
BlueSky-Gym: Reinforcement Learning
Environments for Air Traffic Applications

D.J. Groot1 & G. Leto1 & A. Vlaskin1,2 & A. Moec1, and J. Ellerbroek1
1Control and Simulation, Faculty of Aerospace Engineering, TU Delft

2Air Traffic Management and Airports, Royal Netherlands Aerospace Centre, NLR

Abstract—Reinforcement Learning (RL) is rapidly becoming
a mainstay research direction within Air Traffic Management
and Control (ATM/ATC). Many international consortia and
individual works have explored its applicability to different
ATC and U-Space / Urban Aircraft System Traffic Management
(UTM) tasks, such as merging traffic flows, with varying levels
of success. However, to date there is no common basis on which
these RL techniques are compared, with many research parties
building their own simulator and scenarios from scratch. This
can diminish the value of this research, as the performance of
an algorithm cannot be easily verified, or compared to that of
other implementations. This hampers development in the long
run. The gymnasium library shows for other research domains
that this can be solved by providing a set of standardised
environments, which can be used to test different algorithms,
and compare them to benchmark results. This paper proposes
BlueSky-Gym: a library that provides a similar set of test
environments for the aviation domain, building on the existing
open-source air traffic simulator BlueSky. The current BlueSky-
Gym environments range from vertical descent environments, to
static obstacle avoidance and traffic flow merging. Built upon the
Gymnasium API and the BlueSky air traffic simulator, it delivers
an open-source solution for the ATC-specific RL performance
benchmark. In the initial release of BlueSky-Gym, 7 functional
environments are presented. Preliminary experiments with PPO,
SAC, DDPG and TD3 are presented in this paper. Results show
stable training is obtained on all of the environments with the
default hyperparameters. On some environments, there is a large
performance gap, with the on-policy PPO often trailing, but
overall no clear algorithm that outperforms others across the
board in terms of total reward.

Keywords—Air Traffic Management (ATM), Reinforcement
Learning, Automation, Benchmarking, Artificial Intelligence

I. INTRODUCTION

In recent years, interest for applying Deep Reinforcement
Learning (DRL) methods for Air Traffic Control (ATC) tasks,
such as conflict resolution and safe multi-agent navigation has
grown significantly, as highlighted by the review paper on
DRL applications in aviation by Razzaghi et al. [1]. However,
even when just focusing on the topic of conflict resolution
within ATC, the review paper by Wang et al. shows that there
is a large variety in the different simulators and scenarios
used for investigating the effectiveness of the different methods
[2]. Even though the essence of the problems targeted in the
studies are relatively similar, the parameters underlying the
scenarios, such as traffic density, aircraft performance models
or definition of the Markov Decision Process (MDP) often
differ. This, combined with the fact that the code underlying
the generated results is often not publicly available, makes

it difficult to objectively compare the results of the different
studies without requiring authors to reproduce all the methods.

In other domains where Machine Learning is applied, often
a set of benchmark tests is used to evaluate algorithm per-
formance, such as the MNIST dataset for image recognition
[3] or the BLEU score for machine translation [4]. These
standardized benchmarks improved comparability and devel-
opment within their respective fields and allowed researchers
to focus on methods that objectively perform better, speeding
up development. For Reinforcement Learning, the solution
used in several other fields is to offer simplified benchmark
API’s that contain a set of standardized environments, such as
a the arcade learning environment [5] or the simulated road
scenarios in HighwayEnv [6], which are more closely related
to ATM and UTM. The most popular of these API’s is The
Farama Foundation’s Gymnasium, which currently offers close
to a hundred different environments [7]. These environments
typically offer simplified scenarios, which capture the essential
behaviour of the system in a more compact environment,
enabling faster training and comparison of different methods
than highly complex and realistic scenarios would be able to
do, whilst staying true to the essence of the problem.

The Air Traffic Management research domain currently
lacks such a publicly available set of environments and APIs.
Fast-time open-source simulators such as BlueSky [8], Air-
TrafficSim [9] and Mercury [10] exist, but in order to allow
for Reinforcement Learning applications, one must develop
plugins from scratch every time. This slows down development
and leads to the aforementioned issues of comparability of the
different methods due to different implementations. Despite
these challenges, BlueSky has already been used for a large
number of reinforcement learning related studies ([11]–[16]).

In this paper, we present BlueSky-Gym, an open-source
API based on Gymnasium and BlueSky, combined with a
collection of environments. The remainder of the paper is
structured as follows: the BlueSky simulator and the necessary
information regarding the Gymnasium API are presented first.
Then, the available environments are listed and described. An
initial experiment with four RL algorithms from STABLE-
BASELINES3 on these environments is presented in the next
section. Finally, the paper ends with recommendations, further
work and conclusions.

II. BLUESKY-GYM

BlueSky-Gym is built on top of the BlueSky Air Traffic
Simulator [8] and inherits from the Gymnasium single agent
reinforcement learning API [17], and aims to provide a stan-
dardised API, combined with benchmark enviromnents for
reinforcement learning research in ATC/ATM. At the time of
writing, a set of 7 baseline environments are implemented in
BlueSky-Gym. It is the intention that this number will grow in
the future as more environments are developed by the research
community and shared through open-source initiatives.

A. BlueSky Air Traffic Simulator

BlueSky [8] is an open-source air traffic simulator developed
at the TU Delft, which contains the required logic related
to simulating air traffic (both conventional and UTM) while
being able to do fast time simulations. Additionally, BlueSky
has already been used for multiple studies investigating the
efficacy of reinforcement learning for a variety of ATC/ATM
tasks [11]–[16], demonstrating the applicability and versatility
of using BlueSky as a platform for Reinforcement Learning
research.

By default, BlueSky offers interaction with, and extension
of the simulation environment through the development of
plugins, which gives the user full access to all the run-time
variables, allowing for tailored and detailed implementations.
However, this approach of extending the functionality is not
very suited in cases where there is a need for a simulation
control loop external to the simulator, as is required for a
large variety of open-source reinforcement learning libraries
such as STABLE-BASELINES3 [18] or RLlib [19].

B. BlueSky-Gym

BlueSky-Gym aims to leverage the power of BlueSky
and the ease of use of the Gymnasium API by offering a
Gymnasium-derived API, which utilises BlueSky functions
to simulate traffic behaviour. All of the environments de-
veloped in BlueSky-Gym inherit from Gymnasium’s “Env”
class, allowing direct use of standard algorithms available
through reinforcement learning libraries, or custom algorithms
by manually calling the “step()” function, which follows the
classic Markov Decision Process (MDP) logic. To combine
Gymnasium with BlueSky, different environments have been
created that directly import BlueSky, and utilize its function-
ality for computing relevant information and handling aircraft
logic and dynamics. There is therefore no need to run BlueSky
on top of BlueSky-Gym.

Additionally, all environments have simplified rendering
capabilities, allowing easy visualization of the learned policies.
The subsequent sections will discuss the procedural generation
philosophy, the open data and community-based development
philosophy, potential extension to the multi-agent domain and
example usage of the API.

1) Procedural Generation Philosophy
Reinforcement learning models trained on a fixed set of

scenarios often exhibit overfitting, where the models memorize
a sequence of actions rather than generalizing to a broader

set of subtasks [20]. This is especially prevalent in environ-
ments that always have the same initial conditions such as
MuJoCo and the some of the Arcade Learning environments
of Gymnasium [7]. The environments in BlueSky-Gym are
therefore all initialized through procedural, or random, gener-
ation, based on sets of predefined boundary conditions such as
number of aircraft or airspace size. Because of this, every case
encountered by the learning algorithm is different, preventing
overfitting on repeated samples or memorization of a sequence
of successful actions. This approach aligns with the principles
of the Procgen Benchmark, a set of Gymnasium style environ-
ments that focuses on generalization in reinforcement learning
[21]. Utilising procedural generation ensures that the observed
rewards of the agents on the BlueSky-Gym environments can
be attributed to properly trained policies.

2) Open-Data Philosophy and Community-Based Develop-
ment

With the development of BlueSky-Gym we aim to foster
open-data and open-source, community-based development.
Open science and open-source tools are of great importance
for research, and have several key advantages over closed-
source alternatives. The main advantage of this philosophy is
that it provides a means of benchmarking across the research
community, as the need for the development of a similar
platform (as well as validation against the original study)
every time research is performed is eliminated. Reinforcement
Learning models can then be tested by anyone using this open
data and software.

Another advantage is faster prototyping, as the code is based
in Python and uses open-source libraries (BlueSky Air Traffic
Simulator [8] and The Farama Foundation’s Gymnasium [7]),
which a user can easily adjust and modify to suit their research
topic. Additionally, the example environments provided for
both horizontal and vertical control tasks can serve as a
baseline for creating custom environments.

3) Extension to the Multi-Agent Domain
Currently the usage of BlueSky-Gym is limited to the

single agent domain, having a predefined agent that is being
controlled by the reinforcement learning algorithm for each
episode. All other aircraft follow predefined control logic,
which can be learned by the learning algorithm. However, it
is acknowledged that most ATC/ATM tasks extend into the
multi-agent domain. Therefore two methods for implementing
multi-agent capabilities in the future are currently considered:

• Centralized multi-agent control - This method is similar
to an air traffic controller operating on the system. Instead
of modelling each agent as its own independent actor,
the policy learns to control the entire joint action set of
all aircraft in the system based on a global observation
vector. This approach allows the usage of single agent
reinforcement learning algorithms and can natively be
implemented in BlueSky-Gym.

• Distributed multi-agent control - This turns the en-
vironments into a multi-agent reinforcement learning
environments, which is currently not supported through
the Gymnasium API. However, it is recognized that spe-

2

1 import gymnasium as gym
2 import bluesky_gym
3 from models import your_model
4

5 bluesky_gym.register_envs()
6

7 model = your_model
8 env_name = "DescentEnv-v0"
9 training_episodes = 1e5

10

11 env = gym.make(env_name, render_mode=None)
12

13 for i in range(training_episodes):
14 done = truncated = False
15 obs, info = env.reset()
16 while not (done or truncated):
17 action = model(obs)
18 obs_, reward_, done, truncated,

info = env.step(action)
19 model.train(obs, action, obs_,

reward_)
20 obs = obs_
21

22 model.save()

Algorithm 1. Example of manual usage of BlueSky-Gym for
DescentEnv-v0.

cific APIs exist that allow for multi-agent environments
such as PettingZoo [22] and MAgent2 [23]. An option
is therefore to eventually maintain both a single agent
branch, based on Gymnasium, and a multi-agent branch
based on the aforementioned APIs.

4) API
This section demonstrates how to use BlueSky-Gym for

three different use cases: training a self-defined model, training
a model with the help of STABLE-BASELINES3, and testing
a model trained by STABLE-BASELINES3.

Training a self-defined model requires manual interaction
with the environment to obtain the relevant information. The
advantage of this is more control over the learning process and
used model than when relying on packages such as STABLE-
BASELINES3. An example of this for one of the example
environments, ’DescentEnv-v0’, is given in Algorithm 1.

Algorithm 2 shows a code example for training and test-
ing a model using the DDPG algorithm from STABLE-
BASELINES3. Using libraries such as STABLE-BASELINES3
increases ease of use at the expense of control.

C. Available Environments

Seven environments are currently available within BlueSky-
Gym, shown in Figure 1. Two of these are ’example’ envi-
ronments, created for demonstrating vertical and horizontal
control logic, and functioning as a template environment for
the development of new scenarios. A summary of the different
environments is given in Table I. The environments are a mix
of vertical and horizontal control scenarios, and are created
with both a conventional ATM and a UTM perspective in
mind.

1 import gymnasium as gym
2 import stable_baselines3 as \textsc{\

capsize{10}{S}table-\capsize{10}{B}
aselines3}

3 import bluesky_gym
4

5

6 bluesky_gym.register_envs()
7

8 env_name = "DescentEnv-v0"
9

10 # Train the model
11 env = gym.make(env_name, render_mode=None)
12 model = \textsc{\capsize{10}{S}table-\

capsize{10}{B}aselines3}.DDPG("
MultiInputPolicy", env)

13 model.learn(total_timesteps=2e6)
14 model.save("my_model")
15 env.close()
16

17 # Test the model and visualize policy
18 env = gym.make(env_name,
19 render_mode="human")
20 model = \textsc{\capsize{10}{S}table-\

capsize{10}{B}aselines3}.DDPG.load("
my_model",env=env)

21

22 done = truncated = False
23 obs, info = env.reset()
24 while not (done or truncated):
25 action, _ = model.predict(obs,

deterministic=True)
26 obs, reward, done, truncated, info =

env.step(action[()])
27 env.close()

Algorithm 2. Example of using STABLE-BASELINES3 in conjunction
with BlueSky-Gym to train and evaluate a model.

1) DescentEnv-v0
DescentEnv-v0 is one of the two example environments in

BlueSky-Gym. This environment is used for demonstrating
vertical control logic by having the agent control the vertical
speed of the aircraft, and can serve as a basis for more complex
vertical control environments. The goal of the agent is to
stay on a random target altitude as long as possible before
descending down to the runway. The goal of the agent is
therefore to learn the maximum descent rate of the aircraft
model, and use that information to infer Top of Descent.

2) VerticalCREnv-v0
This vertical conflict resolution environment builds on

DescentEnv-v0, and has the same structure for the target
altitude and runway. However, this environment contains addi-
tional cruising aircraft with conflicting trajectories that should
be avoided.

3) PlanWaypointEnv-v0
PlanWaypointEnv-v0 is the second example environment

contained in BlueSky-Gym, used for demonstrating the hori-
zontal control logic. The agent has to learn to efficiently plan
a trajectory visiting randomly generated waypoints, whose

3

TABLE I. SUMMARY OF THE CURRENTLY AVAILABLE ENVIRONMENTS WITHIN BLUESKY-GYM.

Environment Action Space Observation Space Reward Goal
DescentEnv-v0 1, vertical speed 4 Dense Hold target altitude, land on time
VerticalCREnv-v0 1, vertical speed 4 + 7 · nac Dense + Sparse Hold target altitude, land on time, avoid conflicting aircraft
PlanWaypointEnv-v0 1, heading 4 · nwpt Sparse Visit all waypoints once
HorizontalCREnv-v0 1, heading 3 + 5 · nac Dense + Sparse Get to waypoint, avoid conflicting aircraft
SectorCREnv-v0 2, heading & speed 3 + 7 · nac Dense + Sparse Get out of sector, avoid aircraft
StaticObstacleEnv-v0 2, heading & speed 3 + 4 · nobs Sparse Get to waypoint, avoid static obstacles
MergeEnv-v0 2, heading & speed 5 + 7 · nac Dense + Sparse Merge into traffic, avoid aircraft, reach waypoint

Figure 1. Visualization windows used for the different environments within BlueSky-Gym, simplified with respect to BlueSky’s own GUI. From left to right,
top to bottom: DescentEnv-v0; VerticalCREnv-v0; PlanWaypointEnv-v0; HorizontalCREnv-v0; SectorCREnv-v0; StaticObstacleEnv-v0; MergeEnv-v0.

location relative to the ownship is provided in the observation
vector.

4) HorizontalCREnv-v0
In this environment, based on the horizontal logic of

PlanWaypointEnv-v0, the agent learns to navigate to an end
destination while avoiding other aircraft through heading
changes. The other aircraft are initialized on a conflicting
trajectory with that of the agent. Applications in ATM and
UTM are conflict resolution with a destination.

5) SectorCREnv-v0
Building on HorizontalCREnv-v0, in SectorCREnv-v0 an

ownship learns to exit as fast as possible the airspace sector
in which it is spawned, while avoiding moving obstacles.
Because of the high traffic densities and the fact that aircraft
are initialized with random initial states instead of conflicting
initial states like in HorizontalCREnv-v0 and VerticalCREnv-
v0, this environment stimulates the training of algorithms
that minimize secondary and tertiary conflicts resulting from
maneuvers.

6) StaticObstacleEnv-v0
In this horizontal environment the ownship should learn

to navigate to an end destination while avoiding static ob-
stacles. This environment has concrete application both in
conventional ATM and in UTM. In ATM, the static obstacles
represent a simplified version of airspace restricted sectors. In
UTM, they represents buildings and other physical obstacles
to the navigation of drones.

7) MergeEnv-v0
The Merge environment is a horizontal scenario in which

a group of aircraft are flying towards a Final Approach Fix
(FAF) waypoint and continuing to a runway. This has an
application in both conventional ATM and UTM, assisting
landing sequencing and final approach merging. The agent
controls the ‘ownship’, altering the speed and heading, such
that the FAF is reached without conflicts.

III. INITIAL BENCHMARK EXPERIMENTS

To validate the implementations and generate initial bench-
mark results for the environments, a diverse set of algo-
rithms was trained on each environment using the STABLE-
BASELINES3 reinforcement learning library. These experi-
ments are not the main subject of this paper but simply serve as
a proof of concept demonstrating the functionality of BlueSky-
Gym.

A. Experimental Setup
1) STABLE-BASELINES3
STABLE-BASELINES3 is an open-source library that con-

tains stable implementations of reinforcement learning algo-
rithms in Python using PyTorch. The library focuses on single-
agent, model-free algorithms, trying to stay as true to the
original implementations as possible. Because of this and the
ease of implementation, STABLE-BASELINES3 was selected
as the library of choice for this experiment. Nevertheless, other
libraries such as RLlib or even own implementations can easily
be integrated with BlueSky-Gym as well.

4

Figure 2. Evolution of the rewards for the different environments, from left to right, top to bottom: DescentEnv-v0; VerticalCREnv-v0; PlanWaypointEnv-v0;
HorizontalCREnv-v0; SectorCREnv-v0; StaticObstacleEnv-v0; MergeEnv-v0.

2) Algorithms
For the experiments, a total of 4 algorithms were used to

train the models on each of the environments:

• Deep Deterministic Policy Gradient (DDPG) [24]
• Twin Delayed DDPG (TD3) [25]
• Soft Actor-Critic (SAC) [26]
• Proximal Policy Optimization (PPO) [27]

Of these algorithms, three of them have been used for various
RL applications in ATC/ATM [1]. However, to the best of
our knowledge no study has been done using TD3 or directly
comparing these different algorithms.

DDPG, TD3 and SAC are all off-policy algorithms, which
implies that they utilize a memory buffer to store the samples,
and are able to learn from state-transitions that have been
generated by a policy that is different from the current policy.

In contrast, PPO is an on-policy method, which means that
it will generate state-transitions using a fixed policy. These
state-transitions are then used to update the policy directly.
This strategy favours stability during learning at the cost of a
lower sample efficiency.

3) Hyperparameters
For the hyperparameters, the default parameters as imple-

mented in STABLE-BASELINES3 have been used, with an
exception for the learning-rate, which was fixed at 0.0003 for
all algorithms and environments. Additionally all training was
done for a total of two million time-steps for all of the environ-
ments. It is acknowledged that the efficacy of reinforcement
learning algorithms can be highly dependent on the selected
hyperparameters. For the purpose of this study however, it was
decided to use the default parameters for simplicity and ease of
reproducibility of the results. Instead, the environments have
been designed such that adequate results and stability can be
obtained with minimal hyperparameter tuning.

B. Results & Discussion

Figure 2 shows the reward evolution for the aforementioned
algorithms on the different environments.

These results indicate that all environments convey enough
information to facilitate stable learning, although various dif-
ferences can be observed between the different algorithms,
depending on the environment. First off, there is a clear
difference between PPO and the other algorithms. This can
be attributed to the fact that the other algorithms are off-
policy methods, relying on a memory buffer for training.
Because of this, these methods have a higher sample efficiency
when compared with PPO. On the other hand, PPO is more
computationally efficient when performing an update step to
the network, and is therefore recommended when generating
samples is cheap. Because of this it is possible that two million
time-steps is simply not enough for PPO to converge to a
final policy, and potentially a better indicator of algorithm
efficacy would be to use update steps to the networks instead
of environment time-steps.

Additionally, looking at the rewards obtained by TD3 and
DDPG, it is observed that for certain environments training
stability seems to be an issue when compared to SAC and
PPO, especially for MergeEnv-v0, where no improvements of
the policies were observed at all. It is currently unknown what
causes these differences, but is in line with results shown in the
original SAC paper [26], where for certain environments TD3
and DDPG show no signs of improvement. One difference
between TD3 and DDPG when compared to SAC and PPO
is that TD3 and DDPG use deterministic policies, while SAC
and PPO are stochastic. However, how these differences cause
such drastic performance discrepancies is unknown.

Finally, when comparing the different reward evolutions
across the environments, it is clear that a diverse set of environ-
ments have been created, as highlighted by the different reward

5

evolutions. One exception to this are the VerticalCREnv-v0
and HorizontalCREnv-v0 environments, which exhibit very
comparable learning characteristics. This, however, is to be
expected, considering that these environments are mirrors of
each other in different planes of a 3D space, but with different
action bounds limited by the performance models of the
aircraft used.

In this experiment, we solely looked at the evolution of
the rewards to verify the stability and “trainability” of the
different environments. This is done, because it highlights a
lot of the training characteristics of the algorithms. However,
the defined reward function also directly influences learning
efficacy, stability and characteristics of the final learned policy.
Therefore, reward function design and tuning is often done to
obtain desired behaviour. Because of this, for future experi-
ments the reward should not be used as the key performance
indicator for these different environments, as it would rule out
altering the reward function as an active research topic on
these environments. To accommodate this, the performance of
these different algorithms on other key performance indicators,
such as average deviation from the optimal track, number of
intrusions, or average number of time-steps taken to reach the
waypoint, amongst others, will be maintained on the GitHub
page, with the intention of showcasing the best performing
algorithms reported in literature.

IV. CONCLUSION

This paper introduced BlueSky-Gym, a platform for RL
research in ATC/ATM/UTM that accommodates open-source
development and benchmarking. It is based on the popular
Gymnasium library and built on the open-source air traf-
fic simulator, BlueSky. At the time of writing a set of 7
diverse environments have been developed and tested, with
initial experimental results highlighting the platform’s utility
in benchmarking various algorithms. Nevertheless there are
still some limitations to BlueSky-Gym, most notably that it
currently supports exclusively single agent RL research and
does not include highly complex/realistic traffic scenarios.
This more simplistic approach however is also one of the main
advantages of BlueSky-Gym, as it allows for easier use and
comparison of different algorithms’ outcomes, which would be
more challenging with highly tailored complex scenarios. Al-
though the platform is undergoing continuous improvements,
it is readily available for researchers aiming to investigate RL
for different challenges of Air Traffic Management.

V. CODE AVAILABILITY

The BlueSky-Gym environments and additional examples
are available online via:
https://github.com/TUDelft-CNS-ATM/bluesky-gym

REFERENCES

[1] P. Razzaghi, A. Tabrizian, W. Guo, S. Chen, A. Taye, E. Thompson,
A. Bregeon, A. Baheri, and P. Wei, “A survey on reinforcement
learning in aviation applications,” Engineering Applications of Artificial
Intelligence, vol. 136, p. 108911, 2024.

[2] Z. Wang, W. Pan, H. Li, X. Wang, and Q. Zuo, “Review of deep
reinforcement learning approaches for conflict resolution in air traffic
control,” Aerospace, vol. 9, no. 6, p. 294, 2022.

[3] Y. LeCun, “The mnist database of handwritten digits,” http://yann. lecun.
com/exdb/mnist/, 1998.

[4] K. Papineni, S. Roukos, T. Ward, and W.-J. Zhu, “Bleu: a method for
automatic evaluation of machine translation,” in Proceedings of the 40th
annual meeting of the Association for Computational Linguistics, 2002,
pp. 311–318.

[5] M. G. Bellemare, Y. Naddaf, J. Veness, and M. Bowling, “The arcade
learning environment: An evaluation platform for general agents,” Jour-
nal of Artificial Intelligence Research, vol. 47, pp. 253–279, 2013.

[6] E. Leurent, “An Environment for Autonomous Driving Decision-
Making,” May 2018. [Online]. Available: https://github.com/eleurent/
highway-env

[7] R. de Lazcano, K. Andreas, J. J. Tai, S. R. Lee, and J. Terry,
“Gymnasium robotics,” 2023. [Online]. Available: http://github.com/
Farama-Foundation/Gymnasium-Robotics

[8] J. M. Hoekstra and J. Ellerbroek, “Bluesky ATC simulator project:
an open data and open source approach,” in Proceedings of the 7th
international conference on research in air transportation, vol. 131.
FAA/Eurocontrol USA/Europe, 2016, p. 132.

[9] K. Y. Hui, C. H. Nguyen, G. N. Lui, and R. P. Liem, “Airtrafficsim: An
open-source web-based air traffic simulation platform.” Journal of Open
Source Software, vol. 8, no. 86, p. 4916, 2023.

[10] L. Delgado, G. Gurtner, M. Weiszer, T. Bolic, and A. Cook, “Mercury-
an open-source platform for the evaluation of air transport mobility-
presentation,” 13th SESAR Innovation Days, 2023.

[11] M. Brittain and P. Wei, “Autonomous air traffic controller: A
deep multi-agent reinforcement learning approach,” arXiv preprint
arXiv:1905.01303, 2019.

[12] S. Deniz, Y. Wu, Y. Shi, and Z. Wang, “A reinforcement learning
approach to vehicle coordination for structured advanced air mobility,”
Green Energy and Intelligent Transportation, vol. 3, no. 2, p. 100157,
2024.

[13] T. Nunes, C. Borst, E. J. van Kampen, B. Hilburn, and C. Westin,
“Human-interpretable input for machine learning in tactical air traffic
control,” SESAR Innovation Days 2021, 2021.

[14] W. Guo, M. Brittain, and P. Wei, “Safety enhancement for deep rein-
forcement learning in autonomous separation assurance,” in 2021 IEEE
International Intelligent Transportation Systems Conference (ITSC).
IEEE, 2021, pp. 348–354.

[15] D. Groot, J. Ellerbroek, and J. M. Hoekstra, “Analysis of the impact
of traffic density on training of reinforcement learning based conflict
resolution methods for drones,” Engineering Applications of Artificial
Intelligence, vol. 133, p. 108066, 2024.

[16] M. Ribeiro, J. Ellerbroek, and J. Hoekstra, “Distributed conflict reso-
lution at high traffic densities with reinforcement learning,” Aerospace,
vol. 9, no. 9, p. 472, 2022.

[17] M. Towers, A. Kwiatkowski, J. Terry, J. U. Balis, G. D. Cola, T. Deleu,
M. Goulão, A. Kallinteris, M. Krimmel, A. KG, R. Perez-Vicente,
A. Pierré, S. Schulhoff, J. J. Tai, H. Tan, and O. G. Younis, “Gymnasium:
A standard interface for reinforcement learning environments,” 2024.
[Online]. Available: https://arxiv.org/abs/2407.17032

[18] A. Raffin, A. Hill, A. Gleave, A. Kanervisto, M. Ernestus, and N. Dor-
mann, “Stable-baselines3: Reliable reinforcement learning implementa-
tions,” Journal of Machine Learning Research, vol. 22, no. 268, pp. 1–8,
2021.

[19] E. Liang, R. Liaw, R. Nishihara, P. Moritz, R. Fox, K. Goldberg,
J. Gonzalez, M. Jordan, and I. Stoica, “Rllib: Abstractions for distributed
reinforcement learning,” in International conference on machine learn-
ing. PMLR, 2018, pp. 3053–3062.

[20] C. Zhang, O. Vinyals, R. Munos, and S. Bengio, “A study on overfitting
in deep reinforcement learning,” arXiv preprint arXiv:1804.06893, 2018.

[21] K. Cobbe, C. Hesse, J. Hilton, and J. Schulman, “Leveraging procedu-
ral generation to benchmark reinforcement learning,” in International
conference on machine learning. PMLR, 2020, pp. 2048–2056.

[22] J. Terry, B. Black, N. Grammel, M. Jayakumar, A. Hari, R. Sullivan,
L. S. Santos, C. Dieffendahl, C. Horsch, R. Perez-Vicente et al.,
“Pettingzoo: Gym for multi-agent reinforcement learning,” Advances
in Neural Information Processing Systems, vol. 34, pp. 15 032–15 043,
2021.

[23] L. Zheng, J. Yang, H. Cai, M. Zhou, W. Zhang, J. Wang, and Y. Yu,
“Magent: A many-agent reinforcement learning platform for artificial

6

collective intelligence,” in Thirty-Second AAAI Conference on Artificial
Intelligence, 2018.

[24] T. P. Lillicrap, J. J. Hunt, A. Pritzel, N. Heess, T. Erez, Y. Tassa,
D. Silver, and D. Wierstra, “Continuous control with deep reinforcement
learning,” arXiv preprint arXiv:1509.02971, 2015.

[25] S. Fujimoto, H. Hoof, and D. Meger, “Addressing function approxi-
mation error in actor-critic methods,” in International conference on

machine learning. PMLR, 2018, pp. 1587–1596.
[26] T. Haarnoja, A. Zhou, K. Hartikainen, G. Tucker, S. Ha, J. Tan, V. Ku-

mar, H. Zhu, A. Gupta, P. Abbeel et al., “Soft actor-critic algorithms
and applications,” arXiv preprint arXiv:1812.05905, 2018.

[27] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov, “Prox-
imal policy optimization algorithms,” arXiv preprint arXiv:1707.06347,
2017.

7

