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Abstract—Low-level wind shear (LLWS) is one of the most 

prominent aviation hazards impacting safety, punctuality, and 

the environment. To mitigate its effects, several aerodromes have 

been equipped with dedicated systems capable of recognizing the 

presence of LLWS in the proximity of a runway. These systems 

usually comprise a collection of different devices, including a 

Terminal Doppler Weather Radar, a Doppler Light Detection 

and Ranging, and a network of anemometers spread along the 

airport grounds. The LLWS recognition technique is based on 

the measurement of the vertical wind profile, issuing a warning 

when a rapid change in wind direction or intensity is detected. 

Since this methodology is based on real-time data, no useful 

prediction is provided regarding the possibility of upcoming 

LLWS events. Furthermore, the costs associated with an LLWS 

detection system, in terms of purchase and maintenance, are very 

high making its installation quite prohibitive.  

In this study, we investigated the development of a new 

methodology for the prediction of LLWS events, based on the use 

of Machine Learning (ML) techniques applied to wind data 

obtained from ground station observations and pressure-level 

Numerical Weather models. The study is carried out considering 

the site of Palermo-Punta Raisi International Airport since it is 

the Italian airport most subject to LLWS phenomena. Historical 

data series from 2007 to 2022, extracted from the Era-5 

reanalysis and Enav’s meteorological and aeronautical databases, 

were used to train and test different ML classification models, 

searching for the best-performing one through the analysis of 

specific evaluation metrics.  

The results we obtained are very encouraging and we are 

confident that our work could be very useful in developing a new 

generation of low-cost and high-efficiency ML-based LLWS 

prediction tools. 

Keywords —Low-level wind shear; Airport; Machine Learning; 

Safety; Aeronautical Meteorology. 

I. INTRODUCTION

Low-level wind shear (LLWS) is one of the most 

prominent aviation hazards. Caused by a sudden change in the 

wind direction and intensity, it can severely impact airport 

flight operations causing missed approaches, diversions, 

holdings, and, in some cases, accidents.  

The term “low-level” refers to wind shears that occur 

below 1600ft i.e. during the approaching or departing phase of 

the flight [1]. Since these phases are characterized by the low 

speed and low altitude of the aircraft, we have that any 

variations in the wind components will result in a variation in 

the aircraft's stability with a potentially high impact in terms 

of safety [2].  

According to past ICAO investigations [1], from 1964-

1983 LLWS was cited in at least 28 large transport aircraft 

accidents with over 500 fatalities and 200 injuries worldwide. 

Recent studies [3], have set the final count of fatalities from 

1943 to 2022 to over 1400. In addition to this, since LLWS are 

often the cause of aircraft holdings, missed approaches, and 

diversions, the delay associated with these actions strongly 

affects the airport and ATM network while the consequent 

extra-fuel consumption increases the impact of aviation on 

climate [4]. 

Several phenomena can be responsible for the 

development of LLWS such as thunderstorm microbursts, 

frontal systems with step wind gradient, tropical cyclones, 

low-level thermal inversion, land and sea breeze, terrain 

roughness, and the presence of obstacles in the vicinity of the 

aerodrome, like buildings or mountains [5]. 

Due to the potentially fatal impact of the LLWS, many 

aerodromes have been equipped with dedicated systems 

capable of recognizing its possible occurrence in the proximity 

of the runways. These systems are usually composed of a 

collection of different devices that include a Terminal Doppler 

Weather Radar (TDWR) [6], a Doppler Light Detection and 

Ranging (LIDAR) [7], and a network of anemometers located 

at different points near the runways [8][9][10]. The 

simultaneous presence of multiple devices is due to the fact 

that each of these instruments performs differently based on 

different weather conditions. In particular, the LIDAR can be 

very useful in recognizing the possible presence of LLWS 

during clear-sky conditions, while under rainy weather 

conditions, the signal can be disturbed by rain droplets [7]; on 

the contrary, the TDWR performs very well in the presence of 

raindrops, while under clear-sky conditions its reliability drops 

significantly [6]. 

The associated LLWS recognition methodology is based 

on the measurement of the vertical wind profile, followed by 

the issuing of a warning signal whenever a rapid change in the 



wind direction or intensity is detected. Based on this, we can 

find the following limitations affecting the existing LLWS 

detection systems: 

• The LLWS recognition methodology is based on real-

time measurements, so no useful information or 

prediction is provided regarding the possibility of 

upcoming events. 

• Given the need to install several different devices 

simultaneously, the costs related to an LLWS system, 

in terms of purchase and maintenance, are very high, 

making its installation quite prohibitive [11]. 

In recent years, different methodologies have been 

investigated to overcome these problems, for example by 

making use of high-resolution Numerical Weather Prediction 

models (NWP) [12][13], and Machine Learning (ML) 

techniques applied to wind data obtained from LIDAR and 

ground sensors [14][15][16][17]. While the use of high-

resolution NWP data does not seem to be the most suitable 

solution, due to low precision and high computational costs, 

the use of ML algorithms provides satisfactory results in terms 

of operational efficiency and resource consumption. Anyway, 

the exclusive use of wind data measured by ground sensors 

and remote sensing instruments limits their application to the 

only real-time context, missing any useful prediction about 

possible upcoming LLWS events. 

Forecasting LLWS events is therefore a real challenge for 

aeronautical meteorologists, whose only option is to make use 

of empirical methods based on their professional experience. 

In this work, we present a new methodology for the 

prediction of LLWS events, based on the use of ML 

techniques applied to wind data obtained from ground station 

measurements coupled with wind at altitudes obtained from a 

coarse-grained NWP. Concerning the state of the art, the main 

novelty that we introduce with our study are: 

• The use of a NWP to get the vertical wind profile, 

instead of making use of dedicated ground sensors 

like TDWR and LIDAR. 

• The ability to predict possible upcoming LLWS 

events over a time interval that is not strictly limited 

to the real-time frame. 

The study is conducted considering the site of Palermo-

Punta Raisi International Airport since it is the Italian airport 

most subject to LLWS phenomena [18]. Historical data from 

2007 to 2022 were used to train and test several ML 

classification models and, as far as we know, this represents 

the largest dataset ever used for this type of application.  

The paper is organized as follows. In Section II, we 

describe the study area, the LLWS report procedure, the data, 

and the methodology used to train and test the Machine 

Learning models. In Section III, we present a statistical 

analysis of the LLWS events recorded at the site, and we show 

the main results obtained from the investigation of the LLWS 

predictions based on ML techniques. In Section IV, we 

describe the proposed technical-operational scheme. Finally, 

Section V provides a summary of the findings and future 

proposals.  

II. DATA AND METHODS 

A. Study area and Low-level Wind Shear report procedure 

The international Airport of Palermo-Punta Raisi, named 

also Falcone and Borsellino (ICAO code: LICJ), is located on 

the north coast of Sicily, at 38.18° N and 13.10°E. The 

aerodrome site is characterized by the proximity of the sea to 

the north, and by the presence of a mountain massif with an 

average height of about 800 meters a few km to the south (see 

Figure 1). 

The airport has four runways: the primary RWYs 07/25 are 

oriented along the 070°-250° direction and have a total length 

of 3326 meters, while the secondary RWYs 02/20 are oriented 

along the 020°-200° direction and have a total length of 2068 

meters.  

Meteorological parameters such as surface wind, QNH, 

temperature, humidity, present weather, and cloud coverage 

are measured by a network of ground sensors located in the 

proximity of each runway touch-down zone. The 

meteorological data are collected by the airport's Automated 

Weather Observing System (AWOS) and then used by the 

Aeronautical Meteorological Observer (AMO) to emit the 

meteorological aviation report (METAR), a routine weather 

message issued every half-hour (at HH.20 and HH.50) 

[19][20].  

 

Figure 1. View of the Palermo-Punta Raisi International Airport site. The 

runways are marked with black lines while white labels correspond to the 

runway’s orientation and name. (Image taken from Google Earth with Data 

SIO, NOAA, U.S. Navy, NGA, GEBCOLandsat / Copernicus) 

Regarding LLWS phenomena, since no automatic LLWS 

detection system is currently operational on LICJ, the only 
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way to recognize their presence is through the direct reports 

made by pilots.  

In fact, in Italy, the well-established procedure provides 

that every time a pilot experiences an LLWS during its 

approaching or departing phase, he immediately makes a radio 

communication to the airport control tower (TWR) reporting 

the time and the position where the aircraft encountered the 

phenomenon. The AMO present in the TWR then forwards the 

LLWS report to the Enav Meteorological Office i.e. the 

Meteorological Forecast Unit (MFU), which will issue an 

aerodrome warning message (WRNG) for observed LLWS 

valid for one hour. Within the validity period of the WRNG, if 

an aircraft reports the cessation of the phenomenon, the 

warning will be deleted, while if the LLWS continues to be 

reported in the proximity of the end of the warning validity 

time, this latter will be extended over the next hour. 

The presence of an active LLWS WRNG will be then 

highlighted within the additional body of the METARs issued 

during its validity time and notified to the aeronautical and 

aerodrome users via Automatic Terminal Information System 

(ATIS) diffusion and METARs dissemination. 

B. Data Selection and Preparation for Machine Learning 

When dealing with Machine Learning techniques, it is 

important to carefully select and prepare a dedicated dataset 

that will be used for training and testing the model. To this 

end, in our study, we have considered the 2007-2022 historical 

time series of: 

• The LICJ METAR reports, issued every half-hour 

and containing information regarding: 

• the direction, intensity, and gusts of the 

surface wind averaged over 10 minutes, 

• the presence of an active LLWS aerodrome 

warning. 

• The number of LICJ hourly movements, 

corresponding to the sum of the number of arrivals 

and departures totaled in an hour over LICJ. 

• The 875hPa pressure-level wind data, obtained from 

the European Centre for Medium-range Weather 

Forecast (ECMWF) ERA-5 reanalysis with a global 

coverage of 0.25° latitude by 0.25° longitude 

resolution and a temporal resolution of one hour. 

The ERA-5 wind data were taken considering the four grid 

points closest to the airport (see Figure 2), in order to train the 

ML model considering the general atmospheric circulation 

present at altitude in addition to the local ground wind 

measured at LICJ. Moreover, since the orography is generally 

poorly resolved by the numerical weather models, to mitigate 

the effects induced by the bad resolution of the orography on 

NWP wind data we opted for the use of the 875hPa as the 

pressure-level positioned immediately above the mountain 

massif’s summit. 

 

Figure 2. Map of the data source points. The blue markers (V1-4 ) represent the 
ERA-5 grid point locations, while the red marker represents the airport 

location. (Image taken from Google Earth with Data SIO, NOAA, U.S. Navy, 

NGA, GEBCOLandsat / Copernicus). 

Analyzing our dataset, we found an amount of 2607 

LLWS reports for over 240000 No-LLWS reports, resulting in 

a highly unbalanced distribution between the two classes (i.e. 

LLWS and No-LLWS), with a ratio of approximately one to 

hundred. Since this imbalance can lead to difficulties during 

the training of the ML model, as the majority class tends to 

prevail over the minority one, specific mitigation strategies 

need to be adopted. The most common techniques include 

minority class upsampling, majority class downsampling, and 

class weight balancing during ML model training [21][22].  

Regarding our case study, we have addressed the data 

imbalance problem by taking the following actions: 

• Downsampling of the majority class, comparing the 

METAR issuing time and the airport hourly 

movements and filtering out all the No-LLWS data 

where the number of movements is less than ten 

flights per hour. This action is motivated by the fact 

that the LLWS reports are based on pilot 

communications, therefore in case no aircraft is 

departing or landing at LICJ it is not possible to have 

any information regarding the eventual presence of 

the LLWS. 

The choice to set the filter to ten movements per hour 

is motivated by the intention to consider an adequate 

temporal sampling for LLWS detection. 

• Upsampling of the minority class, considering the 

data corresponding to the time-step immediately 

preceding the LLWS warning METAR emission as 
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part of the LLWS class. Since the LLWS report 

present in the additional body of METAR refers to an 

active warning issued before the METAR issuance 

time, data taken from the time step preceding the 

LLWS METAR warning could also be compatible 

with LLWS conditions. Therefore, we opted to 

classify the data corresponding to the previous LLWS 

METAR warning emission time as part of the LLWS 

class. 

After applying these resampling techniques, the data 

imbalance was significantly reduced, with a ratio of minority 

vs majority classes of approximately one to nine. To mitigate 

this latter imbalance, we applied a stratified random sampling 

technique splitting the dataset into 80% for training and 20% 

for testing. Then, we used a class weight balance during the 

training of the ML model.  

III. RESULTS 

A. Historical analysis of Low-level Wind Shear at LICJ 

In Figure 3 we show the results of the statistical analysis 

for the LICJ LLWS events, extracted from the METAR 

collected from 1 January 2007 to 31 December 2022. 

As said before, during this period we found a total of 2607 

METAR messages reporting an active LLWS warning, whose 

annual distribution is shown in Figure 3a. The number of 

LLWS warning reports ranges from a maximum of 325 in 

2009 to a minimum of 35 in 2020, with an average annual 

value of about 163 reports per year. Regarding the minimum 

value in 2020, we note that this is largely influenced by the 

reduced number of movements registered over LICJ due to the 

COVID-19 pandemic phase. 

Net of the effects of the year 2020, we can observe a 

general decreasing trend in the number of LLWS reports 

during the years. Since the volume of air traffic on LICJ has 

constantly increased over time, is our opinion that this trend is 

intricately connected to the prevalent synoptical configuration 

changes that have occurred over the Tyrrhenian area in recent 

years. 

To better explain this statement, we refer to Figure 3b 

showing the monthly distribution of the LLWS warning 

reports. As we can see, this distribution follows a marked 

seasonal pattern, characterized by a maximum of LLWS 

activity from late autumn to early spring and a minimum of 

LLWS activity during the summer months. This seasonality is 

easily explainable by considering the climatology of LICJ 

[23], where: 

• Summers are characterized by the presence of high-

pressure ridges, which determine stable 

meteorological conditions with winds driven by the 

action of the land and sea breezes. 

• Winters are characterized by the development of 

Tyrrhenian low-pressure systems, which cause severe 

weather conditions with precipitation, thunderstorms, 

and strong winds. 

Recent studies have found that one of the effects of climate 

change over the Mediterranean area is characterized by the 

reduction in the number of the Tyrrhenian low-pressure 

systems, due to a reinforcement of the North African high-

pressure system that affects the south Tyrrhenian area also 

during autumn and winter [24][25]. Considering the above-

mentioned effects of the large-scale synoptical configuration 

on the LICJ climatology, it is our opinion that the decreasing 

trend of the LLWS reports shown in Figure 3a is due to the 

change in the prevailing synoptical configuration, related to 

the observed increase of the persistence of the African high-

pressure system during autumn and winter seasons. In any 

case, despite the observed trend showing a decrease in the 

frequency of LLWS, their potential operational impact in 

terms of safety and airport performance remains high. 

Looking at the hourly distribution of the LLWS (see 

Figure 3c), we can see that it follows the air traffic operational 

pattern present at LICJ, which is characterized by a reduced 

number of movements from 23UTC to 5UTC. Due to this, it is 

not possible to identify the presence of a privileged time 

interval for the development of LLWS on LICJ. 

 

Figure 3. Annual (a), Monthly (b), and Hourly (c) distribution of LLWS 

reports over LICJ, obtained from the 2007 to 2022 historical METAR data 

series. 

Figure 4 shows the results obtained from the statistical 

analysis of the surface and 875hPa wind direction and 
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intensity reported during LLWS events. As we can see, the 

distribution of the ground wind direction (Figure 4a) follows 

two distinct peaks: a major one, centered around the 190°S 

and reflecting the position of the mountain massif respect to 

the aerodrome, and a minor one, centered around the 060°N 

and related to the circulation induced by the sea breeze. 

Looking at the 875hPa pressure level wind direction, we can 

instead observe that it is almost exclusively from the southern 

quadrants. Therefore, we can affirm that the LLWS events 

connected to the sea breeze circulation are mainly forced by 

the vertical shear of the wind, characterized by northerly 

circulation at the ground and southerly circulation at the 

altitude. 

Analyzing the wind intensity shown in Figure 4b, we can 

see a wide distribution for the surface and the 875hPa 

pressure-level wind, without well-defined preferential 

intensities. A similar distribution is also present for the surface 

wind gusts, which result in about half of the LLWS METAR 

reports.  

 

Figure 4. Distribution for the 2007-2022 historical LLWS events of (a) wind 

direction (degrees); (b) wind intensity (kt). Ground wind (in blue) and gusts 

(in green) are obtained from the METAR reports, while 875hPa level wind (in 
orange) is obtained from the ERA-5 reanalysis data as V1-4 average. The solid 

lines correspond to the Gaussian Kernel Density estimated for each of the 

distributions. 

Regarding the presence of convective phenomena (e.g., 

thunderstorm microbursts) that could act as a forcing factor for 

the LLWS development, we observed that thunderstorms are 

reported in just two percent of the 2607 LLWS events and 

almost always in conjunction with the presence of southerly 

winds. 

Based on that, we can assume that on LICJ, the prevailing 

factor for the development of the LLWS is correlated to the 

interaction between the wind circulation and the local 

orography which leads to the development of several flow 

instabilities, such as gravity-lee waves, von Karman vortices, 

and Kelvin-Helmholtz waves [26]. 

B. Low-level Wind-Shear prediction based on Machine 

Learning techniques 

In order to evaluate the degree of reliability of the proposed 

methodology, we carried out a punctual analysis of the results 

obtained from the prediction of the LLWS events made with 

the use of Machine Learning models. Given the physical nature 

of the system, consisting of a binary classification problem 

among the majority No-LLWS and minority LLWS classes, we 

opted for the use of ML classifiers.  

Since the performance of the ML models could differ 

sensibly from one typology to another, several ML classifiers 

have been investigated to find the best-performing one. The 

training of the models was performed following the procedure 

described in Section II, applying supervised learning 

techniques based on the use of vectors composed of eleven 

predictors (the four points V1-4 wind directions and intensities, 

the LICJ wind direction and intensity plus the gusts intensity) 

and one output binary variable related to the presence of the 

LLWS, as indicated by the following Equation (1): 

𝐿𝐿𝑊𝑆 =  {
1      𝑓𝑜𝑟   𝐿𝐿𝑊𝑆,
0  𝑓𝑜𝑟 𝑁𝑜 𝐿𝐿𝑊𝑆,

        (1)  

Each vector corresponds to a different METAR issue time, 

where the values of the corresponding variables were taken at 

the same time interval. 

In order to assess the performance and effectiveness of the 

classifiers, given the imbalanced data distribution of the 

system, we opted for the use of the Precision-Recall area under 

curve (PR-AUC) as the evaluation metric [21], where the 

Precision and Recall are defined respectively as follows: 

Precision = TP / (TP + FP),    (2) 

Recall = TP / (TP + FN),     (3) 

where TP is the number of true positives, FN is the number of 

false negatives, and FP is the number of false positives.  

In Figure 5, we show the PR curve for several typologies of 

ML classifiers tested in our study: Logistic Regression (LR), 

K-nearest neighbors (KNN), Naïve Bayes (NB), Decision Tree 

(DT), Random Forest (RF), and XGBoost (XGB). The 

hyperparameter values are the default ones in the Python 

Scikit-learn package. 

The PR-AUC score ranges from 0 (fully incorrect) to 1 

(perfectly classified), estimating the level of performance 

obtained. In our case study, Random Forest is the best-

performing classifier, with a PR-AUC score of about 0.87. 
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Figure 5. Precision-Recall curve and AUC score for Logistic Regression (LR, 
blue line), K-nearest neighbors (KNN, black line) Naïve Bayes (NB, green 

line), Decision Tree (DT, yellow), Random Forest (RF, purple line), and 

XGBoost (XGB, cyan line) classification model. 

Figure 6 shows the correlation matrix associated with the 

Random Forest classification. As we can see, the No-LLWS vs. 

No-LLWS true negative count (TN) is sensibly higher than the 

others due to the imbalance between the majority and minority 

classes. However, since the PR-AUC doesn’t depend on the 

TN, the class imbalance does not affect the metric results [22].  

Comparing the TP values with the FN and FP ones, we can 

observe that the RF classifier shows a good Precision and 

Recall score, corresponding to a good predictability of the 

LLWS events referred to in our case study. As for the FP and 

FN classifications, we can state that these are mainly due to the 

lack of information on the LLWS type and the weight class of 

the aircraft encountering the phenomena.  

To better explain this point, we note that since the LLWS 

reports are based on pilot sensitivity, some pilots may report 

light events while others report only moderate to severe events. 

Moreover, small-class aircraft are more sensitive to the LLWS 

than medium to high-weight ones, and this factor could 

represent a further possible source of error. 

 

Figure 6. Confusion Matrix obtained for the LLWS Random Forest classifier. 

IV. OPERATIONAL INTEGRATION SCHEME 

 In this Section, we discuss the concepts elaborated for the 

future operational integration of the ML-based LLWS 

prediction system. The proposed technical-operational scheme 

is shown in Figure 7.  

As we can see, the core of the system consists of a Machine 

Learning tool which, taking as input the surface wind measured 

by the LICJ AWOS and the 875hPa pressure-level wind 

forecasted by the NWP model, will provide as output a 

Figure 7. Technical-operational scheme for the Machine Learning based LLWS prediction tool. 
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prediction regarding the possibility of incoming LLWS events.  

Based on the results obtained from our study, the Machine 

Learning engine will consist of a Random Forest classifier 

trained with the data and the methodologies previously 

presented. The tool will run at each METAR issuing time 

(HH.20 and HH.50), providing a prediction of possible LLWS 

events over the next hour.  

To better explain this point, let’s take a practical example 

considering the case of the 12.20UTC issue time. At this time, 

the tool will: 

• Take as input the ground wind measured by the 

AWOS at 12.20UTC and the 875hPa pressure-level 

wind forecasted by the NWP at 12UTC. 

• Provide as output a prediction for possible or not 

LLWS, ranging from 12.20UTC to 13.20UTC. 

The tool will then rerun at the issuing time of 12.50UTC, 

taking as input the ground wind measured at 12.50UTC and the 

875hPa pressure-level wind at 13UTC, providing as output the 

prediction about possible LLWS ranging from 12.50UTC to 

13.50UTC. 

Whenever the system provides a positive prediction about 

the possible LLWS occurrence, an alert signal will be 

displayed on a dedicated Human-Machine web-based Interface 

which will be available on the operating systems in use at the 

LICJ TWR and the MFU. Once the alert is received, this 

latter will issue an aerodrome warning for forecasted LLWS, 

valid for one hour and renewable at the end of the validity 

period if the LLWS continues to be predicted.  

After its emissions, the warning will be highlighted in the 

additional body of the METAR reports and disseminated to 

aeronautical and aerodrome users such as pilots, airline 

companies, and the airport management company (i.e. the 

Gesap S.p.a. for LICJ) via METAR diffusion, ATIS and TWR 

communications. 

V. CONCLUSION 

In this paper, we have studied the development of a new 

Low-level Wind Shear prediction methodology based on 

Machine Learning techniques. Our study considers the site of 

Palermo-Punta Raisi International Airport since it is the Italian 

airport most affected by LLWS phenomena.  

A statistical analysis of the LLWS events is presented, 

finding a strong seasonality connected to the prevailing 

atmospheric circulation and a strong correlation between the 

wind direction and the local orography, due to the instability 

effects generated by the action of gravity, von Karman, and 

Kelvin-Helmholtz waves. 

Several Machine Learning classifiers have been trained and 

tested using ground and 875hPa pressure-level wind data, 

obtained from the METAR and the ERA-5 reanalysis 

respectively. To mitigate the effects induced by the strongly 

imbalanced LLWS-No LLWS data distribution, we applied 

specific methodologies based on the resampling of the data and 

class weight balancing. The performances of the ML classifiers 

are evaluated using the PR-AUC metric, obtaining good scores 

for all the tested models. In particular, the Random Forest turns 

out to be the best-performing classifier, with a PR-AUC score 

of about 87%. 

In conclusion, we can assert that the methodology 

presented in this paper shows good results in terms of 

performance and effectiveness. Although our case study 

focuses on LICJ, the methods and considerations presented can 

be generalized to any airport (Italian or not) with a long history 

of non-convective LLWS events. The findings we obtained are 

very encouraging and we are confident that our work could be 

very useful in developing a new generation of low-cost and 

high-efficiency LLWS prediction tools based on ML 

techniques. 

As the next activities, we will investigate the possible 

extension of the LLWS prediction time up to 24 hours, by 

integrating the ground wind measured by the AWOS with the 

surface wind forecasted by the NWP model. This activity is 

crucial to provide a forecast about the possibility of LLWS 

events within the LICJ Terminal Aerodrome Forecast (TAF), 

thus ensuring better planning of the mitigation actions (e.g. 

airport capacity reduction by the ANSP, fuel planning and 

optimization of flight schedules by the airlines, optimal aircraft 

configuration and increase of responsiveness by the pilots) 

from the aeronautical and airport users.  

Finally, as the last step, we will focus on developing a fully 

operational LLWS prediction tool to support Enav's provision 

of MET and ATS services on LICJ. 
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