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Abstract—This paper presents a deep learning model termed
LSTM-Attention based Time-dependent Flight-delay Classifier
(LATTICE) for real-time flight arrival delay classification. Ini-
tially, this model incorporates a comprehensive set of factors
influencing flight delays, including weather conditions, flight
information, and en-route real-time trajectory data provided
by ADS-B technology. Subsequently, LATTICE leverages a full-
sequenced LSTM network for the extraction of deep temporal
trajectory features and employs an attention network for the
allocation of weights and mapping of relevant information.
Ultimately, the model utilizes a masking layer to address the
challenges posed by varying trajectory lengths, and experimental
results demonstrate a significant enhancement in the accuracy of
flight delay predictions as a result of these integrated measures.
The model classifies incoming flights into On-Time/Late and
Early/Punctual/Late. On being evaluated against historical data,
it achieves about 91% accuracy and 0.96 AUC at predicting
delay, yielding better predictions compared to baseline models.
Trajectory inputs improve the prediction by about 15%. The
model is real-time via ADS-B technology, robust via adaptive im-
provement with continuous training, and able to handle both late
and early arrivals. This paper demonstrates that the real-time
trajectory inferred from ADS-B messages can add significantly
to the reliability of delay prediction.

Keywords—Flight delay prediction, deep learning, sequential
neural networks, LSTM, attention, ADS-B, real-time

I. INTRODUCTION

The estimation and management of flight delays is a key
performance indicator in the aviation sector [1]. With the ever-
growing global aviation networks and their interdependence,
and with the higher demand for global travel in the recovery
from COVID, flight delay prediction is becoming increasingly
crucial. Between 2015-2020, the worldwide aviation passenger
count grew by over 30% from 3.5k to 4.7k mil/year [2] while
in Singapore alone, it grew from 55.45 to 68.3 mil/year [3].
However, in 2017, about 19% of the flights were cancelled or
delayed over 30min in Brazil [4]. In 2018, 21% of flights
suffered more than 15min delays in the USA [5], and re-
cently in 2023 Q1, about 24% of flights in Europe delayed
over 15min [6]. The negative impact of these delays include
passenger dissatisfaction, penalty to airlines, additional costs
at the operational level and even environmental issues due to
extra fuel consumption [7], [8].

On-time-performance is a major measure of airline and
airport efficiency. Based on the nature of the flight, delays
can be divided into departure and arrival delays. Aircrafts that
experienced departure delays can propagate into arrival delays;
average arrival delay is approximately the sum of the average

departure and enroute delays [9]. Therefore, we focus mainly
on arrival delays in this paper.

A. Related works

Sternberg et al. [10] and Carvalho et al. [1] have provided
extensive literature review on flight delay prediction. Many
initial works are based on statistical approaches. Clustered
models have been adapted to historical data to forecast delays
[11]. Non-parametric function to model delays have been used
to analyze the USA airports’ efficiency [12]. Mueller et al.
[9] used probabilistic density functions to model departure,
enroute and arrival delays. Besides, other classical approaches
include network representation methods based on graph theory,
or operational research based methods such as optimization,
simulations and queue theory [13]–[15].

These classical methods are valuable to understand the
delay factors, but they can fall short in terms of accuracy for
individual flight delay predictions [16]. With the availability
of massive air traffic data, an increasing number of learning-
based works are being performed with promising results, as
summarized in Table I. Broadly, delay can be modelled as
a regression or classification task. Random forest (RF) was
adopted in several studies [17]–[19]. While the first study used
both weather and flight information, the second study used
flight data alone; the third study analysed at a 2-hr forecast
horizon with a test error of 19% in a binary classification
of 60min delay. However, the 60min threshold is far from
meeting the delay threshold of 15min set by the International
Civil Aviation Organization (ICAO) [20]. In [21], support
vector machine (SVM) models were used to predict delays us-
ing weather, airport demand and capacity, and flight schedule
related factors. Pamplona et al. [22] employed artificial neural
networks (ANN) to model flight information to classify delay
from no-delay based on 15min threshold.

Recently, several studies have used deep learning methods
as well. Yu et al. [16] proposed a deep belief network
(DBN) combined with support vector regression (SVR) that
predicts delay at 25min error tolerance. Factors like airport
crowdedness, air route situation reflecting weather, and delay
propagation were suggested beside the common airline factors.
Zhu and Li [23] developed a spatial weighted recurrent neural
network (RNN) model to predict the delays using ADS-B,
weather and airline record data. However, the ADS-B data
was used only for the purpose of estimating the actual arrival
times. Li et al. [24] combined convolutional neural network



TABLE I. PRIOR STUDIES ON LEARNING-BASED DELAY PREDICTION

Study Type of prediction Considered factors Methodology
and year Reg. Classification Flight Weather Traj. ML DL Algorithm(s)

Late Early/Late
[19] ’14 ✓ ✓ ✓ ✓ ✓ RF
[17] ’16 ✓ ✓ ✓ ✓ RF
[26] ’16 ✓ ✓ ✓ ✓ LSTM
[22] ’18 ✓ ✓ ✓ ANN
[16] ’19 ✓ ✓ ✓ DBN,SVR
[25] ’19 ✓ ✓ ✓ ✓ RF,LSTM
[21] ’20 ✓ ✓ ✓ ✓ SVM
[23] ’21 ✓ ✓ ✓ ✓ LSTM
[11] ’21 ✓ ✓ ✓ ARIMA
[18] ’21 ✓ ✓ ✓ RF
[24] ’23 ✓ ✓ ✓ ✓ CNN-LSTM,RF
Ours ✓ ✓ ✓ ✓ ✓ ✓ ALSTM,ANN
Note:- Regression: predicting the delay time; Classification Late: predicting whether
the flight will delay; Classification Early/Late: predicting whether the flight will
be early/punctual/late; ML: Machine learning; DL: Deep learning; RF:Random
Forest; DBN:Deep belief network; SVR(M):Support vector regression(machine);
CNN:Convolutional neural network; ALSTM:Attention-based LSTM

(CNN), Long Short-Term Memory (LSTM) network and RF
for classifying delays using flight schedule, aircraft capacity,
distance between airports and previous flight delay where
LSTM was used to draw temporal features from weather. Gui
et al [25] studied RF and LSTM separately for predicting
individual flight delay. LSTM was used to model weather and
air route features for temporal correlation extraction.

B. Contributions

Although several promising works are done on learning-
based approaches to predict flight delay, there are some
concerns and areas of improvement as summarized in Table
I. Firstly, in the current literature only late arrivals are inves-
tigated, even though early arrivals can also have negative im-
pacts on the traffic flow. Arrivals before the planned schedule
affects the surface management on aerodrome as well as the
terminal management. In this paper, we analyse both late and
early arrivals, which can contribute to smoother operations.

Secondly, it is more common to employ static ground factors
such as flight information and weather, that do not represent
real-time status of the flight in motion. Delay prediction
methods are crucial to help the airline operators to correctly
comprehend the current and future status of flights and help
the air controllers make prompt decisions. Therefore, delay
predictions should run in real-time for better outcomes. This
could be achieved by incorporating dynamic airspace factors.
In this study, we propose a novel idea to incorporate the en-
route real-time flight trajectory, a dynamic airspace factor, to
enable predictions to be real-time and more reliable. We ex-
tract it from surveillance system namely, Automatic Dependent
Surveillance-Broadcast (ADS-B) communication messages.

The ADS-B system is a promising technology in air traffic
control. As ADS-B signals are time-series data, they have
been used for estimation of flight coordinates [27] and flight
trajectory [28]. They have been used in [25] to estimate the
arrival time based on the time of last signal received due
to the unavailability of the actual arrival time in their study.
In another study [29], ADS-B data was used to extract the
flight’s location only at the range ring instead of its entire

trajectory. In our study, we explore the entire trajectory to
enhance predictions.

Thirdly, classical methods and shallow ML approaches
cannot well-capture the temporal aspects of flight movements.
Given that trajectory is time-series data, deep sequential neural
networks like the LSTM would be apt for modelling in
our study. Current delay prediction studies have used LSTM
networks only for modelling weather [24], delay states [23], or
weather along with flight schedules [26]. Several advantages
of the LSTM such as the ability to capture time dependencies,
handling long sequences and temporal feature learning make
it suitable for modelling the trajectory in our study. However,
modelling long flight sequences can suffer from information
loss. We suggest using attention mechanism [30] to prevent
such loss, besides providing better interpretation and appro-
priate information mapping. The contributions of this paper
can be summarized as:
• A novel deep learning model for real-time arrival delay clas-

sification of flights named as LSTM-Attention based Time-
dependenT flIght-delay ClassifiEr (LATTICE) is proposed.
A full-sequenced LSTM network enables deep temporal
trajectory features extraction, while an attention network
facilitates adequate weight assignment and relevant infor-
mation mapping from the time-steps. In addition, the model
employs a masking layer to address the challenges with
varying trajectory lengths.

• While most of the literature focus on late arrivals, our
model differentiates between early and late arrivals as well.
Specifically, LATTICE classifies incoming flights into on-
time/late as well as early/punctual/late.

• Along with weather condition and flight information (ground
static factors), we propose using en-route real-time trajectory
data (airspace dynamic factors) via ADS-B technology to
enhance predictions. We explore a broad scope of factors
and propose several new features.

• The model efficacy is validated using real historical data
of Singapore Changi airport, against data-driven algorithms
used in prior studies.
Incorporating real-time track data makes our approach re-

liable, while using data-driven strategy based on periodic
retraining can render robustness. To the best of our knowledge,
this study is the first to use real-time trajectory of the enroute
flight through ADS-B technology as a dynamic factor, along
with static factors as weather and flight information, powered
by a deep learning model based on full-sequenced LSTM and
attention networks for flight delay prediction for both early
and late arrivals.

II. PROPOSED LATTICE MODEL

A. Overall Framework

Implementation of the proposed model is illustrated in
Fig 1a. For an enroute flight, the model can be applied once
the ADS-B communications start broadcasting. The selected
airspace and ground data from flight plan, METAR and ADS-
B will be gathered and features will be extracted. They will
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(a) Model overview, implementation and applications
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(b) Model architecture

Figure 1. Proposed LATTICE model for real-time arrival flight delay classification

be fed to the trained model, which would predict the arrival
flight delay class. The model would be employed cyclically
because predictions would improve as more trajectory data is
accumulated with time. This dynamic prediction could help the
airport regulators to be aware of potential delays in advance
and to develop management strategies to improve on-time-
performance. Fig 1a indicates the several applications that
could be facilitated by the proposed approach.

The architecture of the LATTICE model is illustrated in
Fig. 1b. The objective is two-fold:

1) Binary classification: We predict whether the arriving
flight will incur a delay. We define a flight is delayed if the
Actual In-Block Time (AIBT) of the flight is lagging behind
the Scheduled In-Block Time (SIBT) by a given threshold.
ICAO states 5min and 15min as thresholds for arrival punc-
tuality with respect to AIBT and SIBT [20]. Therefore, we
run separate experiments with 5min and 15min as the delay
threshold. The target class is defined as:

∆(t) =

{
On-time if AIBT - SIBT <= threshold
Late otherwise

2) Multiclass classification: We predict whether a flight
will have an early arrival, be punctual or have a late arrival. We
select 15min as the threshold for late arrivals in the multiclass
task as it is more practically used and 5min would be rather
too stringent. For early arrival, we use 20min as threshold to
apply a stricter penalty for the late arrivals, as late arrivals
have more consequences than the early arrivals. The target
class is thus defined as:

∆(t) =


Early if AIBT - SIBT < −20

Punctual if − 20 <= AIBT - SIBT <= 15

Late if AIBT - SIBT > 15

Broadly, the LATTICE model fLATTICE has two branches
with two sets of input vectors- time-invariant TI and time-
varying TV (t) (Fig. 1b). Processed track TV features is fed
to an LSTM network through a masking layer, and filtered
through an attention layer. Meanwhile, the TI features are fed
to fully connected (FC) layers. The learned deep features from

the two branches are concatenated and projected to the target
class through a deep network of FC layers. The model can be
symbolically represented as

fLATTICE : {TI,TV (t)} → ∆(t) (1)

B. Flight Delay Feature Space

We consider a wide range of factors as described in Table II-
flight route, operation, aircraft, weather, time-related, ADS-B
station, and trajectory. They can be categorised as ground and
airspace information. 24 TI and 4 TV features are extracted
from these factors. We define the feature space as follows:

1) Time-invariant features:

TI = [p,w,a] (2)

where p is the feature vector from flight plan, w is the weather
vector and a is the airspace vector:

p = [p1, p2, p3, ...p14] (3)

where the acronyms are described in Table II. For consistency
and variability, we used ICAO codes for departure airport (p1).
The actual time of departure ATD (p7) is encoded numerically
as (hour*100 + minute). The time elapsed (p10) between the
creation of flight plan and the ATD is noted. Since flight plans
are created closer to scheduled departure, larger gaps of p10
may indicate a delayed departure. Using the Estimated Off-
Block Time (EOBT) and the Scheduled In-Block Time (SIBT),
the departure ground delay (p9) and the approximate flight
duration (p11) are computed as:

p9 = ATD − EOBT (4)
p11 = SIBT − ATD (5)

The true air speed (p13) is computed using mach number (p12)
and speed of sound c:

p13 = c ∗ p12 (6)

w = [w1, w2, w3, w4, w5, w6] (7)

Weather is a major cause of delays and flight cancellations.
Singapore being a tropical country, witnesses bouts of heavy

3



TABLE II. FEATURES USED TO PREDICT THE FLIGHT ARRIVAL DELAY

Factors Features (unit, type) Acronym TI/TV
Ground information from flight plan (FP)

TI (24
singular
features)

Route departure airport (-, cat) p1

airline (-, cat) p2

callsign (-, cat) p3

Aircraft aircraft type (-, cat) p4

aircraft registration (-, cat) p5

wake turbulence category (-, cat) p6

Time-related actual time of departure (-, num) p7

actual day of week (-, num) p8

departure ground delay (min, num) p9

timespan: FP creation to ATD (min, num) p10

approximate flight duration (min, num) p11

Operation mach number (-, num) p12

true air speed (m/s, num) p13

planned flight level (100 ft, num) p14

Ground information from weather station
Destination air temperature (◦F , num) w1

relative humidity (%, num) w2

wind speed (knots, num) w3

wind direction (deg true N, num) w4

visibility (mi, num) w5

weather event (-, cat) w6

Airspace information via ADS-B communications
Aircraft emitter category (-, num) a1

Time-related timespan: ATD to 1st signal (min, num) a2

ADS-B station system area code (-, num) a3

system identification code (-, num) a4

Trajectory latitude (deg, num) LAT TV (4
sequence
features)

longitude (deg, num) LON
flight level (100 ft, num) FL
geometric height (ft, num) GH

Note:- cat: categorical, num: numerical, ATD: actual time of departure

rainfall and thunderstorms year-round, which can affect visi-
bility at the airport. Weather at the destination airport as listed
in Table II are noted. Weather event w6 is represented by
METAR codes as described in [31].

a = [a1, a2, a3, a4] (8)

Certain time-invariant airspace information received via ADS-
B are noted. We introduce the time elapsed between the
departure and the first ADS-B signal (a4) as a feature.

2) Time-varying features:

TV (t) = {LAT (t),LON(t),FL(t),GH(t)} (9)

Flight trajectory parameters namely, the latitude LAT , lon-
gitude LON , flight level FL and geometric height GH
sequence vectors of the flight are noted:

LAT (t) = {.., lat(t− 2), lat(t− 1), lat(t)} (10)
LON(t) = {.., lon(t− 2), lon(t− 1), lon(t)} (11)

FL(t) = {.., f l(t− 2), f l(t− 1), f l(t)} (12)
GH(t) = {.., gh(t− 2), gh(t− 1), gh(t)} (13)

While GH reflects flight altitude above mean sea level, FL
indicates height in terms of pressure altitude.

C. Full-sequenced Long Short-Term Memory (LSTM)

We selected LSTM for its ability to capture long-term
dependencies which makes it suitable to model trajectory [32].
However, trajectory lengths change with time and between
different flights. Therefore, the TV input sequences are of vari-
able length, which can be challenging to model directly using

𝑥1

LSTM LSTM LSTM

𝑥2 𝑥𝑇

ℎT

ℎ1

𝑐1

ℎ2

𝑐2

…

ℎ2ℎ1

Many-to-one

Many-to-many

(a) Types of LSTM based on output

σ σ σtanh

tanh

ct-1

ht-1

xt

it

ot

ct

ǁ𝑐𝑡

ht

(b) Structure of an LSTM cell

Figure 2. Long Short-Term Memory (LSTM)

LSTM. Downsampling/upsampling/averaging to a fixed length
could cause significant information loss as well. Therefore, we
retain the original sequences by employing a masking layer.

The structure of LSTM layer can be many-to-one or many-
to-many (Fig. 2a). LATTICE model employs a many-to-many
or full-sequenced layout where hidden states from all time-
steps of the input trajectory sequence are extracted. Each
hidden state h carries information from the past cell as
well as current input, thereby better capturing the temporal
dependencies of delay on the trajectory. Fig. 2b describes a
single LSTM cell. Assuming that xt and ht are the input and
the hidden state, respectively, at time-step t, and ct−1 is the
cell state, the LSTM network can be expressed as:

f t = σ(wf [h
t−1, xt] + bf ) (14)

it = σ(wi[h
t−1, xt] + bi) (15)

c̃t = tanh(wc[h
t−1, xt] + bc) (16)

ct = f t ∗ ct−1 + it ∗ c̃t (17)

ot = σ(wo[h
t−1, xt] + bo) (18)

ht = ot ∗ tanh(ct) (19)

where, f t is the forget gate, it is input gate, ot is the output
gate, wf , wi, wc, and wo are the weights, bf , bi, bc, and bo
are the biases, and σ(.) and tanh(.) are the sigmoid and tanh
functions, respectively.

D. Attention mechanism

We use attention mechanism [30] because it can help alle-
viate the information loss from long sequences processed by
LSTM. It can identify the most relevant amongst the extracted
deep features from LSTM. Assuming there are m=500 cells
in the LSTM layer, output will be 500 vectors each of length
equal to the number of timestamps in the input TV sequence.
For n samples, the output will be n × m×timestamps. The
attention mechanism helps to identify the importance of both
the input features and the time-steps by paying attention to
every hidden state generated by the LSTM. Let the learned fea-
tures by the LSTM be its hidden states H = {h1, h2, ...hm}.
Alignment scores are calculated for each encoded state by
training a single unit feedforward network, and the attention
scores are obtained as

ri = tanh(WThi + b) (20)
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where W is the weight matrix and b is the bias vector.
Attention weights α1, α2, ..αm are generated by applying
softmax function to the scores. The final output of the attention
layer is the weighted sum:

C = α1 ∗ h1 + α2 ∗ h2 + ...+ αm ∗ hm (21)

E. Concatenation and prediction

The learned deep features from TV and TI are concatenated
and fed through another deep network of FC layers. Rectified
Linear Unit ReLU(x) = max(x, 0) is used as the activation
function. Assuming that (C)k = {(c)k1 , (c)k2 , ..} is the input
vector and (YFC)

k is the output vector for the kth training
sample, the FC layer can be formulated as:

V k
i = ReLU

(∑
wij(c)

k
j − bhi

)
(22)

(YFC)
k
p =

∑
V k
i wpi − bop (23)

where, V k
i is the output of hidden neuron i, wij is weight

parameter from input layer neuron j to hidden layer neuron i,
bhi is the bias of hidden neuron i, wpi is the weight parameter
from hidden neuron i to output neuron p, and bop is the bias
of output neuron p. In the final layer FC6, 1 output unit with
sigmoid activation σ(x) = 1

(1+e−x) and 3 output units with
softmax activation s(xi) = exi∑

j

exj are used for binary and

multiclass classifications, respectively. The LATTICE model
can thus be represented as

∆(t) = fLATTICE(TI,TV (t)) (24)

III. EXPERIMENTAL RESULTS AND DISCUSSION

A. Experimental settings

The flight plan and the ADS-B data are procured from
the Civil Aviation Authority of Singapore (CAAS), while the
weather data is obtained from METAR [31]. We considered
all flights inbound Changi International Airport, Singapore
between Nov 19 to Dec 31, 2019 which amounted to about
15,000 flights. The processed data is downsampled to minutes
for consistency. Experiments are run at 3 different time-points
namely, at 60min, 40min and 20min before arrival (ATA-60,
ATA-40, ATA-20). The class distributions for all experiments
are presented in Fig. 3. It is evident that there are class
imbalances. To avoid majority class bias, first, class weights
are added as shown in figure, and second, cross-validation
with repeated stratified folds are used. Stratification ensures
the folds preserve the sample distribution for each class.

Table III describes the hyperparameter settings used and the
inputs to the layers of the LATTICE model. Cross-validation
reduces noise and improves reliability of the trained model.
We used Repeated Stratified KFold for cross-validation. Our
dataset is split into 10 folds, with 2 repeats. Therefore,
for each classification task, 20 sets of experiments (of
train+validate+test) are run and the mean results are noted. The
learning rate is tuned by grid search over [10−5, 10−3], and the
optimal rates as shown in the table are used. Maximum epochs

Figure 3. Distribution of the six types of experiments performed.

TABLE III. HYPERPARAMETER SETTINGS OF THE LATTICE MODEL

Layer Attributes Inputs
Masking mask value: 0 TV input data
LSTM units: 500, full-sequenced Masked TV features

time-steps: trajectory length
Attention units: 500 Features learned by the LSTM
FC1 units: 100, activation: ReLu Weights created by Attention
FC2 units: 500, activation: ReLu TI input data
FC3 units: 100, activation: ReLu Features learned by FC2
Concat FC1 + FC3 Features learned by FC1, FC3
FC4 units: 100, activation: ReLu Concat features of FC1+FC3
FC5 units: 50, activation: ReLu Features learned by FC4
FC6 Binary (1 unit): sigmoid, lr:10−5 Features learned by FC5

Multiclass (3 units): softmax, lr:10−4

of 500 are used. However, to prevent overfitting, regularization
is added with early stopping based on the validation loss.
A validation split of 20% is used for the training. The train
loss functions used for the binary and multiclass tasks are the
binary cross-entropy (BCE) and the categorical cross-entropy
(CCE), respectively. We implemented the LATTICE model
using the Tensorflow package in Python.

The models are evaluated using the classification accuracy
and the AUC (Area Under the ROC Curve) metrics:

Accuracy =
TP + TN

TP + TN + FP + FN
(25)

AUC =

∫
TPR d(FPR) (26)

where, TPR = TP
TP+FN , FPR = FP

TN+FP and, TP, TN,
FP, FN, TPR and FPR are true positive, true negative, false
positive, false negative, true positive rate and false positive
rates, respectively. AUC metric applies for binary task only.

B. Baselines

We implement several learning-based algorithms used in
previous delay studies for comparative performance analysis:

1) Shallow learning algorithms (ML): L2 regularised Logistic
Regression (LR-L2) [33], a popular method for predicting
binary outcomes; Random Forest (RF) [17]–[19], [24], [25]
and Extreme Gradient Boosting (XGB) [34], both decision
tree algorithms; and Support Vector Machine (SVM) [16],
[21] with Radial Basis Function kernel.
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TABLE IV. CROSS-VALIDATED TEST RESULTS OF LATTICE MODEL

binary5 binary15 multi-class
Accuracy (%) AUC Accuracy (%) AUC Accuracy (%)

ATA-60 86.106±1.346 0.927±0.011 88.397±2.078 0.942±0.011 83.201±2.326
ATA-40 87.668±1.003 0.944±0.006 89.861±1.429 0.956±0.007 84.471±1.539
ATA-20 87.973±1.248 0.945±0.008 90.580±1.321 0.960±0.005 84.555±1.576

Note: Cross-validated mean ± s.d over 20 experiments (10 folds, 2 repeats).

(a) Mean train and test loss (b) Test accuracy

Figure 4. LATTICE model performance at different time-points

2) Deep learning algorithms (DL): Long Short-Term Memory
(LSTM) [23], [26] and Gated Recurrent Unit (GRU) [35]
networks with May-to-one structure; and 1D Convolutional
Neural Network (1D-CNN) [24].

C. Effect of the reference time-point

The prediction results of the LATTICE model are presented
in Table IV. Firstly, it is observed that the performance
improves with reference points nearer to the ATA. This can be
contributed to the additional 20min of TV information. With
time nearing the ATA, TI features remain constant while more
trajectory information gets updated and accumulated. Recent
updates of the trajectory adds reliability to the prediction. The
models are able to train better with more TV data as also seen
from the improving training loss in Fig. 4a.

Secondly, it is to be noted that even 1hr prior (t =ATA-
60), the LATTICE model is able to perform quite well at
about 86% and 88% accuracy and 0.927 and 0.942 AUC for
5min and 15min cases, respectively. Thirdly, it is observed that
a threshold of 15min fares better than 5min across all train
and test metrics. Using 15min to define delay achieves best
mean accuracy and AUC of 90.580% and 0.96, respectively.
It indicates that a threshold of 5min may be a bit too stringent
to segregate delayed arrivals.

These results are summarized graphically in Fig. 4b. Firstly,
it is clearly seen that binary 15min task performs the best at
all time-points. Multi-class task fares lower as it is harder to
differentiate between 3 classes as compared to only 2 classes.
At the time-point with the largest sample size (t =ATA-20),
the binary 15min task achieves mean accuracy of 90.580%,
which is about 3% higher than binary 5min (87.973%) and
7% higher than the multi-class task (84.555%). Secondly,
the effect of the reference time-points can also be revealed
from the illustration. For the binary 15min task, performance
improves by 0.8% in 20min (from 40 to 20min prior ATA),
and by 2.5% in 40min (from 60 to 20min prior ATA).

Figure 5. Performance comparison with the baselines

D. Model comparison

Since binary15 task showed better performance than binary5
task, from here on in this paper, we will present results only
for the 15min case. The prediction results of the models are
summarized in Table V and distributions are illustrated in Fig.
5. Comparisons are made at the reference point containing the
highest flight data, t=ATA-20. In general, it is seen that the
predictive performance P using TI+TV features is better than
that using only TI features, which is better than that using
only TV features, i.e. PTI+TV >PTI > PTV .

First, using only TI features, the shallow models perform
better than the deep models using only TV features (PTI >
PTV ). Moreover, with the addition of TI features, the same
deep models witness significant improvements (PTI+TV >
PTV ). Based on the data in Table V, in LSTM, GRU and
1DCNN, improvements of 42.1%, 43.2% and 36.6%, respec-
tively, are seen with the inclusion of TI features. In multi-class
task, improvements of 76.5%, 74.7% and 45.9% are seen for
LSTM, GRU and 1DCNN, respectively. This implies that the
intrinsic factors such as flight information and weather are
crucial. The standalone trajectory information without these
intrinsic factors are not meaningful to relate to the delay.

However, with the TI and TV features combined, the deep
models are able to perform much better than the shallow
models using only TI features (PTI+TV > PTI ). For binary
task, the accuracy of the deep models range between 86-91%
as compared to 81-83% for the shallow models. For multi-class
task, the accuracy of the deep models range between 66-85%
as compared to 73-78% for the shallow models. This reveals
that while the intrinsic factors are vital to forecasting delay,
the addition of real-time trajectory information improves the
prediction and makes it more reliable and robust. The flight,
weather, and trajectory information when combined is more
meaningful to project delay.

Above all, it can be seen that the proposed LATTICE model
outperforms the baseline methods at both binary and multi-
class tasks (Fig. 5). Based on the data in Table V, the proposed
LATTICE is 1.3% to 5.2% better than the deep models using
TI+TV features, 9.3% to 11.3% better than the shallow models
using TI features, and 43.7% to 45% better than the deep
models using TV features, for the binary task. And it is 3.2% to
26.8% better than the deep models using TI + TV features, 8%
to 14.7% better than the shallow models using TI features, and
80% to 85% better than the deep models using TV features,

6



TABLE V. COMPARISON OF PERFORMANCE BETWEEN THE PROPOSED MODEL AND THE BENCHMARK APPROACHES

Shallow learning algorithms Deep learning algorithms (t = ATA-20)
Input: TI (static factors) Input: TV (dynamic factors: trajectory) Input: TI + TV

Metric LR-L2 RF SVM XGB LSTM GRU 1DCNN LSTM GRU 1DCNN LATTICE
Binary AUC 0.890±0.009 0.884±0.008 0.898±0.006 0.877±0.011 0.643±0.027 0.646±0.023 0.653±0.013 0.954±0.006 0.953±0.006 0.927±0.008 0.960±0.005
15min Acc(%) 82.910±2.206 81.360±2.735 81.474±1.933 82.619±2.506 62.591±4.845 62.463±5.253 63.024±5.812 88.957±1.754 89.421±0.965 86.079±2.035 90.580±1.321
Multiclass Acc(%) NA 76.564±0.758 73.701±0.896 78.333±0.985 46.265±2.276 46.950±2.841 45.681±2.988 81.666±1.436 82.012±2.369 66.661±2.238 84.555±1.576
Note: Reported values are cross-validated mean ± s.d over 20 experiments (10 folds, 2 repeats). Best values are highlighted in bold.

Figure 6. Accumulated confusion matrix of classifications by LATTICE.

for the multi-class task. This suggests that the full sequenced
LSTM layer and the attention mechanism can better capture
the complex varying-range temporal dependencies of the flight
trajectory and greatly improve the model performance. They
help to extract the most relevant information without loss
from the trajectory and efficiently combine it with the intrinsic
information to project the delay.

For further evaluation of the predictive performance, Fig. 6
presents the accumulated confusion matrix over the 20 cross-
validated experiments. The matrix diagonals denote the correct
predictions. First, the heatmaps reveal high accuracies for all
the evaluated classes. Second, closer class predictions (91%,
89%) in binary15 task reveals a balanced performance between
the two classes. In multi-class task, Punctual and Late classes
are better forecasted as compared to Early class. Some Early
cases are misclassified as Punctual, which largely contributed
to the overall reduced prediction. However, it is observed that
there are no misclassifications between end classes Early and
Late, implying the model’s reliability.

E. Significance of attention mechanism

Fig. 7 demonstrates importance of using the attention
mechanism in the LATTICE model. The experiments with
attention mechanism are clustered towards higher accuracies.
The addition of the attention layer significantly improved the
mean performances by 1.8% and 3.5% for the binary 15min
and multiclass tasks, respectively. We performed a Welch T-
test which revealed that these improvements are significant at
the p-values mentioned in the figure. By assigning adequate
weights, only the information most relevant to delay are
extracted and relayed further down the layers by the attention
mechanism. It processes not only the input trajectory features
pertaining to the flight location but also processes the time-
steps of the trajectory. In other words, it takes into account

Figure 7. Significance of the attention mechanism in LATTICE.

TABLE VI. COMPUTATION TIME TO TRAIN 1000 AND TEST 1 SAMPLE(S)

Inputs Model Binary15 Multi-class[−20,15]

Train Test Train Test

TV
1DCNN 0.07 0.005 0.03 0.002
GRU 0.32 0.024 0.29 0.021
LSTM 0.35 0.026 0.34 0.026

TI+TV

1DCNN 0.11 0.008 0.04 0.003
GRU 0.45 0.033 0.32 0.024
LSTM 0.49 0.037 0.35 0.026
LATTICE 0.59 0.044 0.45 0.033

both the feature values as well as the temporal aspect of the
features. Thereby it enhances the model performance.

F. Computation time of deep models

We present the computation times of the deep models on
a workstation with 8 core CPUs of Intel i7-9700 3.60 GHz
and a CUDA-enabled GPU of NVIDIA GeForce RTX 2080
in Table VI. The LATTICE model is expensive to train because
it has the most complex structure and consequently, the largest
set of trainable parameters. The 1DCNN model is non-RNN
and therefore computes faster, and the models processing more
features (TI+TV) takes longer to compute. With LATTICE, the
time required to train 1000 flights is 0.59s and 0.45s, while to
predict delay for single flight is only 0.044s and 0.033s, for
binary and multi-class tasks, respectively. These computation
times are quite reasonable especially given that the proposed
model would be trained once in a while when a considerable
amount of historical data has accumulated.

IV. CONCLUSIONS

In this paper, we proposed a deep learning model for the
real-time arrival delay prediction of flights with the novel use
of real-time trajectory data using ADS-B communications,
besides the flight information and weather data. A total of
24 TI and 4 TV features were proposed including some new
factors such as departure ground delay, approximate flight
duration, time elapsed between flight plan creation and ATD,
and between ATD and the first ADS-B signal. Among model
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components, a full-sequenced LSTM network helped retain the
temporal relevance of all time-steps in the trajectory, while the
attention mechanism enabled adequate information mapping.
In addition, the deep network of FC layers enabled an intensive
feature extraction from the TI data. The model performed
better than baseline shallow and deep learning algorithms
on historical data. This study reveals that while ground in-
formation is vital, the addition of real-time flight trajectory
makes prediction more reliable. On adding trajectory inputs,
the prediction was greatly improved by about 8-15% and 44-
85% as compared to TI and TV features alone, respectively.
A 15min threshold was observed to yield better performance
than 5min. Additionally, the computation times of the models
were analysed for practicality.

By predicting both early and late arrivals, the proposed
model can enhance airline operations; real-time trajectory
makes our approach reliable, while learning based adaptive
strategy makes it robust. However, the model can be imple-
mented post departure provided the ADS-B communication
has already begun. In future, we plan to extend our model
to predict the actual delay time as regression task using
algorithms like ensemble deep learning and transformers, and
incorporate more factors based on spatial traffic complexity,
multi-airport scenario, and weather data of entire flight route.
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