relative
Transformer method, indicating better performance. Further-
more, this maximum occurs earlier during training, showing a
faster training curve for the FNN method.

This table also highlights the importance of the relative
states, as both of the relative state methods outperform their
absolute state counterparts.

TABLE VI. REWARDS OBSERVED DURING TRAINING FOR THE DIFFERENT
METHODS

Method Max reward (ao100) Episode

Relative state FNN −3.65 2661
Absolute state FNN −15.10 2018

Relative state Transformer −4.25 8149
Absolute state Transformer −20.73 1114

Reference values
No Drift Policy −22.40 -
Random Policy −25.10 -

B. Number of Intrusions for the different methods

In figure 7 the average number of intrusion time-steps per
agent is shown as a function of the episodes. This figure clearly
highlights the difference between the relative and absolute

6

Figure 6. Evolution of the reward over time for the different methods, the
initial 1500 episodes on the left are slightly enlarged to highlight the different
initial training curves.

methods in terms of efficacy for conflict resolution. Both of
the relative methods decrease the number of intrusions rapidly,
with the relative FNN method obtaining the lowest number of
intrusions.

These results are again shown in table VII, where the
lowest number of intrusions and the corresponding episode
are given for the different methods and the reference methods.
This table shows that the lowest number of intrusions per
episode for the relative state FNN method is almost half
that of the Transformer equivalent. Interestingly, the observed
discrepancy for the episode at which these minima occur is
even larger than it is for the reward (2661 & 8149 for the
reward and 1213 & 9380 for the number of intrusions for
the FNN and Transformer respectively). This shows that the
relative state Transformer model requires a larger set of state
transitions to learn proper conflict-resolving actions than the
FNN method.

Figure 7. Evolution of the (log)number of intrusion time-steps, per agent per
episode, over time for the different methods.

C. Average Drift for the different methods

The evolution of the drift error over time is given in figure 8,
in this figure the difference between the relative and absolute

TABLE VII. INTRUSIONS OBSERVED DURING TRAINING FOR THE DIFFER-
ENT METHODS

Method Min intrusions (ao100) Episode

Relative state FNN 0.40 1213
Absolute state FNN 4.85 2037

Relative state Transformer 0.77 9380
Absolute state Transformer 15.52 1114

Reference values
No Drift Policy 20.11 -
Random Policy 21.99 -

methods is less prominent. This can be explained by the
fact that the drift state is the same for all of the methods.
Furthermore, from this figure it also becomes clear that the
decrease in observed performance for the relative state FNN
method in figure 6 is caused by an increase in drift angle over
time.

Looking at the results given in table VIII, the absolute
methods attain a lower drift than the relative methods, but
the relative difference for the lowest obtained drift between
the different methods is less notable than for the reward and
number of intrusions.

Figure 8. Evolution of the average drift over time for the different methods.

TABLE VIII. DRIFT ERROR DURING TRAINING FOR THE DIFFERENT
METHODS

Method Min drift (ao100) Episode

Relative state FNN 12.14 2825
Absolute state FNN 27.66 132

Relative state Transformer 12.58 8231
Absolute state Transformer 10.49 4360

Reference values
No Drift Policy 0.00 -
Random Policy 54.15 -

V. DISCUSSION

The results show that the highest performance is obtained
when using the relative state FNN method. This observation
contradicts the hypothesis that Transformer Network Archi-
tectures will outperform FNN methods. The initial learning
curve for the FNN method being steeper than the Transformer
method can be explained by the random initialization of the

7

attention mechanisms for the Transformer method. Unlike the
FNN method, for which the observation vectors are hand-
crafted, the initial observation vectors for the Transformer
method are essentially random. Because of this, a slower initial
learning rate is expected to allow the attention mechanisms to
learn what information is relevant to the latent space. However,
it was expected that this learned latent space would result in
higher asymptotic performance for the Transformer method
than the FNN method, which is not observed.

It is, in theory, possible that the Transformer model will
still obtain a better performance if the number of episodes
is increased, as indicated by the episode numbers at which
the best performance for the different metrics are observed
(2661, 1213 and 2825 for the FNN and 8149, 9380 and 8231
for the Transformer), and the fact that training for the Trans-
former model appears stable throughout the 10.000 episodes,
something that is not observed for the FNN method. This,
however, does increase the overall training and computation
time, which might be undesirable. Instead, it might be better
to focus more on the attention mechanisms underlying the
Transformer model, as they control the construction of the
latent space used for determining the actions.

The original paper introducing the Transformer architecture
mentions the usage of additive attention instead of scaled dot-
product attention as an alternative to the attention mechanisms.
Considering that, in contrast to word tokens, the tokens used
in this research contain actual physical information on the
problem, it could be that additive attention yields more logical
results from a physical perspective (e.g. xi − xj containing
more useful information than xi · xj).

Furthermore, constantly changing attention mechanisms
weights create a degree of stochasticity for the latent space
from the perspective of the Fully Connected Layers. Because
of this, it is more difficult to fine-tune the weights responsible
for action selection when compared to a deterministic input
vector as used for the FNN methods. One way to counteract
this is by either decreasing the learnrate for the attention
mechanisms over time or freezing the attention mechanism
weights after a certain period. The latter has as a consequence
that the optimal attention mechanism is dependent on the
policy of the method, and will result in a lower theoretical
performance limit.

Additionally, as this was an initial attempt at using Trans-
former architectures in conjunction with DRL the obtained
performance is likely not yet at the maximum attainable limit.
However, future studies on this topic should also compare
the results with RNNs of similar model size to identify the
performance differences between the different methods. This
might then provide a more conclusive result on whether or not
Transformers have any useful role in the field of MARL over
RNNs and FNNs.

Finally the method should be tested under different scenar-
ios and different higher fidelity simulators, to see how the
attention mechanisms adapt and compare against the other
methods. This is relevant as aircraft dynamics, or scenarios
such as merging paths, require the attention mechanism to

consider longer time horizons, which complicates the decision
process.

VI. CONCLUSION

This paper introduced an alteration to the attention mech-
anisms of Transformer models to allow them to operate on
relative state information. It was found that this alteration
improved the performance when compared with Transformers
operating on the absolute state information of the surrounding
agents. The final obtained performance however did not exceed
that of a simple FNN structure which used a handcrafted
observation vector with the relative state information of the
3 surrounding aircraft.

It is possible that with more training the performance of
the Transformer method will exceed that of the FNN method,
as performance improvements for the FNN method stagnated
at a much earlier stage than the Transformer. However, as
increasing the duration of training comes at a cost of more
computational expense, it is instead suggested to further in-
vestigate the underlying attention mechanisms.

Future research should investigate whether methods that
only rely on attention mechanisms, such as Transformers,
can obtain better performance in the field of MARL for safe
navigation than traditional FNNs and RNNs. Nevertheless,
they might still have a use-case for problems where selecting
the important aircraft is not as straightforward, or the problem
requires a fully observable environment and where the output
should be independent of the input sequence.

REFERENCES

[1] Z. Wang, W. Pan, H. Li, X. Wang, and Q. Zuo, “Review of deep
reinforcement learning approaches for conflict resolution in air traffic
control,” Aerospace, vol. 9, no. 6, p. 294, 2022.

[2] P. Zhao and Y. Liu, “Physics informed deep reinforcement learning
for aircraft conflict resolution,” IEEE Transactions on Intelligent Trans-
portation Systems, vol. 23, no. 7, pp. 8288–8301, 2021.

[3] M. W. Brittain and P. Wei, “One to any: Distributed conflict resolu-
tion with deep multi-agent reinforcement learning and long short-term
memory,” in AIAA Scitech 2021 Forum, 2021, p. 1952.

[4] R. Dalmau and E. Allard, “Air traffic control using message passing
neural networks and multi-agent reinforcement learning,” Proceedings
of the 10th SESAR Innovation Days, Virtual Event, pp. 7–10, 2020.

[5] I. Goodfellow, Y. Bengio, and A. Courville, Deep learning. MIT press,
2016.

[6] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez,
Ł. Kaiser, and I. Polosukhin, “Attention is all you need,” Advances in
neural information processing systems, vol. 30, 2017.

[7] T. Brown, B. Mann, N. Ryder, M. Subbiah, J. D. Kaplan, P. Dhariwal,
A. Neelakantan, P. Shyam, G. Sastry, A. Askell et al., “Language mod-
els are few-shot learners,” Advances in neural information processing
systems, vol. 33, pp. 1877–1901, 2020.

[8] R. Anil, A. M. Dai, O. Firat, M. Johnson, D. Lepikhin, A. Passos,
S. Shakeri, E. Taropa, P. Bailey, Z. Chen et al., “Palm 2 technical report,”
arXiv preprint arXiv:2305.10403, 2023.

[9] M. W. Brittain, X. Yang, and P. Wei, “Autonomous separation assurance
with deep multi-agent reinforcement learning,” Journal of Aerospace
Information Systems, vol. 18, no. 12, pp. 890–905, 2021.

[10] M. W. Brittain, L. E. Alvarez, and K. Breeden, “Improving autonomous
separation assurance through distributed reinforcement learning with
attention networks,” arXiv preprint arXiv:2308.04958, 2023.

[11] J. Sola and J. Sevilla, “Importance of input data normalization for the
application of neural networks to complex industrial problems,” IEEE
Transactions on nuclear science, vol. 44, no. 3, pp. 1464–1468, 1997.

8

[12] T. Haarnoja, A. Zhou, K. Hartikainen, G. Tucker, S. Ha, J. Tan, V. Ku-
mar, H. Zhu, A. Gupta, P. Abbeel et al., “Soft actor-critic algorithms
and applications,” arXiv preprint arXiv:1812.05905, 2018.

[13] C. Badea, D. Groot, A. M. Veytia, M. Ribeiro, J. Ellerbroek, J. Hoekstra,
and R. Dalmau, “Lateral and vertical air traffic control under uncertainty
using reinforcement learning,” in 12th SESAR Innovation Days, 2022.

[14] J. Groot, M. Ribeiro, J. Ellerbroek, and J. Hoekstra, “Improving safety
of vertical manoeuvres in a layered airspace with deep reinforcement
learning,” in Proceedings of the 10th International Conference for
Research in Air Transportation (ICRAT), Tampa, FL, USA, 2022, pp.
19–23.

9

