
Mercury: an open source platform for the evaluation
of air transport mobility

Luis Delgado, Gérald Gurtner, Michal Weiszer, Tatjana Bolić, Andrew Cook
Centre for Air Traffic Management Research, School of Architecture and Cities

University of Westminster
London, United Kingdom

[g.gurtner|l.delgado]@westminster.ac.uk

Abstract—The Mercury simulator is a platform developed over
several years during exploratory research projects. It features
a detailed description of the air transportation system at the
European level, including passengers and aircraft, plus various
important actors such as the Network Manager, airports, etc.

This article presents the possibilities offered by the simulator’s
last and now open-source version. We describe the core Mercury
functionalities and highlight its modularity and the possibility
of using it with other tools. We present its new interface, which
supports user-friendly interaction, exploring its data input/output
and setting its various parameters. We emphasise its possible uses
as a solution performance assessment tool, usable early in the
innovation pipeline to better estimate the impact of new changes
to the air transportation system, particularly with respect to
other system components. We hope opening the simulator may
encourage other models to become available, allowing faster
prototyping of SESAR Solutions early in the innovation pipeline
and an in fine standardisation and higher performance of
simulation-based performance assessment tools.

Keywords—Air transportation, agent-based model, perfor-
mance assessment, simulator, open-source, passengers, airline
cost model, simulation as a service

Evaluating the performance of a complex system like air
transport is a challenging task. Technological solutions tend
to be assessed on a subset of the system, making it difficult to
assess their network-level impact, especially when considering
the interactions with other mechanisms.

The system performance is driven by uncertainty, disrup-
tions, and, importantly, by the interaction of many different
actors, which tend to make decisions in sub-optimal condi-
tions: reacting to disruptions, estimating uncertainties in the
system and without full knowledge of the intention of other
actors. Agent-based modelling (ABM) can tackle these types
of systems. The decisions of each agent (element in the
system) can be modelled individually with relatively simple
rules. Still, an emergent behaviour arises when the agents
interact in an evolving environment capturing the richness of
the network interactions in the system.

Previous research has proven that passenger delay needs
to be modelled to assess the system’s performance besides
the ‘nominal’ Key Performance Indicators (KPIs) used by the
ATM industry, which have a strong flight-centric focus. This is
relevant for different reasons: first, passenger delay translates
into cost (e.g. due to passenger compensation Regulation 261
[1]) and therefore drives some of the behaviour of airlines; and

second, as passengers experience delays different than flights
due to their connections [2] and the fact that they need to reach
their final destination in a door-to-door journey [3], which
might include multi-modal trips [4].

Therefore, there is a need for a platform to evaluate ATM
solutions and policies flexibly (modifying agents’ behaviour
or assessing external systems), including the previous consid-
erations. The Mercury simulator has been developed in this
context for over ten years. Throughout different projects, a first
simulator version able to capture passenger-centric indicators
[2] was expanded to consider cost resilience [5] and door-
to-door journeys [6]. The simulator was redesigned as a full
agent-based model enabling the development of new metrics
to capture network effects [7]. In recent projects, work has
been devoted to easing the integration of external modules
and solutions (e.g. supporting human-in-the-loop simulations
with interaction with an external interface [8]). Mercury incor-
porates processes and behaviours of actors to the environment
considering their expected cost functions. Hence, it provides
not only a technological and procedural evaluation platform
but also the possibility for policy evaluation (e.g. changes to
passenger compensation through EU Regulation 261 [1]).

In contrast with other available tools, Mercury captures the
emergence of ATM performance from the behaviour of the
different agents, which react based on expected operational
costs. This enables the capability of modelling the decision-
making processes of key actors (particularly airlines) and,
furthermore, not only the evaluation of (technical) Solutions
but also policy changes (as they would translate into different
expected costs and hence decisions when managing flights).
Mercury, provides, in addition to standard ATM KPIs, cost and
passenger-related indicators by tracking individual passenger
itineraries, including their connections. The event-driven ap-
proach of Mercury enables a fast-time simulation of a day of
operations in the whole of the ECAC region in a few minutes.
This is required due to Mercury’s stochasticity, as more than
one run will usually be needed to obtain statistically significant
results.

Other platforms available tend to be flight-centric and lack
cost and passenger modelling. This makes it difficult for them
to model the actors’ decisions properly and cannot extract the
low-level KPI distributions available from Mercury. However,



they can, in some cases, provide higher performance on the
evaluation of particular flight-centric aspects of ATM, e.g.
EUROCONTROL’s R-NEST provides highly detailed airspace
and capacity management modelling1, or the open platform
BlueSky [9] provides detailed trajectory integration on time-
based simulations of flights, which would be required for the
modelling of conflict detection and resolution tools, which are
too low-level to be captured by Mercury.

Mercury has successfully been applied in a range of chal-
lenges, such as the evaluation of the alignment of KPIs
at the European level [10], assessment of SESAR solutions
with consideration of network-level interactions [7], analysis
of emergent behaviour on delay management [11], and the
analysis of UDPP concepts [12]. It has proven to be a powerful
simulator to capture the interaction between air traffic actors,
focusing on estimating performance indicators of airlines,
flights and passengers.

Given the need for European-wide assessment tools that
support multi-KPI estimations on one hand and the capabilities
of Mercury on the other, it was decided to open the code
source of Mercury, to make it available to the wider research
community.

Hence, we present in this article a short description of the
various workings of the simulator, its main strengths, how new
users could use it – for instance, developing new modules/add-
ons for it or interfacing with existing models – and the type
of interface they may expect to set up their simulations and
explore such results. It is therefore intended as a technical
communication paper to present a synthesis of the results of
the simulator development over many years, with a view to its
further development, rather than presenting the experimental
results of running the simulator in various projects2.

I. OPEN SOURCE MERCURY

Mercury has reached a maturity level at which it can be
made open source to facilitate the usage of the simulator by
the community. This will enable students, researchers and
practitioners to support the core model’s development and
integrate their modules and systems to transform Mercury into
a truly air transport mobility performance analyser.

A. Programming Language and libraries

Mercury is developed in Python 3.10, a very popular,
free and open-source language. Python uses an interpreter at
runtime, which makes it platform-independent albeit generally
slower than compiled languages such as C++.

The development has been done from scratch but relies on
third-party libraries like Simpy3, for the discrete-event simula-
tion framework, pandas4, for data structure and manipulation,
and NumPy5, for fast numerical computations on arrays and
matrices. These libraries are all open-source.

1https://www.eurocontrol.int/solution/rnest (accessed November 2023)
2Which, although variously cited for reference herein, would be too

extensive to capture in these nine pages.
3https://simpy.readthedocs.io/ (accessed September 2023)
4https://pandas.pydata.org/ (accessed September 2023)
5https://numpy.org/ (accessed September 2023)

Besides the Python packages used for the development of
Mercury, the model uses the following external libraries:

• Hotspot6: Developed as part of BEACON project [8]
to manage hot spots and air traffic flow management
(ATFM) regulations for UDPP concepts. Open-source
under GPL v3.

• uow-tool-belt7: Library providing basic tools and func-
tionalities e.g. read/write functionalities. Open-source un-
der GPL v3.

• Aircraft performance: Library with the implementation of
some performance models. Proprietary.

The aircraft performance data from EUROCONTROL’s BADA
model [13] is used for the aircraft performance library. Any
user will thus need to require a licence from EUROCON-
TROL, normally granted free of charge for researchers.

B. License and distribution

Mercury is distributed under a GPL v3 licence, which
implies that any distribution of part of its code has to be done
under the same terms. The code is available on GitHub8.

C. Data manipulation and system modification

To facilitate the input and output manipulation, Mercury
uses the open source Apache Parquet format910. Data is
compressed efficiently in tables that are easy to analyse and
manipulate while maintaining properties such as their data
types. See Section VI for more information about the data
used and generated by Mercury.

Configuration files are encoded using TOML format11

which is easy to read by humans and easy to integrate and
parse in Python.

II. MODEL SPECIFICATION AND DESIGN

A. Model requirements

Mercury aims at capturing the interaction between ATM el-
ements to provide performance indicators for key stakeholders.
In particular, the system should be able to:

• Model the pre-departure and tactical operations of flights
and passenger mobility in Europe.

• Test ATM solutions, which modify procedures and other
rules. The model should facilitate the changing of these
rules and the integration of new elements.

• Compute KPIs for stakeholders. In particular, delay dis-
tributions for passengers, flights and costs.

• Capture knock-on effects between subsystems.
• Consider fairly complex decision-making processes from

the airlines when reacting to cost and not only to delay.
The model needs to consider the most important channels

of propagation of delay. First, aircraft are used throughout
the day by different flights and thus can propagate delays

6https://github.com/andygaspar/Hotspot
7https://github.com/UoW-ATM/uow tool belt
8https://github.com/UoW-ATM/Mercury
9https://parquet.apache.org/ (Accessed September 2023)
10Mercury allows the use of other formats as source (csv, MySQL database).
11https://toml.io/en/ (accessed September 2023)

2



Figure 1. Acquaintances between agent types, derived from interactions
between their underlying roles.

(reactionary delay). Second, passengers must be modelled to
capture the costs of their delays and missed connections. Third,
the model needs to consider exogenous sources of delays, e.g.
turnaround delays. Fourth, the system’s reactions to delays
and/or congestion must be included, e.g. airlines’ actions.
Lastly, the model needs to allow dynamic decisions from
agents. This dynamic aspect is paramount since operations face
daily uncertainty, which triggers decisions that have knock-on
effects on the system.

B. Scope

The Mercury simulator focuses on evaluating a day of
operations, including pre-departure processes and tactical op-
erations of flights and passengers’ itineraries. Whilst the
simulator is generic, some of its elements (particularly costs)
are designed to work with the particularities of the European
system.

C. Development methodology

The Gaia methodology has been used to build the simulator,
defining roles and their interactions and grouping them into
agents which provide services [14].

A role can be seen as an abstract description of an entity’s
expected function, defined by its responsibilities, permissions,
activities and protocols. 40 roles are identified in Mercury,
such as the ‘flight planner’, in charge of generating and
selecting flight plans to be used, and the ‘taxi-out estimator’,
to estimate the taxi-out time of a flight, or the slot assigned
to assign an arrival slot by an AMAN. See [15] for a detailed
description of all forty roles.

Roles are grouped into higher-level entities, which represent
the agent types. The roles’ activities become the agents’
activities, and the roles’ protocols are turned into the agents’
services. The agents’ internal roles can directly access all
information available to an agent, while agents communicate

using messages between them to request data and computa-
tions. In Mercury, the process of defining these agents was
guided by existing entities in the ATM domain, such as the
Airline Operating Centre (AOC). Seven agent types are defined
in Mercury as depicted in Figure 1, which also presents the
visibility between agents showing the centrality of the AOC.

III. AGENTS DESCRIPTION

A. Airline Operating Centre

Mercury has one ‘Airline Operating Centre’ (AOC) per
airline. They perform:

• the fleet management (i.e., dispatching processes), in-
cluding the selection of flight plan, flight cancellation
and flight plan adjustments (e.g. waiting for (connecting)
passengers, dynamic cost indexing).

• the tactical reassignment of passengers to flights if they
need to be reallocated due to missed connections.

The estimation of expected costs drives the decisions per-
formed by the AOC.

Cost modelling: Mercury considers direct operating costs
of the flights based on the selected flight plan (i.e., en-route
charges and expected fuel usage); and costs due to unforeseen
circumstances during the operations, in particular, ‘cost of
delay’ (the extra cost that airlines experience due to the delay
of their flights).

One of the main drivers of tactical decisions is the reduction
of passenger-related costs. Mercury models both ‘hard’ costs,
having a direct monetary translation, e.g. duty of care and
compensations as per Regulation 261 [1], and ‘soft’ costs,
of a future loss due to passengers’ dissatisfaction and the
subsequent impact on the market share.

Other operational costs, such as curfews, are also modelled
as early delays can translate to reactionary delays, eventually
breaching a curfew. Therefore the behaviour of the airline
might vary to consider this.

Modelling passengers: Passenger groups are modelled as
simple placeholders which contain information on the passen-
ger itineraries and their characteristics, which other agents,
notably the AOC, handle.

Response to events: The AOC listens for and executes
actions when the following events are triggered:

• ‘Flight plan (FP) submission’: created at simulation ini-
tialisation and triggered 3 hours before each flight’s
scheduled off-block time (SOBT). When the event is
triggered, the AOC chooses an FP. The selection of FP is
an iterative process with the submission to the Network
Manager (NM) and the potential reception of ATFM
delay, which could trigger reconsidering which FP to use.

• ‘Delay estimation’: triggered one hour before estimated
off-block time (EOBT). The AOC gets notified of non-
ATFM delay (if any) and reassesses its estimated depar-
ture time. If the flight has an ATFM slot which will be
missed, a new slot is requested from the NM. If the delay
exceeds 30 minutes, a new flight plan is recomputed.

3



• ‘Passenger check’: 5 minutes before EOBT, the AOC
computes the expected arrival time of connecting pas-
sengers that are supposed to board this flight and are not
there yet, and decides whether to wait for them.

• ‘Push-back’: At the push-back event, the AOC checks
which passengers are on board and computes the passen-
gers’ metrics such as departing delay, type of delay, etc.
For passengers who missed a connection but are already
at the airport, a reallocation process is triggered based on
itineraries, aircraft space, fares, and ultimately, assigning
Reg. 261 compensation.

• ‘Flight arrival’: This is triggered when a flight arrives at
the inbound gate. The AOC starts two parallel processes:
aircraft turnaround and passenger connection processing.

B. Flight agent

‘Flight’ agents integrate flight movements (ground and
trajectory). They also capture the actions performed by the
crew e.g. requesting a departing slot. There is one Flight agent
per flight in the simulation.

Response to events: The Flight listens to the following
events:

• ‘Push-back ready’: The Flight requests from the De-
parture Manager a departure slot and, considering an
estimated taxi-out time provided by the Ground Airport
agent, computes the push-back time. Congestion at the
departure might produce some delay.

• ‘Push-back’: The Flight requests the actual taxi-out time
from the Ground Airport and calculates the take-off time.

• ‘Take-off’: The Flight starts the trajectory integration
modelling uncertainties associated with the weather
(wind) and flight distance (e.g. due to uncertainty for ATC
interventions). As part of this trajectory integration, the
flight triggers the ‘Flight Crossing Point’ to notify the
Radar agent of the flight progression. The Flight agent
records the information related to the flight performance,
e.g. fuel usage.

• ‘Landing’: The Flight requests the taxi-in time from the
Ground Airport and triggers the ‘Flight arrival’ event.

A flight can provide information to other systems, such as
estimated landing time, and add constraints to the flight plan
to meet tie-window requests e.g. to land a slot provided by
the E-AMAN.

C. Ground Airport agent

The ‘Ground Airport’ agents process arriving passengers
(computing the actual transfer time between flights in the
terminals) and the arrival of flights (providing estimated and
actual turnaround times). Both processes rely on probabilistic
modelling of their distributions considering characteristics of
operations such as airport, airline, aircraft and passenger types.
One Ground Airport agent is instantiated per airport.

D. DMAN and E-AMAN agents

Each airport has associated ‘DMAN’ and ‘E-AMAN’ agents
to manage the departure and arrival queue of slots needed

to respect the runway capacities, which can be adjusted and
vary through the day. DMAN is the simplest agent; nominal
capacity values incorporating the average effects of mixed
operations and aircraft sizes are considered. For the E-AMAN,
the capacities are defined based on the information on airport
capacities, and they might be adjusted if ATFM regulations
are issued at the airport. All airports have an E-AMAN to
manage the arrivals; in some, a planning horizon for trajectory
adjustment and reduction of holding time is also implemented.

E. Radar agent

The ‘Radar’ agent broadcasts the flight position to all inter-
ested agents, as enabled by a flexible subscription notification
architecture. There is only one Radar agent.

At the initialisation of the simulation, interested agents
register to the Radar and ask to be notified when a flight of
certain characteristics (e.g. arriving at a given airport) verifies
a given condition (e.g. reaching a point before landing).

During the FP submission, the Radar agent receives the FP
from the NM, and creates an augmented flight plan adding
the required ‘Flight Crossing Point’s considering the registered
request for notification,

Response to events: The following events trigger the Radar:
• ‘Flight Crossing Point’: By crossing significant way-

points, the Flight triggers ‘Flight Crossing Point’, and
the ‘Radar’ notifies subscriber agents of this event.

F. Network Manager (NM) agent

The Network Manager has a simplified view of the Eu-
ropean airspace, and only one instance of NM exists in the
simulation. It does not have an explicit knowledge of the
airspace. Instead, the NM uses:

• random en-route ATFM delays, based on empirical data,
• regulations at airports modelled as ‘queue’s of slots.
The NM processes the FP submissions by checking if they

breach a curfew, in which case the FPs will be rejected.
Otherwise, the NM requests their dissemination via the Radar.

IV. MESSAGING, EVENTS AND INTERACTIONS

The agent-based model architecture is static unless agents
react to environment changes or requests triggered by interac-
tions with other agents.

Simulation engine: Mercury is a discrete event-driven sim-
ulator. With this paradigm, agents react to events triggered by
other agents or the environment. Once an event is resolved, the
simulation jumps to the next event. Events can be rescheduled
or cancelled, and new events can be created as required. A sin-
gle queue of scheduled events is built for the whole simulator,
with all the events stacked on a single timeline. In Mercury,
events are linked to flight milestones: ‘FP submission’, ‘Delay
estimation’, ‘Passenger check’, ‘Push-back ready’, ‘Take-off’,
‘Flight crossing point’, ‘Landing’, and ‘Flight arrival’.

The reaction of one agent to an event might require the
interaction of this agent with others in a message-driven
approach, where agents react to messages sent by other agents,
by the environment, or by a user.

4



Figure 2. Example of Modules modifying the roles of an agent.

Some of the events in the simulation might be triggered at
the same time (e.g. two flights with the same SOBT will have
the same ‘FP submission’ time). Therefore, they are treated
in parallel, leading to a case of concurrent programming. A
system of queues and resources (using Python module Simpy)
ensures these instances are properly managed.

Communication: Two types of communication exist: be-
tween agents (inter-agents) and within the roles of an agent
(intra-agent).

V. EVALUATION OF ATM SOLUTIONS

Mercury can evaluate different ATM Solutions by modifying
the system’s elements’ behaviour. In this manner, Mercury be-
comes an evaluation platform for different ATM components.
This can be achieved in two ways:

1) Replacing functionalities within agents’ roles by the use
of ‘Modules’.

2) Following a microservice approach, connecting external
systems to replace roles and/or agents from Mercury.

A. Modules

The functionalities of the roles within the agents can be
modified when loading Mercury. This allows developers to
create new functionalities indicating which roles should be
replaced and added to the agents.

Figure 2 presents an example of the principles of this
approach. A given agent (Agent 1) has two roles with some
processes. This provides the implementation of the default
behaviour of the agent. Two modules are available: Module
1 provides a different implementation for Process 1 of Role 1
(Process 3), and Module 2 provides a new implementation of

Process 2 of Role 1 (Process 4) and an additional process to
be added to Role 2 (Process 3).

For example, when a flight enters the scope of the arrival
manager, a role within the E-AMAN requests the expected cost
of using different available landing slots to the flight. With
that information, the E-AMAN then assigns the slot for the
flight. The first slot available could instead be provided. This
completely different behaviour can be achieved by modifying
selected roles within the E-AMAN with a Module.

As observed, if the Modules are instantiated, the roles are
replaced and added as required into the agents. This flexible
and versatile approach enables developers to create modules
that modify and add specific functionalities to Mercury without
modifying the base code. A set of modules can be loaded
simultaneously to create a Case Study (e.g. a given modifying
more than one agent at once). The developed code within the
modules must be compatible with the remaining software, and
developing these modules might require some deep knowledge
of the inner workings of Mercury.

B. Microservices approach

Another approach that can be followed to evaluate external
components with Mercury and change some components’
behaviour relies on the microservices principles and exploits
Mercury’s message-based architecture for communication be-
tween agents (and roles).

Agents communicate in Mercury using an ad-hoc Delivery
system. This system receives messages destined for agents
and delivers them. This is achieved by adding the receiving
agent’s identifier in the message’s header. It is, therefore,
simple to modify this behaviour so that messages are serialised
and communicated externally. This enables the broadcast of
messages with a publisher-subscriber approach (e.g. to indicate
the simulation status) and the establishment of a request/reply
communication protocol (i.e., one-to-one), miming the re-
quests between agents. These types of architectures can be
developed following some of the principles of microservices
[16].

This approach allows for different technologies on the
external elements to be used, albeit complexifying the com-
munication protocols and the execution of a simulation. These
external elements could replace agents or roles and be executed
in the same or separate machine.

Mercury has already implemented and validated this concept
by replacing some functionalities (selection of flight plans and
prioritisation of flights in UDPP situations) by external actors
with human-in-the-loop simulations [8].

A relatively complex example of interactions within Mer-
cury elements consisting of two agents and four roles is
presented in Figure 3. This example illustrates some of the
characteristics of the communication channels within Mercury:
intra and inter-agents, synchronous and asynchronous commu-
nications.

Process 1 of Role 1 in Agent 1 is waiting (asynchronously)
for an event (e) to be triggered. When this happens, it requests
some information from Process 1 of Role 3; as both roles

5



Figure 3. Example of communication between Agents and Roles in Mercury.

are within the same agent, a direct interaction (intra-agent
direct communication) is produced (1, 2). Process 1 then
communicates with a service provided by Agent 2 (inter-agent
communication). This triggers the request of an activity (3),
which will send a message to Agent 2 via the Delivery system
(4-5-6). Agent 2 identifies that the request should be processed
by its Role 1 (7). This triggers Process 1, which, after some
computing, requests an action to Agent 1 (9 to 12). In this
case, the message from Agent 2 is treated by Role 2 within
Agent 1 (13), who triggers the activities of Process 1 in that
role (14). This process could, for instance, then yield until
another event is satisfied.

Figure 4 presents the same interactions but with some
elements executed as external systems: all services of Agent
2 and some functionalities of Role 3.

To replace Agent 2, the Delivery system redirects the
messages from Agent 1 to the external communication channel
(13-14). Note that communications between agents are gener-
ally already designed to support asynchronous interactions.

Two options are possible to replace Role3’s functionalities
from Agent 1. First, the inter-agent communication mechanism
can be used, creating a message and sending it to the Delivery
system, which will redirect it outside Mercury. Second, Role3
can manage the external communications maintaining the
direct interaction between Role 1 and Role 3.

The second case is illustrated in Figure 4. Role 3 is modified
to translate the request into an external message (1-3-4). Once
a reply is obtained from the external system (5-6-7), Role
3 sends this back to Role 1 (8-9). This allows for some
internal processes within a role to be externalised rather than
the entirety of the role.

It is worth noticing that in both cases, the communication
between Role 1 and Role 3 becomes asynchronous, which
might need to be managed by Role 1. The simulation engine
in Mercury also needs to avoid advancing on the events
until the external system replies; the Delivery system ensures
this. This approach successfully integrated human-in-the-loop
simulations in the BEACON project [8] using Modules to

Figure 4. Same example of communication between Agents and Roles as in
Figure 3 but with external elements replacing systems from Mercury.

replace the required processes within the externalised roles.
External entities might require information from the sys-

tem’s status beyond the data provided in the initial request.
This means that a protocol of communication and message
exchanges will be developed, providing an ‘API’ of Mercury
that the external entities can query.

Finally, external systems should be able to treat each request
from Mercury independent from the simulation status and/or
manage internal information on the different Mercury runs
being served by the system.

VI. DATA AND CONFIGURATION

This section describes the input and output datasets and
provides some information on the input and output managers
(and their interface). All the datasets (except for configuration
files) are stored in Apache parquet format in Mercury.

A. Configuration files

Configuration files in Mercury are defined using TOML
format. These files configure some of the characteristics of
Mercury and the simulations and define the modules’ charac-
teristics.

B. Input data

The data required as input are organised in three information
levels:

6



1) Scenario: A Scenario represents all possible flights
(with passenger itineraries and rotations) for a given period
(usually a day) and a region (usually Europe). It also contains
information required to simulate their operations in the ATM
environment. Data is structured in ten categories: schedules,
passengers (with passengers itineraries), airports (static and
operational information), airlines, aircraft performance, flight
plans, delays (probabilities primary delays), eaman, costs and
network (ATFM regulations, probabilities and distributions).

For some of these data, note that not only a given value
is necessarily provided, but different alternatives could be
available. For example, the probability of being regulated by
ATFM delay could be provided by different levels: ‘High’,
‘Medium’, and ‘Low’; these could have been computed as
representatives of historical days. These probability distribu-
tions are paramount for calibrating the model [17].

2) Case Study: A Scenario can have several Case Studies.
These are defined by setting a configuration file that instan-
tiates the parameters from the set of alternatives available in
the Scenario — for example, setting the probability of ATFM
delay to ‘Medium’.

The Case Studies can also filter the data from the Scenario,
particularly by reducing the set of simulated schedules, for
example, using only the subset of flights operating at a
given airport or departing/arriving in a given time window.
Mercury will automatically read (and load) only the relevant
information for the flights selected,i.e., subset of passenger
itineraries, airports, etc.

Additional data from the one in the Scenario might need
to be stored, e.g. a list of flights to be simulated. A Case
Study can also override some parameters from the Scenario,
e.g. the radius of the planning horizon of the E-AMAN at a
given airport. All these additional data will be saved within
the Case Study.

Finally, a Case Study can define which Modules from
Mercury should be applied.

3) Experiment: We might want to explore the impact of
some parameters on the results; this will require the definition
of experiments. For example, indicating a set of values of
fuel cost to evaluate. These parameters will be defined in the
experiments’ TOML configuration files.

Finally, as Mercury is a stochastic simulator, operational
parameters, such as en-route flight route deviation, turnaround
time or amount of non-ATFM delay, are drawn from pre-
defined probability distributions, which need to be calibrated
with historical datasets [17]. Therefore, several simulator runs
might be required to obtain statistically significant results.
These configurations of the execution of Mercury, along with
information on computational settings, e.g. the number of
parallel executions, will be defined in the experiment and the
simulation configuration files.

C. Output data

The output data keeps the traceability with the input used
to generate them. Therefore, the output data are structured

Figure 5. Web-based user interface.

similarly to the input while keeping a copy of the configuration
files used to run the different experiments.

Finally, Mercury stores the different runs and the aggregated
KPIs computed using the information from all the runs of
a given experiment to obtain statistically significant values.
These aggregations are computed by a Result Aggregator,
which can be configured as part of the experiment definition.

The output can be post-processed to compute more ad-
vanced metrics such as door-to-door mobility (by adding
access and egress times to the individual passenger itineraries
metrics) [10], network complexity parameters [18] or
analysing the emergent agents’ behaviour [17].

D. Computational time

The computational requirements continue to be contained,
with a simulation of a whole day of operations in Europe12

requiring around 9Gb of RAM and 30 minutes computation
(on a CPU@3.2GHz). Moreover, as presented in [17], the
resources per individual flight decrease as the number of flights
increases, showing good scalability.

E. User interface

Two dedicated modules are developed as part of Mercury
to facilitate the manipulation of the input and output datasets:
Input manager and Output manager.

A web-based graphical interface which connects to these
managers has been developed, providing basic functionalities
to explore the input and output data and create the Case
Studies, Experiments and the configuration of Mercury.

Figure 5 presents this interface where the flight information
in the selected scenario is presented as a table and a distribu-
tion of departing times.

The user can filter the flights available in the Scenario by
origin, destination, airline type, start and end date of their
schedules or even directly using an SQL query that will be
applied to the flight schedule table. This filtering of flights is
the first step towards creating a new Case Study. These Case
Studies can be loaded, if available, within a given Scenario.

12Approximately 27k Flights (with 7k individual aircraft), 300 airline
operating centres, 800 airports and 400k passenger groups (representing 3.4M
passengers)

7



Figure 6. Flight plan alternatives exploration interface.

Figure 7. Network-ATFM data visualisation and selection.

The different data groups presented previously can then be
explored for the subset (or the entirety) of flights using the
available tabs. For example, Figure 6 shows the visualisation
of the flight plan pool filtered by a given origin and destination.
In some cases, as in Figure 7, the user can visualise the data
available in the Scenario (e.g. distribution of ATFM delay)
and also select which parameters should be used (e.g. which
airports should have ATFM regulations in this Case Study).

Figure 8. Results analysis and visualisation.

Finally, the current interface version allows users to explore
the results of the execution of Mercury by processing the
required output folders, as shown in Figure 8. Note how not
only average results per KPI are produced, but percentiles and
distribution of these can be estimated.

VII. CONCLUSIONS AND FUTURE WORK

Mercury has proven its capabilities to integrate new be-
haviours and mechanisms for their evaluation, considering
network effects, complex interactions, plus flight and passen-
ger metrics. The current architecture is flexible, and using
modules to modify individual roles within the agents allows
user-friendly modification of such behaviours. Moreover, in
recent projects, effort has been devoted to improving the ease
of integrating external modules and solutions (e.g. support-
ing human-in-the-loop simulations with interaction with an
external interface [8]). These efforts will continue towards
developing a full messaging API enabling the interaction of
external systems with simulations within Mercury. This will
be done particularly in the context of air-rail multimodality
by supporting the evaluation of tactical multimodal disruption
management solutions [4].

Future work will aim at standardising the usage of modules
and external systems integration facilitating the wider usage
of Mercury. The interface for manipulating input and output
datasets will also be expanded to facilitate the creation of case
studies and experiments. The low-level resolution of Mercury
enables the computation of many advanced metrics as post-
processing. This will also be further developed and provided
as part of the interface system. The datasets (input/output)
must be fully documented, providing the required meta-data
to develop new scenarios.

Opening Mercury will allow it to evolve with future needs
for performance assessment from the wider research commu-
nity. We hope that it will foster a new era of open models
in air transportation that can be used to reproduce results
from different research groups, to quickly prototype new
modifications of the system, to interface local models with
network ones to assess the impact of solutions at a higher
level, and finally to push for the standardisation and modularity
of air transportation simulators. We also hope this will help
develop standard datasets that can be used routinely to evaluate
solutions in different simulators.

We invite any researcher interested in assessing new pro-
cesses and technologies to try the simulator and contact the
authors.

REFERENCES

[1] European Commission, “Regulation (EC) No 261/2004 of the European
Parliament and of the Council of 11 February 2004 establishing common
rules on compensation and assistance to passengers in the event of denied
boarding and of cancellation or long delay of flights, and repealing
Regulation (EEC) No 295/91,” pp. 1–7, 2004.

[2] A. Cook, G. Tanner, S. Cristóbal, and M. Zanin, “Passenger-oriented
enhanced metrics,” in 2nd SESAR Innovation Days, 2012.

[3] High Level Group on Aviation Research, “Flightpath 2050 – Europe’s
Vision for Aviation,” European Commission, Tech. Rep., 2011.

8



[4] L. Delgado, T. Bolić, A. Cook, E. Zareian, E. Gregori, and A. Paul,
“Modelling passengers in air-rail multimodality,” in Proceedings of the
11th EUROSIM Congress, July 2023.

[5] A. Cook, L. Delgado, G. Tanner, and S. Cristóbal, “Measuring the cost of
resilience,” Journal of Air Transport Management, vol. 56, pp. 38 – 47,
2016, long-term and Innovative Research in ATM. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S096969971600020X

[6] U. Kluge, A. Paul, H. Ureta, and K. O. Ploetner, “Profiling future air
transport passengers in Europe,” in Transport Research Arena (TRA)
2018, 2018.

[7] S. Zaoli, P. Mazzarisi, F. Lillo, L. Delgado, and G. Gurtner, “New cen-
trality and causality metrics assessing air traffic network interactions,”
Journal of Air Transport Management, vol. 85, 2020.

[8] BEACON Consortium, “Deliverable D5.2: Final tactical model and
results,” BEACON Consortium, Tech. Rep., February 2023. [On-
line]. Available: https://ec.europa.eu/research/participants/documents/
downloadPublic?documentIds=080166e5f3a1058d&appId=PPGMS

[9] J. Hoekstra and J. Ellerbroek, “BlueSky ATC simulator project: an open
data and open source approach,” in 7th International Conference on
Research in Air Transportation (ICRAT), 06 2016.

[10] L. Delgado, G. Gurtner, A. Cook, J. Martı́n, and S. Cristóbal, “A
multi-layer model for long-term KPI alignment forecasts for the air
transportation system,” Journal of Air Transport Management, vol. 89,
p. 101905, 2020. [Online]. Available: http://www.sciencedirect.com/
science/article/pii/S0969699720304889

[11] G. Gurtner, C. Bongiorno, M. Ducci, and S. Miccichè, “An empirically
grounded agent based simulator for the air traffic management in the
SESAR scenario,” Journal of Air Transport Management, vol. 59, pp.
26–43, 2017.

[12] G. Gurtner and T. Bolić, “Impact of cost approximation on the efficiency
of collaborative regulation resolution mechanisms,” Journal of Air
Transport Management, vol. 113, p. 102471, 2023. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S096969972300114X

[13] A. Nuic, D. Poles, and V. Mouillet, “Bada: An advanced aircraft
performance model for present and future atm systems,” International
Journal of Adaptive Control and Signal Processing, vol. 24, no. 10,
pp. 850–866, 2010. [Online]. Available: https://onlinelibrary.wiley.com/
doi/abs/10.1002/acs.1176

[14] M. Wooldridge, N. R. Jennings, and D. Kinny, “The Gaia Methodology
for Agent-Oriented Analysis and Design,” Autonomous Agents and
Multi-Agent Systems, vol. 3, pp. 285–312, 2000.

[15] Domino Consortium, “Deliverable D4.1: Initial model design,”
Domino Consortium, Tech. Rep., November 2018. [On-
line]. Available: https://ec.europa.eu/research/participants/documents/
downloadPublic?documentIds=080166e5bf17614a&appId=PPGMS

[16] N. Dragoni, S. Giallorenzo, A. L. Lafuente, M. Mazzara, F. Montesi,
R. Mustafin, and L. Safina, Microservices: Yesterday, Today, and
Tomorrow. Cham: Springer International Publishing, 2017, pp. 195–
216. [Online]. Available: https://doi.org/10.1007/978-3-319-67425-4 12

[17] G. Gurtner, L. Delgado, and D. Valput, “An agent-based model
for air transportation to capture network effects in assessing
delay management mechanisms,” Transportation Research Part C:
Emerging Technologies, vol. 133, p. 103358, 2021. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0968090X21003600

[18] S. Zaoli, P. Mazzarisi, and F. Lillo, “Trip centrality: walking on a
temporal multiplex with non-instantaneous link travel time,” Scientific
Reports, vol. 9, no. 10570, 2019.

9




