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Abstract—Air transportation is challenged by rising air traffic
demand and limited capacity in airspace and airports. This
demand-capacity balance problem is inherently multi-objective,
with sometimes conflicting goals. These objectives include min-
imising air traffic flow management delays, mitigating the oper-
ational impacts of reactionary delays, reducing environmental
impact, etc. Additionally, specific regions of the network at
particular times, referred to as “spots” in this paper, must
be considered when they exhibit specific characteristics. This
paper introduces a comprehensive mixed-integer programming
model for the demand-capacity balance problem, addressing its
multi-objective nature through a lexicographic approach. In this
approach, the multiple objectives are ranked by importance, and
the problem is solved sequentially to minimise each objective
without exceeding the optimal value of the previous objectives.
The versatility and effectiveness of the lexicographic approach
in air traffic flow management are demonstrated using historical
air traffic data over France and Spain.

Keywords—Air traffic flow management; lexicographic optimi-
sation; spot control

I. INTRODUCTION

The skies are busier than ever, with the demand for air traffic
soaring to unprecedented levels. According to the International
Air Transport Association (IATA), the number of global air
passengers is expected to reach 8.2 billion by 2037 [1]. Amid
this growing demand, air traffic flow management (ATFM)
plays a crucial role in ensuring that the increasing number
of flights are accommodated safely by a limited capacity in
airspace and, particularly, airports. Addressing this demand-
capacity problem is no small feat, as it involves a range of
often conflicting objectives, from minimising ATFM delays
and mitigating the cascading effects of reactionary rotational
delays to reducing environmental impact, among others [2].

Traditional models for optimising ATFM delays and/or other
ATFM flow measures, like rerouting or level capping, often
struggle to manage multiple objectives concurrently due to
their reliance on combining these objectives into a single
function using a weighted sum [3]. These models face chal-
lenges in assigning appropriate weights to different objectives,
especially when the objectives are measured in diverse units
(e.g., minutes, kilograms). Furthermore, it becomes unclear
whether the optimal solution genuinely reflects the decision-
makers’ preferences or is distorted by the chosen weights.

This paper addresses the multi-objective nature of the prob-
lem with a comprehensive mixed-integer programming (MIP)
model for ATFM that leverages lexicographic optimisation [4].

Lexicographic optimisation involves ranking objectives by
their importance. The optimisation process begins with the
highest-priority objective, fully optimising it before addressing
the next objective, and so forth. This sequential approach
ensures that the most critical goals are not compromised by the
need to balance them against less critical ones. For instance,
if minimising ATFM delay is deemed the highest priority,
the model will first optimise for this goal. Once the best
possible solution for minimising ATFM delay is found, the
model then optimises the second priority objective, such as
fuel consumption, without altering the optimal ATFM delay.

Furthermore, the proposed model also considers specific
regions of the network during certain periods, referred to as
“spots”, which require special attention due to their unique
characteristics. For instance, in a protection spot, it is crucial
to minimise additional traffic to prevent overloads, especially
during times of uncertain air traffic demand. The effective
management of protection spots helps to prevent localised
congestion that can ripple out to affect the broader network.
The various types of spots considered by the proposed model
will be discussed in greater detail in the subsequent sections.

Another innovative aspect of the proposed model is its inte-
gration of frequently overlooked objectives and constraints to
enhance practical implementation in operational settings. For
example, the model encompasses the capability to minimise
the difference of ATFM measures across successive solutions,
monitor occupancy counts alongside entry counts, and promote
traffic smoothness to mitigate peak congestion. Additionally,
it takes into account data currently or potentially accessible to
the European Network Manager (NM), which could enhance
its relevance and applicability beyond the research context.

II. BACKGROUND

This section provides information on European ATFM and
the lexicographic approach to optimising multiple objectives.

A. European Air Traffic Flow Management

The role of ATFM involves assigning optimal ground delays
and, in some cases, flight plan alternatives to each flight.
These flight alternatives can include adjustments in vertical
(i.e., flight level) and/or lateral (i.e., sequence of waypoints)
dimensions. The primary goal of the ATFM measures is to
minimise ground delay and fuel consumption while ensuring
that airspace and airport capacities are not exceeded.



In Europe, the most common ATFM measure consists of
limiting the rate at which aircraft enter a congested traffic
volume (TV)1 during a given period of time, referred to as
TV-period hereafter, i.e., to activate a regulation. The flights
subject to one ore more regulations are issued with a ground
(ATFM) delay that is assigned on a first-come, first-served
basis by the Computer-Assisted Slot Allocation (CASA) sys-
tem [5], so that the maximum entry rate in the regulated TVs
is not exceeded during the regulated period of time. Currently,
local flow management positions (FMPs) are responsible for
detecting potential overloads and determining regulations in
coordination with the NM. In addition to regulations, minor
ground delays, flight level capping, and rerouting of a small
number of flights via short-term ATFM measures (STAMs) are
among the solutions used in Europe to mitigate overloads.

In the research community, the demand-capacity balance
challenge is commonly modelled as a MIP problem, where
a potential solution involves the allocation of ground delays
and/or the selection of alternative flight plans [6], [7].

B. Lexicographic optimisation

The lexicographic optimisation Algorithm 1 begins by ini-
tialising the feasible set to include all potential solutions. For
each objective, ranked by importance, the algorithm performs
the following steps: (1) solve the current optimisation problem
to find the optimal value of the objective, considering only
the solutions from the current feasible set; and (2) update
the feasible set to include only those solutions that achieve
this optimal value. This updated feasible set is used in sub-
sequent iterations for optimising the next objective function.
The process continues until all objective functions have been
optimised in sequence. The final feasible set contains solutions
that are optimal with respect to all objective functions, in the
specified order of priority. Any solution from this final set can
be chosen as the lexicographical optimal solution, ensuring
that it satisfies the hierarchical optimisation criteria.

Algorithm 1 Lexicographic optimisation

Require: F = {f1, f2, . . . , fk}: Ranked objectives
X: Feasible set of solutions

Ensure: Optimal solution x∗

1: Initialise feasible set S0 = X
2: for i = 1 to k do
3: Solve minx∈Si−1 fi(x) to get optimal value f∗

i

4: Update feasible set Si = {x ∈ Si−1 | fi(x) ≤ f∗
i }

5: end for
6: x∗ = any element of Sk

7: return x∗

It should be noted that, in line (4) of Algorithm 1, some
absolute and/or relative tolerance ϵ could be allowed to de-
grade the optimal objective and increase the flexibility for the
following objectives, e.g., Si = {x ∈ Si−1 | fi(x) ≤ f∗

i + ϵi}.

1A traffic volume is related to a single geographical entity (either an airport,
a set of airports, an airspace sector or a point), and may consider all traffic
passing through that entity or only specific flows.

III. LITERATURE REVIEW

Approximately 30 years ago, [5] established a compre-
hensive MIP model for optimal ground delays to enhance
the heuristic (first-planned, first-served) algorithm used by
CASA, which is still in use today. Their results indicated that
optimisation methods could reduce ATFM delays by approx-
imately one-third. Building on this, [6] also incorporated the
assignment of optimal routes in addition to ground delays,
demonstrating that for small instances, this problem could be
solved relatively quickly using standard optimisation solvers.

Remarkable advances in optimisation solvers have enabled
the solution of large instances in reasonable amounts of time,
and over the last decade, thanks to a very active research
community, a new wave of model variations with new features
has emerged. For instance, [8] proposed a model that also min-
imises delay propagation to subsequent flights, simultaneously
increasing flight adherence to departure slots at coordinated
airports. In parallel, [9] proposed a model that can be solved in
short computation times for large instances during the strategic
phase; and a variant that also considers aircraft rotations
through the turn-around time constraints was proposed by [10].

Few years later, [11] proposed a collaborative ATFM frame-
work aiming to improve the cost-efficiency for airspace users,
which also considers alternative trajectories with rerouting
and/or level capping in addition to ground delay. In a more
recent study, [12] examined the flexibility of each flight in
terms of feasible delay windows within a solution. A conve-
nient way of presenting the results to FMPs was proposed in a
complementary publication [13]. Last but not least, in [14] the
authors compared the performance of the MIP-based approach
to current mechanisms for ATFM delay allocation.

Given the vast number of models developed for the demand-
capacity balance problem and the extensive history of research
in this area, this section could easily span several pages.
However, three common areas for improvement persist across
most models: (1) addressing the multi-objective nature of the
problem; (2) accommodating operational constraints, such as
occupancy (peak and sustained) counts and traffic smoothness;
and (3) maximising the stability of consecutive solutions when
the problem is solved on a regular basis (e.g., every 5 min).

In addressing the first area for improvement, it is crucial
to acknowledge that the use of lexicographic optimisation in
air transportation applications is not a novel concept. [15]
employed a lexicographic approach to optimise departure pro-
cedures, considering multiple objectives such as noise and fuel
consumption. Similarly, [16] utilised this method to enhance
airport scheduling interventions, incorporating inter-airline eq-
uity objectives. Additionally, [17] applied the lexicographic
approach to reschedule arrivals and departures, focusing on
efficiency and equity. The trade-off between efficiency and
equity in flight schedules and its relation to lexicographic
optimisation is thoroughly discussed in the series of papers
by [18], [19]. These examples demonstrate the versatility and
effectiveness of lexicographic optimisation in addressing the
numerous objectives inherent in air transportation problems.
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IV. SPOTS

This section describes the various spots considered by the
MIP model that will be presented in the next section. These
spots provide a structured framework for managing air traffic.

A. Hot spot
A hot spot refers to a TV-period during which the current

demand exceeds its declared capacity. To address this imbal-
ance, the solver should mitigate the congestion by assigning
ATFM delays and/or rerouting flights outside the TV-period.

B. Cold spot
A cold spot is just the opposite: a TV-period characterised

by spare capacity. The primary objective in a cold spot is
to maximise the number of flights passing through it while
adhering to capacity constraints. Essentially, cold spots allow
for the absorption of traffic from hot spots.

C. Protection spot
A protection spot denotes a TV-period where the demand

is nearing or exceeding the available capacity. The primary
objective in a protection spot is to minimise the number
of additional flights passing through it to prevent overloads,
particularly during periods of high demand uncertainty.

D. Opti spot
An opti spot is a TV-period where the time over of various

flights has been optimised by a local solver (e.g., arrival
manager). The system in charge of optimising ATFM measures
on a network level should only make changes to these locally
optimised target time overs (TTOs) if absolutely necessary to
maintain operational integrity and minimise disruptions.

V. THE MODEL

This section present the mathematical model, including the
decision variables, the constraints and the various objectives.

A. Variables
At its core, binary variables xfad ∈ B determine the

assignment of flights f ∈ F to specific alternatives a ∈ A
and delays d ∈ Z≥, thereby defining the ATFM measures of
the solution. For instance, xAB3 = 1 indicates that flight A is
assigned alternative B with a delay of 3 minutes. Accordingly,
the model assumes that each flight f has a set of alternatives
Af and that each alternative a ∈ Af can be assigned, at
most, dmax

a minutes of delay. The set of alternatives could
be obtained, for instance, from the routing assistance request
service of the NM B2B service, from the airspace users
themselves, or be the result of a rerouting group measure of the
form “avoid airspace A” that generates alternative flight plans
avoiding specific airspace. Regarding the maximum delay per
alternative, it could be based on the current status of the flight
(e.g., flights close to departure may have a lower value).

It should be noted that other variables are required to
define some objectives and constraints. These variables are not
introduced in this section as they can be treated as auxiliary.
They will be presented as the corresponding constraints and
objectives are listed in the subsequent sections, respectively.

B. Constraints

The most straightforward constraint is that each flight must
be assigned one and only one alternative and delay, i.e.:

∑
a∈Af

dmax
a∑

d=0

xfad = 1 ∀f ∈ F . (1)

As mentioned before, some of these alternatives may stem
from rerouting group measures implemented by Network
Management (NM). In such cases, all alternatives generated
by the same rerouting group must be either selected or
rejected entirely (i.e., they are a pack). This requirement can
be operationally enforced by introducing an auxiliary binary
variable zm ∈ B for each rerouting group measure m ∈ M,
which explicitly indicates whether the rerouting group measure
m is active in the solution. To formalize this condition, we
define the following constraint:

dmax
a∑

d=0

xfad = zm ∀(f, a) ∈ Rm, ∀m ∈ M, (2)

where the set Rm includes all combinations of flight-
alternative pairs generated by the rerouting group measure m.
This constraint ensures that if any alternative within a rerouting
group is selected, zm will be set to 1, enforcing the selection
of all alternatives associated with that group. Conversely, if
zm = 0, all alternatives in the group are rejected.

As the model represents a demand-capacity balance prob-
lem, capacity constraints form a critical component. These
constraints are typically formulated in terms of entry counts:∑

(f,a,d)∈X entry
vse

xfad ≤ centry
vse ∀(v, s, e) ∈ T entry, (3)

where T entry is the set of TV-periods where entry capacity is
monitored, centry

vse is the entry capacity of TV-period (v, s, e),
being v the TV identifier, s the start time (inclusive) of the
period, and e the end time (exclusive), and X entry

vse refers to
the set of flight-alternative-delay combinations (i.e., variables)
that would enter the TV-period if selected. Mathematically:

X entry
vse =

{
(f, a, d) | s ≤ τ entry

av + d < e

∀d = 0, . . . , dmax
a , ∀a ∈ Af , ∀f ∈ F} .

where τ entry
av is the estimated entry time of alternative a at TV

v, without delay. It should be noted that capacity constraints
can be also formulated in terms of occupancy counts, which
are commonly monitored in relation to peak occupancy:∑

(f,a,d)∈X occ
vse

xfad ≤ cpeak
vse ∀(v, s, e) ∈ T occ, (4)

and sustained occupancy:

∑
(f,a,d)∈X occ

vse

xfad ≤ csust
vse + ysust

vseM ∀(v, s, e) ∈ T occ, (5)
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where T occ is the set of TV-periods where occupancy capacity
is monitored. cpeak

vse and csust
vse are the peak and sustained

occupancy capacities of TV-period (v, s, e), respectively, and

X occ
vse =

{
(f, a, d) | τ exit

av + d > s ∧ τ entry
av + d < e

∀d = 0, . . . , dmax
a , ∀a ∈ Af , ∀f ∈ F} .

In Eq. (5), the variable ysust
vse ∈ B acts as an auxiliary

variable, indicating whether the sustained capacity can be
exceeded during the TV-period (v, s, e). The constant M
represents a large number. To ensure effective monitoring
of sustained occupancy, it is necessary to introduce a new
constraint. This constraint guarantees that the capacity is not
exceeded more than nmax

vse times across the following windows,
including the period (v, s, e):

∑
(v′,s′,e′)∈W sust

vse

ysust
v′s′e′ ≤ nmax

vse ∀(v, s, e) ∈ T occ. (6)

where W sust
vse = {(v, s+ kw, e+ kw) | k = 0, 1, . . . ,Kvse},

with w being the duration of each window and Kvse denoting
the number of windows monitored for sustained occupancy.

C. Objectives

The model incorporates a variety of objectives. During the
lexicographic optimisation process, these objectives are priori-
tised and optimised sequentially according to their importance.
The ranking of these objectives will be discussed later in the
paper. Below is a list of the objectives included in the model.

An objective consists of minimising the total ATFM delay:

∑
f∈F

∑
a∈Af

dmax
a∑

d=0

xfadd. (7)

The result of minimising Eq. (7) only accounts for primary
delays caused directly by ATFM measures. However, flights
assigned an ATFM delay may arrive so late at their destination
that the scheduled turn-around time is insufficient, leading
to reactionary rotational delays. These reactionary delays,
although not explicitly considered by Eq. (7), inevitably occur,
resulting in additional costs for airspace users and distorting
the plan expected by the model. This distortion can also cause
further overloads in other parts of the network. To address this
limitation, the model allows to minimise the expected reac-
tionary rotational delay by defining the following objective:∑

f∈F

kf , (8)

alongside the following set of turnaround constraints:

τ̃ arr
f + δmin

ff ′ − τ̃ dep
f ≤ 0 ∀ (f, f ′) ∈ L,

where L represents the set of inbound-outbound flights, f ′ is
the flight following f in a rotation, δmin

ff ′ ∈ Z+ is the minimum
turnaround time between these two flights, and the delayed
arrival and departure times are, respectively:

τ̃ arr
f (X ) =

∑
a∈Af

dmax
a∑

d=0

(τ arr
a + d)xfad + kf ∀f ∈ F ,

τ̃ dep
f (X ) = τ dep

f +
∑
a∈Af

dmax
a∑

d=0

xfadd+ kf ∀f ∈ F ,

It is important to note that the knock-on delays incorporated
into the model are not punitive measures enforced on flights.
Airspace users often have strategies such as tail swapping to
mitigate these delays. Therefore, imposing a delay that could
be effectively avoided by the user would be unfair.

The purpose of the rotational reactionary delay objective is
to minimise the expected number of occurrences and support
airspace users in their operations. In other words, only d will
result in ATFM measures, but not kf . The parameters δmin

ff ′

could be defined by the NM as a function of the airspace
user, airport and/or aircraft type, based on historical data of
actual turnaround times. For instance, one could take the 5th

percentile of the conditioned turnaround time distribution.
A further option is to reduce the number of flights as-

signed an ATFM delay that exceeds a predetermined threshold
dimpact
a ∈ Z≥. Some flights may tolerate delays below a certain

threshold without causing significant issues, while delays
beyond that threshold could lead to operational disruptions.
In such cases, the model could prioritise allocating flights
within their ”operationally acceptable” delay range:

∑
f∈F

∑
a∈Af

dmax
a∑

d=dimpact
a

xfad, (9)

This objective can also help minimise delays in the initial
rotations of the day by assigning a very low value to dimpact

a .
In 2024, EUROCONTROL emphasised the importance of
prioritising the first rotation, noting that each minute of delay
in the first rotation multiplies fourfold by the last rotation,
exacerbating knock-on delays and risking night curfew viola-
tions. Indeed, prioritising the first rotation is one of the five
key priorities EUROCONTROL urges the aviation sector to
focus on while preparing for the busy summer traffic season2.

As the solver has the capability to adjust both ATFM delay
and flight plan alternatives for a flight, optimising solely the
previous objectives might yield solutions that are highly effi-
cient in terms of delay-related costs but potentially detrimen-
tal to the environment. Aiming to promote environmentally-
friendly ATFM measures, an additional objective aimed at
minimising fuel consumption has been introduced:

∑
f∈F

∑
a∈Af

dmax
a∑

d=0

xfadϕa, (10)

where ϕa ∈ Z+ is the fuel consumption of alternative a.

2https://www.eurocontrol.int/news/all-together-now-2024
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The position of the environmentally friendly ATFM ob-
jective within the lexicographic order holds significant im-
portance and warrants early consideration in the decision-
making process. Establishing its rank early on ensures that
environmental concerns are given appropriate priority and are
not overshadowed by other objectives. Actually, this trans-
parent multi-objective optimisation approach facilitates the
integration of eco-friendly practices into ATFM strategies.

An novel feature introduced in Section IV is the concept
of spots. The hot spots are treated by the models as regular
capacity constraints. However, the remaining spots in the
model are defined as the objectives discussed below.

When optimising for cold spots, the objective is to promote
traffic through under-loaded TV-periods, i.e., to maximise:∑

(v,s,e)∈Scold

∑
(f,a,d)∈X nodelay

vse

xfad, (11)

where Scold is the set of cold spots in the network and

X nodelay
vse = {(f, a, d) ∈ X entry

vse |d ≤ dcur
f }

is the set of flight-alternative-delay combinations that would
enter the cold spot (v, s, e) if selected, while not exceeding
their current ATFM delay value dcur

f .
Protection spots pertain to TV-periods that are not yet

overloaded but where additional traffic is undesirable due to
the likelihood of potential overloads.This goal can be achieved
by enforcing the following set of constraint:

∑
(f,a,d)∈X entry

vse \X cur
vse

xfad − ∥X cur
vse∥ ≤ ∆vse ∀(v, s, e) ∈ Sprot,

where Sprot is the set of protection spots in the network,

X cur
vse = {(f, a, d) ∈ X entry

vse |a = acur
f ∧ d = dcur

f }
is the flight-alternative-delay combinations currently entering
the TV-period (v, s, e), acur

f is the current alternative of flight
f , and ∆vse ∈ Z≥ represents the extra traffic in the protection
spot. Accordingly, the following expression describes the total
extra traffic in protection spots:∑

(v,s,e)∈Sprot

∆vse. (12)

Finally, entry times in an opti spot should only be changed
when absolutely necessary. Accordingly, the solver’s objective
is to minimise deviations from the (locally optimal) TTOs
in the set of opti spots within the network, Sopti:∑

(v,s,e)∈Sopti

∑
f∈Fopti

vse

∣∣∣τ opti
fv − τ̃ entry

fv

∣∣∣ , (13)

where, τ̃ entry
fv represents the entry time of flight f at TV v,

considering the selected alternative ATFM delay3, i.e.:

3Equation (13) is non-linear. However, it can be straightforwardly linearized
by introducing auxiliary variables and constraints to maintain computational
tractability.

τ̃ entry
fv (X ) =

∑
a∈Af

dmax
a∑

d=0

(
τ entry
av + d

)
xfad

∀f ∈ Fopti
vse, ∀(v, s, e) ∈ Sopti.

and Fopti
vse is the set of flights which TTO has been optimised for

the opti spot (v, s, e). Please note that the delayed entry time
does not account for the knock-on delay due to the inability
to guarantee its occurrence, as discussed previously.

An often overlooked aspect in the literature is the stability
of consecutive solutions. The ATFM model is not intended to
be solved once and then halt. Realistically, one would expect
the solver to generate a solution, then shortly afterwards, with
new inputs such as updated flight plans, flight cancellations, or
flights becoming airborne and therefore exempted from ATFM
measures, generate a new solution. In consecutive runs, one
might anticipate similar solutions if the traffic situation hasn’t
changed significantly, although this remains a speculation.

The model presented herein addresses this issue by al-
lowing for the minimisation of changes (or, equivalently,
maximisation in similarity) with a previous solution, explicitly
considering the volatility of proposed ATFM measures. This
is achieved through three distinct objectives:

∑
f∈F

∑
a∈Af

dmax
a∑

d=0

xfad

∣∣d− dcur
f

∣∣ , (14a)

∑
f∈F

∑
a∈Af

dmax
a∑

d=dcur
f +1

xfad

(
d− dcur

f

)
, and (14b)

∑
f∈F

∑
a∈Af\{acur

f }

dmax
a∑

d=0

xfad. (14c)

The three objectives related to stability and presented in
Eq. (14) can be used to minimise the ATFM delay change
(independently of the sign), ATFM delay increase, and flight
plan change with respect to the current situation, respectively.

Additionally, while MIP models may deliver impressive
results in terms of delay, they may not fully account for oper-
ational practicality from the perspective of FMPs. Specifically,
if traffic spread is not explicitly considered, some optimal
solutions might have the form where flights are scheduled at
the very first minute of each monitored capacity window. For
example, if the capacity for a 20-minute period is 20 flights,
the solver might allocate all 20 flights to the first minute,
leaving the remaining 19 minutes empty.

The model aims to maximise the traffic spread within spe-
cific TV-periods, denoted as T spread. Let us define emax

vse ∈ Z≥0

and emin
vse ∈ Z≥0 as the maximum and minimum number of

entries in a TV-period (v, s, e), respectively. Additionally, let
W spread

vse = {(v, s, s+r), (v, s+r, s+2r), . . . , (v, e−r, e)} rep-
resent the set of windows within which traffic is to be evenly
distributed throughout that TV-period, with a resolution of r
minutes. The traffic spread can be enhanced by minimising:
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∑
(v,s,e)∈T spread

emax
vse − emin

vse, (15)

subject to the following constraints for each (v, s, e) ∈ T spread:

emax
vse ≥

∑
(f,a,d)∈X entry

v′s′e′

xfad ≥ emin
vse ∀(v′, s′, e′) ∈ W spread

vse

(16)
Table I categorises the various objectives by topic and

includes links to their mathematical expressions.

TABLE I. TOPICS, OBJECTIVES AND EXPRESSIONS

Topic Objective Expression

Delay
ATFM delay Eq.(7)
Rotational reactionary delay Eq.(8)
Operational impact of delay Eq.(9)

Environmental impact Fuel consumption Eq.(10)

Spot control
Traffic through colds pots Eq.(11)
Extra traffic in protection spots Eq.(12)
TTO change in opti spots Eq.(13)

Stability
ATFM delay change Eq.(14a)
ATFM delay increase Eq.(14b)
Flight plan alternatives change Eq.(14c)

Safety Traffic spread Eq.(15)

VI. ILLUSTRATIVE EXAMPLE

This section presents an illustrative example to demonstrate
the application and effectiveness of the lexicographic approach
in addressing the demand-capacity balance problem.

A. Scenario

For this analysis, July 19th, 2024, was selected as a notably
busy day along the South-West axis. All traffic demand and
capacity data used in this example were sourced from the NM.

The traffic demand sample includes the 8179 flights crossing
French and/or Spanish airspace, regardless of whether they
departed from or arrived at airports outside these countries,
with EOBT between midnight and 6 PM UTC. This region and
time frame were chosen due to the high volume of air traffic
and the presence of multiple critical traffic spots, making it
an ideal test scenario for the model. For each flight crossing
any hot spot, a set of synthetic flight plan alternatives was
generated, consisting of all unique flight plans flown for the
same city-pair and aircraft type over the past seven days. On
average, each flight had 1.4 flight plan alternatives.

To optimise the reactionary rotational delay, the minimum
turnaround time for each leg of an aircraft rotation, except for
the first, was set to the lesser of either 45 min or the scheduled
turnaround time. While this uniform assumption simplifies the
complexities of real-world operations, the primary goal in this
section is to demonstrate the principles of the lexicographic
approach within a reasonably realistic scenario.

Regarding capacity, 93 active and monitored TVs in French
and Spanish airspace on that day were considered to generate

the capacity constraints. Capacity monitoring was based on
entry counts within 60-min windows, with slices every 20 min.

To illustrate the concept of spots, 77 cold spots were identi-
fied in TV-periods where demand was below 20% of declared
capacity, indicating significant under-loading. Additionally, 29
protection spots were defined in TV-periods where demand
exceeded 75% of declared capacity (but remained below it).
Lastly, an opti spot was created for the TV capturing 73
arrivals at Barcelona Airport between 6 and 9 AM UTC, using
scheduled arrival times as hypothetical locally optimal TTOs.

B. Model

The MIP model for this scenario includes 547,797 variables
(543,996 binary and 3,801 integer) and 12,985 constraints.
Solving the optimisation problem for a single objective takes
between 30 sec and 3 min, depending on the objective and its
priority in the lexicographic order. This suggests that finding a
complete solution with three objectives may require between
1.5 and 9 min. Naturally, the execution time is influenced by
factors such as the problem’s size and complexity, the solver
used, and the specifications of the machine on which it is
run. In this case, the SCIP solver version 8.0.4 was used, and
the problem was solved on a server equipped with 12×Intel®
Xeon® W-2235 CPUs @ 3.80GHz, 256GB RAM.

C. Results

The model was solved for various rankings of objectives,
including all possible orders of ATFM delay (D), rotational
reactionary delay (K), and fuel consumption (F). Additionally,
the optimisation spot-related objectives was explored in a con-
text where ATFM delay and fuel consumption were prioritised.

Figure 1 illustrates the values of various key performance
indicators (KPIs) when optimising for objectives D, K, and
F under different priority rankings. Each cell in the figure
corresponds to a unique ordering of these priorities. For
instance, in the top-left cell, D is given the highest priority,
followed by K, and then F. The red line represents the KPI
values when optimising exclusively for D. The grey line shows
the outcomes when optimising for D first, followed by K, with
the constraint that the optimal D value is maintained. The blue
line incorporates all three objectives, optimising them in the
specified order of priority. It is important to note that the grey
line always dominates the red line, and the blue line always
dominates the grey line. In this context, “dominates” means
that the optimised objectives are equal to or better.

Several conclusions can be drawn from this figure. First,
the order in which objectives are prioritised significantly
influences their resulting values. For example, compare the
top-left and top-centre cells. In the top-left cell, where D is
the highest priority, its optimal value is 2.47K. However, in
the top-centre cell, where D is the second priority, its optimal
value increases to 2.52K. In the most extreme case, when F and
K are prioritised over D, treating D as a less critical objective,
its value can soar to 10.84K – more than four times higher.

Second, even when ϵ is 0, there is often potential to
optimise other objectives while maintaining the optimal value
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Figure 1. KPIs when ϵ is 0 and spots are not considered. D: ATFM delay; K: Reactionary rotational delay; F: Fuel consumption. Within each cell, the
lexicographic order progresses from left to right. Red: optimised for the first objective; grey: for the first and second objectives; blue: for all three objectives.

of a primary objective. For example, in the top-right cell,
the red line represents the scenario where F is optimised
exclusively, resulting in D and K values of 166.44K and 7.16K,
respectively. However, in the blue line, which optimises all
three objectives in sequence, F retains its optimal value, but
D and K are reduced to 10.84K and 209, respectively.

Figure 2 presents the results under an ϵ of 5%, meaning
that the optimal values of previously optimised objectives in
the lexicographic optimisation process can be exceeded by up
to 5%. For instance, if the optimal value of D were 100, a
solution with a D value of 105 would be considered feasible.

This figure demonstrates that, in this situation, a line does
not necessarily dominate the previous one. For example, in
the bottom-left cell, the optimal value of F during the second
optimisation (the grey line) is 8.53M, but it increases above
8.54M during the third optimisation (the blue line), where
K can reach its theoretical optimal value of 0 (as opposed
to 96 in the analogous plot with ϵ = 0). It is worth noting
that increasing ϵ does not always mean that the solver will
fully utilise the available extra margin for the objective, nor
does it guarantee that the objective values for all subsequent
objectives will improve compared to a smaller ϵ.

Similar discussions apply to Figure 3, which shows the
values of various KPIs when optimising for spot-related ob-
jectives with ϵ = 0 in a context where D and F are the priority.

Figure 3 illustrates that when D and F are prioritised over
minimising the number of flights crossing cold spots (C), the
optimal value for C is 379. Additionally, when D and F are
taken into account, the extra traffic in protection spots (P) can
be reduced to 40, and the change in TTOs for opti spots (O)
can be minimised to 1.09K. It is crucial to note that prioritising
spot-related objectives earlier in the ranking, rather than last,

can result in significantly different outcomes.
Finally, it is important to note that the potential to opti-

mise remaining objectives is not always significant. In some
instances, the priorities set by earlier objectives can so tightly
restrict the feasible space that further optimisation of subse-
quent objectives becomes challenging.

VII. CONCLUSIONS

In this paper, we address the complex issue of balancing ris-
ing air traffic demand with the limited capacity of airspace and
airports through a novel mixed-integer programming model.
Our approach leverages a lexicographic method to manage
the inherent multi-objective nature of the problem, allowing us
to systematically prioritise and address conflicting goals such
as minimising air traffic flow management delays, mitigating
reactionary delays, and reducing environmental impacts.

The application of our model to historical air traffic data
from France and Spain underscores its practical relevance and
versatility in real-world scenarios. Furthermore, the case stud-
ies highlight the model’s ability to address specific regional
challenges – referred to as ”spots” – in the network, which
can vary significantly in their characteristics and demands.

Future research could expand on this work by integrating
additional objectives and validating the model in various
operational contexts. A particular focus will be on developing
objectives that address currently overlooked aspects, such as
the fairness or equity of solutions. For example, an objective
to minimise the number of flight reversals (i.e., violations
of the first-planned first-served principle of CASA) could
be introduced. Additionally, the authors plan to investigate
the lexicographic max-min approach to ensure that the most
equitable solutions are achieved considering all airspace users.
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Figure 2. KPIs when ϵ is 5% and spots are not considered.

Figure 3. KPIs when ϵ is 0 and spots are considered. C: Cold spots; P: Protection spots; O: Opti spots. Within each cell, the lexicographic order progresses
from left to right. Red: optimised for the first objective; grey: for the first and second objectives; blue: for all three objectives.

Lastly, the set of synthetic flight plan alternatives used
in the experiment is somewhat limited, averaging only 1.4
alternatives per flight. Exploring or inferring how a more
extensive set of alternatives might impact the solution could
provide valuable insights.
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