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Abstract—Given the operational disruptions caused by thun-
derstorms, this paper introduces an innovative approach to
flight trajectory optimisation within the context of air traffic
management, with a particular focus on minimising disruptions
due to adverse weather conditions. The proposed framework
integrates wake turbulence separation requirements, node con-
flict evaluations, and real-time operational constraints to address
the complexities inherent in trajectory planning. Unlike previous
studies that addressed stochastic optimal control problems for
conflict resolution offline, this study presents an enhanced Se-
lective Simulated Annealing (SSA) algorithm for online conflict
mitigation. A case study conducted in the approach area of
Chengdu Shuangliu International Airport (CTU), involving over
900 flights, demonstrates the applicability and effectiveness of
the proposed algorithm. This result underscores the algorithm’s
potential as a powerful tool for trajectory optimisation, offering
significant improvements in operational performance in a timely
manner. Additionally, sensitivity analysis of the slot shift ranges
confirms the robustness of the selected parameters, highlighting
their role in minimising delays and maintaining system efficiency.
By deactivating decisions individually, this study also discusses
the sensitivity of the algorithm to the proposed decision combi-
nations.

Keywords—Sequencing and Merging; Aircraft Trajectory Op-
timisation; Thunderstorm Conditions; Selective Simulated An-
nealing

I. INTRODUCTION

The inherently uncertain nature of convective weather, com-
monly referred to as storms or thunderstorms, poses significant
safety risks to aviation. Intense, conflicting updrafts and down-
drafts within thunderstorms can result in severe turbulence.
Even when a storm is not fully mature, flying over a devel-
oping storm can lead to substantial turbulence due to strong

updrafts above the visible cloud top. Additionally, hazards
such as hail, icing, and lightning can inflict considerable
damage to aircraft equipment and windshields when flying
through a thunderstorm [1].

When encountering thunderstorms, aircraft can safely fly
over them only if their altitude is well above the turbulent
cloud tops. However, the most intense and turbulent storms
are often the tallest storms [2]. To avoid strong convective
activities, pilots are instructed to deviate from their initial flight
plans and navigate around them. These multiple deviations
can cause significant air traffic disruptions, including blockage
and overcrowding of neighbouring airspace, aircraft holding
patterns, delays, and cancellations. Such disruptions pose
substantial challenges to operational efficiency and lead to
reduced time and cost efficiencies [3].

Moreover, weather has become the largest cause of air traffic
delay in the United States, accounting for 75.48 % of system-
impacting delays of more than 15 minutes from 2017 to 2022
[2]. In Europe, adverse weather accounted for 29.7% of the en-
route Air Traffic Flow Management (ATFM) delay [4]. Given
that ATFM delay costs 100 euros per minute [5], effective
aircraft trajectory planning and management at the tactical
level is crucial in daily airline and air traffic control operations.

Trajectory optimisation is a critical component of aviation
and aerospace operations, focusing on determining the most
efficient path for an aircraft to follow. For instance, Dalmau
and Prats [6] optimised aircraft trajectory using the Cost
Index (CI) to reduce fuel consumption, trip time and gaseous
emissions during the eventual continuous cruise climb opera-
tions. A multiple-phase Optimal Control (OC) approach is also



employed to model different flight phases, each with its own
constraints or flight modes. This approach relies on various
methods for phase separation, such as the knotting method [7].
Other formulations have been proposed, including dynamic
programming [8], where the trajectory is characterised as a set
of static parameters optimised by assuming a typical trajectory
pattern.

More recently, trajectory optimisation was extended to
stochastic approaches to better handle uncertainty. Air Traffic
Management (ATM) applications include optimisation with
conflict resolution in the presence of positional uncertainty of
the aircraft, convective weather and weather forecast uncer-
tainties. For instance, Matsuno et al. [9] proposed a stochastic
optimal control method for three-dimensional conflict-free
aircraft trajectory optimisation under wind uncertainty. Their
focus was on the wind correlation and its effects on aircraft
separation. Considering the computational complexity, they
suggested solving the stochastic optimal control problem for
conflict resolution offline, allowing the computation of aircraft
trajectory, separation, and current conflict probability in real
time to apply to daily operations. They also highlighted that
the accuracy and convergence rate of the proposed framework
largely depend on the wind model, noting that assuming a
time-invariant wind error neglects the temporal variations.
Hentzen et al. [1] accounted for meteorological uncertainty
with a tailored stochastic storm model and presented an
optimal control algorithm to maximise the probability of
reaching a waypoint while avoiding hazardous storm regions.
Garcı́a-Heras et al. [10] proposed a robust open-loop optimal
control methodology to reduce reroutings during flight exe-
cution, incorporating meteorological uncertainties at the flight
planning level. Andrés et al. [11] proposed a novel heuristic
approach to address the aircraft trajectory optimisation prob-
lem, incorporating uncertainties in the evolution of convective
cells. They adopted the Augmented Random Search (ARS)
algorithm to search for the optimal path, testing their method
over 4,000 iterations to reveal its convergence. Sáez et al. [12]
present a framework for flight trajectory optimisation in the
en-route phase with several weather constraints to reduce the
environmental impact, while increasing the resilience of air
operations to weather phenomena. González-Arribas et al. [13]
introduced a novel simulation-based flight planning method-
ology for weather-optimal 4D flight trajectory options under
uncertain meteorological and operational context. Baneshi et
al. [14] accounted for anthropogenic climate change, and
proposed an environmental-oriented aircraft trajectory opti-
misation framework. Their experiment with 1,005 flights in-
dicates that climate-optimal trajectories inevitably increased
the operational cost and the number of conflicts. Resolving
these conflicts required compromises between climate impact
and cost. Based on robust tracking optimal control theory,
Simorgh et al. [15] considered climate impact and introduced
an aircraft trajectory optimisation framework that accounts for
meteorological uncertainty.

While most incidents and accidents occur during the ap-
proach and landing phases at the Terminal Manoeuvring

Area (TMA), previous literature has seldom investigated flight
trajectory optimisation during those critical stages, particularly
under extreme weather conditions.

The TMA is a highly congested airspace where trajectory
deviations can easily lead to conflicts with other aircraft.
Additionally, TMAs often cover densely populated areas, mak-
ing safety and noise abatement critical considerations when
navigating through them. Thunderstorm cells passing through
a TMA can disrupt Standard Instrument Departures (SID)
and Standard Terminal Arrival Routes (STAR) for extended
periods (e.g., 20 to 30 minutes). For departures, this issue
is typically managed by holding aircraft at the gate. For
arrivals, Air Traffic Control Officers (ATCOs) often vector
aircraft affected by weather along alternative routes, guiding
them to the runways through successive rerouting manoeuvres.
Another option for aircraft further upstream in the sequence
is to enter holding patterns until the weather clears and the
STARs become available again.

This paper addresses this gap by designing and implement-
ing a generalised framework for aircraft trajectory optimisa-
tion, identifying safe detours for approach and landing while
minimising a weighted combination of flight time and fuel
consumption, and accounting for the uncertainty of thunder-
storm development regions. The objective of this research is to
develop a decision support tool to assist ATCOs in managing
aircraft during such situations. Leveraging an optimisation
algorithm, this tool will assign aircraft to Mach regulation,
rerouting within the STAR network, and speed regulation
within the TMA to minimise aircraft holding times.

The subsequent parts of this paper are organised as fol-
lows: Section II introduces the mathematical formulation, and
Section III explains the design and implementation of the
optimisation algorithm. Section IV presents the computational
experiments to validate the applicability and effectiveness of
the proposed model. Finally, Section V discusses the findings,
contributions, limitations and future works of the study, and
concludes the research.

II. THE INTEGRATED MIXED INTEGER PROGRAMMING
MODEL

This section presents an integrated Mixed Integer Program-
ming (MIP) model designed to adjust flight trajectories under
thunderstorm conditions. The model employs a graph-based
approach, where the aircraft trajectories are represented by
straight segments, referred to as links (l), which are connected
by intersections, denoted by nodes (n). For each flight f , a
route (rf ) corresponds to a sequence of connected flight links.

Thunderstorms are incorporated as constraints that influence
flight path availability. Specifically, thunderstorms are mod-
elled as dynamic no-fly zones or restricted airspace regions,
which are translated into spatial and temporal constraints,
such as link blockages during specific time periods, preventing
flights from entering the affected areas.

Lastly, weather-induced delays are captured by adjusting
aircraft speeds and route entry times, accounting for deviations
or holding patterns required to avoid thunderstorms.

2



A. Decision variables

For each flight f ∈ F , several key decisions are made
based on its location and speed during thunderstorms. These
decisions include the route (rf ), route entry time (tf ), and
speed (vf ):

• rf : The route assigned to flight f , selected from a pre-
determined set of routes (R).
The route set R is defined by the available links and
nodes at a given time, considering weather conditions,
various link combinations, as well as route lengths. The
availability of a route is determined by the location of
the aircraft and the accessibility of links at specific times.
The shortest route from R is then selected and assigned
to ensure operational efficiency during deviations.

rf =

{
1 if flight f chooses this route option,
0 otherwise.

(1)

• tf : The assigned route entry time of flight f , adjusted by
the number of time slots ∆t.
The route entry time can be shifted either forward or
backward. The maximum allowable earliness and tardi-
ness relative to the initial route entry time are denoted
as tmin

f and tmax
f , respectively. This study assumes that

|tmax
f | ≥ |tmin

f |, reflecting the fact that there is generally
more margin for slowing down an aircraft during the en-
route phase (Mach regulation) than for speeding it up.
Mathematically, the assigned route entry time can be
formulated as:

tf ∈ Tf :=
{
tof + i×∆t | i ∈ Z, tmin

f ≤ i×∆t ≤ tmax
f

}
(2)

where Tf represents the set of all possible route entry
times derived from the initial time (tof ) for a flight f by
adding or subtracting multiples of ∆t, constrained within
the bounds tmin

f and tmax
f .

• vf : The assigned route entry speed of flight f , represented
by a user-defined speed increment ∆v with respect to the
initial route entry speed (vof ).
The minimum and maximum allowable speeds for flight
f are denoted by vmin

f and vmax
f , respectively. The route

entry speed can be formulated as follows:

vf ∈ Vf := {vof + j ×∆v |
j ∈ Z, vmin

f ≤ vof + j ×∆v ≤ vmax
f }

(3)

where Vf denotes the set of all possible speeds for flight
f .
This formulation defines a range of possible speeds for
a flight, based on small adjustments around a nominal
speed, while ensuring that these adjustments stay within
a safe and allowable range.

While the variables are selected from sets of possible values,
they are treated as decision vectors in the optimisation process,
respectively. For instance, tf is selected from the set Tf , which
contains multiple possible entry times, each adjusted by integer
multiples of ∆t. This flexibility reflects the vector nature of

the decision-making process. Similarly, vf is chosen from the
set Vf , which includes a range of speed options around the
nominal speed. This range-based selection further reinforces
the vector formulation of vf . Subsequently, the decision vector
is denoted as x = (rf , tf , vf ), where rf represents the route
vector, tf represents the time vector, and vf represents the
speed vector.

B. Constraints

Two types of conflicts are detected to maintain safety
operations during rerouting, including link conflicts and node
conflicts.

1) Conflicts on links: Wake turbulence separation require-
ments are employed to detect link conflict and ensure opera-
tional safety in each segment. A violation of these rules leads
to a link conflict.

For two consecutive aircraft, f and g (f, g ∈ F), using the
same link l, the wake turbulence separation requirements (sfg)
are based on the aircraft categories (cf and cg) (see Table I).

Although separations are typically denoted in Nautical
Miles (NM), link conflicts are evaluated based on the time
(tlf and tlg) and speed (vlf and vlg) when aircraft enter the link,
as expressed in Equation (4).

Cl
fg(x) =


1 if

[
(tlg × vlg − tlf × vlf < sfg)

or (tlf × vlf − tlg × vlg < sfg)
]

and lf = lg,

0 otherwise.

(4)

where Cl
fg(x) equals 1, if flights f and g use the same

link and the separation requirement is not met. Consequently,
the minimum wake turbulence separation is respected when∑

(f,g)∈F×F
f ̸=g

Cl
fg(x) = 0.

TABLE I. WAKE TURBULENCE SEPARATION MINIMA FOR DIFFERENT CAT-
EGORIES OF AIRCRAFT (IN NM).

Operation-category Trailing aircraft

Light Medium Heavy

Leading aircraft
Light 3 3 3
Medium 4 3 3
Heavy 6 5 4

2) Conflicts on nodes: A node conflict occurs when two
consecutive aircraft, f and g (f, g ∈ F), pass through the same
node at the same time. To prevent node conflicts, a protection
area is established around each node. This area is represented
by a disc with a radius, denoted as R, equal to the required
separation distance - typically 3 NM in the TMA (see Fig. 1).

Figure 1. Illustration of the disc area.
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For the leading flight f , the node time, represented by tnf ,
is calculated by adding the link entry time tlf to the link
travel time, determined by dividing the link length (Dl) by
the assigned speed (vlf ) (see Equation 5).

tnf = tlf +
Dl

vlf
(5)

where n denotes the node at the end of the link. In this sense,
tnf ≤ tng denotes the sequence of two consecutive aircraft f
and g, where flight f is followed by flight g.

Subsequently, the entering and exiting times of the disc area
associated with a given node (tin

f and tout
f ) for a flight f can

be estimated using the node time (tnf ), adjusted by adding or
subtracting the travel time within the disc area (see Equation
6).

tin
f = tnf − R

vlf
(6a)

tout
f = tnf +

R

vlf
(6b)

Equation (7) denotes the total number of node conflicts.

Cn
fg(x) =

{
1 if tin

g ≤ tout
f , tnf ≤ tng and nf = ng,

0 otherwise.
(7)

where Cn
fg(x) equals 1 when a node conflict occurs between

flights f and g. tin
g and tng represent the node entry time and

the node time for the trailing flight g, respectively.
Thus, the minimum node separation is respected when∑
(f,g)∈F×F

f ̸=g

Cn
fg(x) = 0.

C. Objectives

As discussed in Section I, flights are often deviated from
their initial flight plans to navigate around thunderstorms and
avoid strong convective activities. During those deviations,
conflict mitigation becomes a priority. A conflict-free trajec-
tory can be ensured with Equation (8), based on the selected
route and decision variables.∑

(f,g)∈F×F
f ̸=g

Cl
fg(x) +

∑
(f,g)∈F×F

f ̸=g

Cn
fg(x) = 0 (8)

To control the optimisation process more precisely, conflicts
are prioritised based on their associated costs, denoted as
link and node evaluations, respectively. Link evaluation is
established with Equation (9), while Equation (10) introduces
a time-based evaluation for the disc area as node evaluation.

φl(x) =
∑

(f,g)∈F×F
f ̸=g

sfg −
∣∣∣tlg × vlg − tlf × vlf

∣∣∣
sfg

+ Cl
fg(x)


(9)

φn(x) =
∑

(f,g)∈F×F
f ̸=g

− tin
g − tout

f

max
(

tout
f −tin

f

2 ,
tout
g −tin

g

2

) + Cn
fg(x)


(10)

where φl(x) and φn(x) denote aircraft performance on links
and nodes, respectively.

Furthermore, conflicts with thunderstorms must be incor-
porated into the link evaluation. If an aircraft crosses a link
impacted by a thunderstorm, a significant penalty is applied.
The link must remain clear of adverse weather from the time
the aircraft enters until it exits; otherwise, a large penalty
is incurred. For blocked links, the evaluation process can be
expressed with φl(x) + p, where p represents the penalty for
conflicts with thunderstorms.

Beyond conflict mitigation, this study also aims to minimise
deviations in time slots and speeds, while reducing flight
distances to minimise flight time and fuel consumption during
detours by selecting the shortest route. Accordingly, three sub-
objectives are introduced:

φt(x) =
∑
f∈F

∣∣tf − tof
∣∣ (11a)

φv(x) =
∑
f∈F

∣∣vf − vof
∣∣ (11b)

φd(x) =
∑
f∈F

Dl ∀ l ∈ L (11c)

where φt(x) denotes the changes in absolute value of the
arrival time slots, φv(x) represents the changes in absolute
value of speeds, and φd(x) indicates the total distance flown
by the aircraft.

The objective function to be minimised is given by:

min {α× φt(x) + β × φv(x) + γ × φd(x)} (12)

where α, β and γ are weighting coefficients for each sub-
objective, ensuring that all sub-objectives are on the same
order of magnitude.

To ensure a conflict-free solution, the above-mentioned con-
flicts (Equation 8) are incorporated into the objective function
as penalties through link and node evolutions (see Equations
9 and 10). Consequently, the original model is solved as a
multi-objective minimisation problem (see Equation 13):

min

{
α× φt(x) + β × φv(x) + γ × φd(x)

+ λ× [φl(x) + φn(x)]

} (13)

where λ is a big weight assigned to prioritise the minimisation
of conflicts during optimisation.
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III. OPTIMISATION ALGORITHM DESIGN AND
IMPLEMENTATION

Due to the computational complexity involved, the tractabil-
ity of large-scale real-world flight trajectory optimisation prob-
lems remains challenging. As solution spaces rapidly expand
and interactions between operating resources become exten-
sive, traditional exact or near-exact algorithms often struggle
to achieve optimal solutions within a reasonable timeframe.
Therefore, scholars recommended adopting heuristic-based
approaches to obtain near-optimal solutions with manageable
computational resources [16].

Given the substantial memory requirements typically associ-
ated with real-world simulation environments, this paper builds
upon the standard Simulated Annealing (SA) method and
introduces an advanced problem-specific Selective Simulated
Annealing (SSA) algorithm, which demonstrates enhanced
computational efficiency while upholding the integrity of the
resultant solution [17].

A. The mechanism of the standard SA

SA is a renowned meta-heuristic method widely applied
to the air transport industry, including air traffic management
[18], flight scheduling [19] and airport capacity management
[20].

The standard SA algorithm begins with an initial feasible
solution and iteratively explores the neighbourhood to find
better solutions until no further improvements can be made
[21]. The algorithm simulates the annealing process of solid
substances, starting from an initial temperature with an initial
solution

−→
X0. During each iteration, a transition is performed by

generating a neighbour solution
−→
Xj from the current solution−→

Xi. If
−→
Xj improves the objective, it is accepted as the current

best solution. Otherwise, the Metropolis criterion is estab-
lished to decide whether to accept

−→
Xj based on a probability

characterised by the Boltzmann statistical distribution, which
provides the probability for each state i of energy Ei at the
temperature T [22]. The Metropolis acceptance criterion helps
overcome the limitations of the Monte-Carlo approach, making
SA particularly suitable for complex simulations and large-
dimensional state spaces. [23].

At the beginning of the process, the high temperature allows
the algorithm to accept transitions with high objective degra-
dation. This temporary setback helps the algorithm explore
the state space more thoroughly and escape the local opti-
mum. As the temperature decreases during the cooling phase,
the probability of accepting transitions with high objective
degradation decreases, allowing only transitions with relatively
low deterioration. The algorithm continues this process until
it reaches a predefined temperature threshold ε.

B. The implementation of the SSA and model transformation

To improve the algorithm performance, SSA introduces a
come back operator to modify a vector

−→
Xi without duplication.

Precisely, if the new solution is not accepted, the modified
component reverts to its original value. The only information

that needs to be stored is the index i of the changed compo-
nent and its corresponding value

−→
Xi. Therefore, this method

avoids creating full copies of the state space during solution
generation.

Moreover, the SSA enhances the performances of the stan-
dard SA by initially focusing on aircraft that are most involved
in conflicts, using a performance-based neighbourhood opera-
tor. Particularly, the algorithm evaluates a vector of decisions
along with their associated costs (see Equation 13). It then
identifies the decision with the highest cost and computes the
ratio between the cost of each decision and the highest cost.
As a result, solutions with higher costs are more likely to be
selected by the neighbouring operator.

The SSA algorithm is initialised with a historical flight
dataset. Each flight is assigned a decision comprising three
sub-decisions: route selection, arrival slot shifting, and
speed adjustment. Consequently, a decision vector

−→
Xf =

[−→rf ,
−→
tf ,

−→vf ]
T

is created to denote all the sub-decisions for the
selected flight f . To minimise the overall cost, the cost of
each aircraft is proportional to its likelihood of being selected.
When a new decision is evaluated through the neighbourhood
operator, the previous cost associated with that decision is
removed and updated. This process is repeated until the
algorithm reaches the final temperature step (ε) as described
earlier in the standard SA process.

While the optimisation algorithm aims to minimise the over-
all cost, penalty terms are introduced to discourage violations
of both the objective and constraints. In this sense, Equation
(13) provides a trade-off between constraint satisfaction and
optimisation performance, allowing the algorithm to explore a
broader solution space.

Therefore, the simulation-based evaluation can be described
as follows: the SSA algorithm controls the vector of decision
variables (

−→
Xi) used by the simulation process to compute the

performance (y) of those decisions (see Fig. 2).

Figure 2. Objective function evaluation based on a simulation process.

IV. CASE STUDY

A. Background and dataset

To address the uncertainty associated with thunderstorm
development and the high incidence of incidents and accidents
during the approach and landing phases, this paper chooses
the approach area of Chengdu Shuangliu International Airport
(IATA code: CTU) as a case study to validate the proposed
framework.

Fig. 3 presents a two-dimensional overview of the aircraft
trajectories in this area, based on actual operational prac-
tices. In this representation, straight segments are denoted
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as links (l), while intersections or fixes are represented as
nodes (n). Dark green arrows indicate the Standard Terminal
Arrival Routes (STARs), which are essential for ensuring safe
operations, particularly under adverse weather conditions or
low visibility. Light green arrows represent alternative routes
with green dots marking intersections and grey dots indicating
runways. In total, the terminal area under study comprises 5
entry nodes, 43 links, and 78 routes that sequentially connect
flight segments.

Thunderstorm
Trajectories

Figure 3. The STARs, alternative routes and thunderstorm trajectories in CTU
approach area.

This graph-based representation is designed to be dynamic,
enabling real-time updates to reflect airspace changes, such as
closed sectors, reroutes, or temporary path restrictions. This
model can be applied in situations where storm cells emerge
and dissipate rapidly. For instance, when a storm develops
along certain trajectories, the affected paths can be marked as
temporarily unavailable, while the model re-optimises flight
paths accordingly within a short time window.

Table II illustrates these variations in segment availability
based on the Notice to Air Missions (NOTAM).

TABLE II. THUNDERSTORM DURATION AND LINK AVAILABILITY

Thunderstorm dura-
tion (by seconds)

Blocked links

[8000, 10000] CZH-UU902, FJC-UU705, CZH-
UU903, CZH-STD20, FJC-STD21,
TEBUN-STD23, STD23-STD22

[10000, 11800] UU705-UU704, STD26-STD22, WFX-
STD22, STD26-WFX

[11800, 12500] WFX-UU703, STD24-WFX, STD22-
UU704, STD25-WFX

[13000, 14000] CDX-UU703, STD24-UU703

Instead of replicating a real-time weather event, this study
aims to evaluate the algorithm’s performance in terms of
speed and accuracy under high-load conditions. Therefore, a
historical flight dataset consisting of 451 arrival flights over
an 8-hour period from a single operational day is selected to
stress-test the proposed algorithm in terms of computational
efficiency and scalability. To simulate a more challenging
operational scenario, the dataset is duplicated, yielding 902
flights within the same 8-hour window to ensure a higher
traffic density for exploratory analysis.

Additionally, the model can be applied in shorter timeframes
by running iteratively in rolling windows (e.g., every 10-15
minutes) to capture the dynamic nature of weather events and
arrival management in real-world operations.

B. Parameter settings

The proposed algorithm is implemented in Java, and all
experiments are conducted on a MacBook Air with an 8-core
Apple M2 Chip and 16 GB of memory.

Typically, the time slot ∆t is set to be 5 seconds. Given
that delays are more frequent than early arrivals, the initial
settings are tmin

f = −10 minutes and tmax
f = 15 minutes,

respectively. However, preliminary tests revealed that a 15-
minute delay was insufficient to resolve all conflicts, leading
to an adjustment of the upper limit to 30 minutes for the time
shift range.

Meanwhile, the following parameters are used for speed
adjustments: ∆v = 0.01 × vof , vmin

f = 0.9 × vof , and vmax
f =

1.1× vof .
To assess node overlapping times between aircraft, this

study applies a common radar separation standard of 3 NM.
The penalty for using a blocked link (p) is set to 500,

while the weight for conflict mitigation (λ) is set to 50. The
parameters α, β and γ are each set to be 1.

The algorithm initiates the decision with historical data,
before generating a random decimal fraction between 0 and
1 to guide the neighbourhood operator. Specifically, if the
decimal is less than 0.5, a route decision is made; if the
decimal is between 0.3 and 0.7, a slot decision is made; and if
the decimal is greater than 0.6, a speed decision is made (see
Fig. 4). As a result, each flight has a 50% chance of a route
change, a 40% chance of a slot change, and a 40% chance of
a speed change.

Due to the overlapping ranges, the final probabilities for
each scenario are adjusted accordingly. For each flight, there
is a 30% chance of a route-only decision, a 10% chance of a
slot-only decision, a 30% chance of a speed-only decision, a
20% chance of a route and slot decision overlap, and a 10%
chance of a slot and speed decision overlap. While the total
probability sums up to 100%, all possible outcomes have been
considered.

In adapting the SSA algorithm to the proposed aircraft
trajectory optimisation model, the parameters were fine-tuned
using historical flight data. The initial temperature T0 is strate-
gically determined by a heat-up phase, where the temperature
is progressively increased until 80% of the solutions are
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Figure 4. Decision combinations.

accepted. For each temperature level, the algorithm generates
2,000 neighbours to thoroughly explore the state space and
capture the diverse possibilities inherent in aircraft trajectory
optimisation. During the cooling process, the temperature
decreases exponentially by a factor of 0.995 at each iter-
ation (Tn+1 = Tn × 0.995), until it reaches a threshold
(ε = 0.0001×T0). This threshold symbolises the convergence
of the algorithm, ensuring precision in the aircraft trajectory
optimisation process.

C. Model performances

This study highlights the efficiency of the SSA algorithm
in obtaining near-optimal solutions for the aircraft trajectory
optimisation problem. Particularly, the proposed algorithm
successfully computes trajectories for 902 flights within 70
seconds, delivering timely results for stakeholders to make
informed decisions.

The convergence curves shown in Fig. 5 illustrate the
evolution of the cost functions, providing a comprehensive
view of the optimisation process. Precisely, the cost functions
are represented by the multi-objective minimisation func-
tion and all the sub-objectives outlined in Section II, with
their associated values on the y-axis, and the temperature
on the x-axis. Among them, Conflicts represents the total
number of conflicts detected on the links and nodes, expressed
as

∑
(f,g)∈F×F

f ̸=g

Cl
fg(x) +

∑
(f,g)∈F×F

f ̸=g

Cn
fg(x). Meanwhile,

EvalLinks and EvalNodes, EvalDelay, EvalSpeed and Eval-
Route represent the evaluation results for φl(x), φn(x) ,
φt(x), φv(x), and φa(x), respectively. Notably, the significant
gap between the objective function and other sub-objectives is
primarily due to the weight (λ = 50) applied to prioritise
conflict mitigation.

A consistent decrease in the cost functions is obvious over
time across all curves, with a noticeable plateau observed
in the early stages of computation. This rapid initial decline
emphasises the efficiency of the search process, while the
smooth and steady decrease indicates a robust and effective
optimisation procedure. Notably, the predominant decrease
in the cost function is primarily attributed to a significant
reduction in the total number of conflicts among blocked links
affected by thunderstorm cells, as the algorithm prioritises
conflict mitigation before proceeding to aircraft performance
evaluation. Further, the substantial decrease in sub-objectives
related to aircraft trajectory evaluation further confirms the
algorithm’s capability to deliver high-quality solutions (see the
zoomed-in part of Fig. 5).

Within the slot shifting range of [-10, 30] minutes, the
algorithm optimised flight trajectories by primarily identifying
the shortest routes, shifting slots and adjusting speeds. Fig. 6

Figure 5. Evolution of the cost function.

visualises the distributions of decisions made by the proposed
algorithm. As shown in Fig. 6a, 36.14% of flights experienced
slot shifts within the range of [-1, 1] minutes, and 86.47% were
shifted within [-5, 5] minutes, indicating minimal changes to
slot allocations. These results also indicate that holding tracks
in the TMA is not required to manage such a weather event.
Meanwhile, Fig. 6b reveals that only 4.66% of flights required
speed adjustments. This relatively low percentage suggests
that switching routes and shifting slots are generally sufficient
for effective trajectory optimisation under thunderstorm con-
ditions.

(a) Slot shift distribution.

(b) Relative speed change distribution.

Figure 6. Decision distributions.
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D. Discussions

1) Sensitivity analysis for slot shift ranges: One key de-
cision in trajectory optimisation involves determining the
appropriate slot shift range for the arrival flights. This study
conducts a sensitivity analysis to assess the robustness of the
selected slot range and evaluate how the objective and sub-
objective functions respond to those variations.

The time windows are chosen to explore the theoretical
upper bound for slot shifting, aiming to investigate the model’s
flexibility and limits in terms of conflict resolution. Fig. 7
compares the cost functions under different slot shift range
combinations, categorised by their respective lower and upper
limits. Generally, as the slot shift range expands, delays
increase, leading to a higher total cost function, which the
objective aims to minimise. More specifically, Fig. 7a divides
the shift range into 5 groups based on their lower limits. An
upward trend in the objective function is observed as the upper
limits expand, which can be explained by the diminishing
effectiveness caused by an over-extended acceptable slot shift
range. For instance, a shift range of [-50, 60] increases the
likelihood of delays, making it less efficient than a smaller
range of [-10, 30]. Similarly, when the upper limits are fixed,
a comparable trend is observed (see Fig. 7b). These findings
confirm that the selected slot shift range effectively balances
conflict mitigation with delay minimisation, demonstrating the
algorithm’s robustness across different slot shifting scenarios.

(a) Grouped by lower limits.

(b) Grouped by upper limits.

Figure 7. Comparative analysis of slot shift ranges.

2) Sensitivity analysis for decision combinations: To verify
the sensitivity of the algorithm to the proposed decision
combinations, the parameters used in Section IV.B 1) are
considered as the baseline. Subsequently, route, slot and
speed decisions are deactivated individually to observe the
algorithm’s response.

As demonstrated in Table III, combining any two of the sub-
decisions is insufficient for resolving the aircraft sequencing
and merging problem under thunderstorms, as none fully
mitigate conflicts without fine-tuning additional parameters.
Furthermore, the increase in delays indicates that incorporating
aircraft holdings could be beneficial for finding solutions under
those conditions. Compared to route and slot decisions, speed
decisions have the least impact on the results. However, this
also suggests that applying a minimal level of speed adjust-
ments can enhance the overall performance and effectively
regulate flights.

V. CONCLUSION

The presence of thunderstorms can severely disrupt stan-
dard flight operations, particularly during critical phases such
as approach and landing, where precision and stability are
paramount. To address those challenges, this study presents
a generalised approach to optimising flight trajectories under
thunderstorm conditions, delivering timely results for stake-
holders to act upon.

The proposed framework prioritises conflict mitigation dur-
ing flight deviations and assesses node and link conflicts to
account for the dynamic nature of thunderstorms and other
adverse weather conditions.

Flight trajectories are optimised primarily through route
selection, minor slot shifts and speed adjustment, ensuring
operational flexibility and timely landings. Moreover, the
algorithm can be customised to prioritise specific decisions.
For instance, if minimising holding is a priority, the algorithm
will primarily adjust aircraft routes to reduce arrival delays,
which would otherwise be managed through holdings when
aircraft are at high altitudes.

Unlike previous studies that addressed stochastic optimal
control problems for conflict resolution offline, this study
presents an enhanced SSA algorithm for online conflict mit-
igation. Incorporating the SSA algorithm into the framework
enhances its ability to adjust flight paths and speeds within
predefined slot shift ranges. This underscores SSA’s robustness
and adaptability in real-world scenarios, making it a powerful
tool for air traffic management with significant improvements
in trajectory planning and conflict resolution.

Sensitivity analysis further illustrates the impact of slot shift
ranges on the total cost function, validating that the selected
shift range effectively minimises delays while maintaining
overall system efficiency. By deactivating decisions individ-
ually, this study also discusses the sensitivity of the algorithm
to the proposed decision combinations. The results show that
applying a minimal level of speed adjustments can enhance
the overall performance and effectively regulate flights.
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TABLE III. PERFORMANCE METRICS FOR DIFFERENT DECISION DEACTIVATIONS

Objective Conflicts EvalNodes EvalLinks EvalDelay EvalSpeed EvalRoute

Baseline 54.13 0.00 0.00 0.00 36.59 0.87 16.66
Deactivating Route Decision 173384.61 321.00 418.22 3045.64 121.52 20.97 49.10
Deactivating Slot Decision 547331.39 1516.00 3351.37 7591.77 0.00 64.15 109.99
Deactivating Speed Decision 463.25 4.00 7.82 0.00 49.16 0.00 23.17

While the uncertainties in aircraft entry times and storm
forecasts present significant challenges when optimising over
long time horizons, the decision to optimise over an 8-hour
period was made to capture broader operational trends and
minimise computational burden, ensuring a global view of
network-wide disruptions. In this sense, a sequential sliding
window approach for addressing real-time uncertainties more
effectively will be explored in future work to improve the
model’s adaptability to dynamic conditions.

Future research could also explore additional key variables,
such as altitude considerations and vertical conflict detection,
using more detailed datasets. The algorithm could also be
extended to measure the benefit of runways assignment. Ad-
ditionally, the accuracy of weather forecasts may influence
the effectiveness of the proposed framework, a factor to be
integrated into future analyses for a more comprehensive
evaluation.
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