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Abstract: In a first for Singapore Air Traffic Control (ATC), a 
complete pipeline of Automatic Speech Recognition (ASR) of 
voice communication between pilots and Air Traffic Controllers 
(ATCOs) is presented. Increased complexity due to multi-
accented speech, cockpit noise, and speaker dependent biases 
were overcome by using data sufficiently large enough for 
training the models, collected across multiple domains namely 
enroute, approach and tower. We also carried out detailed 
benchmarking and analysis of various ASR technologies ranging 
from hybrid HMM-DNN to supervised End to End (E2E) to pre-
trained semi-supervised models fine-tuned with ATC voice data. 
This benchmarking helped us to conclude that traditional hybrid 
HMM-DNN is still competitive enough to be used in domain-
specific areas like ATC. We enhanced the Callsign Recognition 
Rate (CRR) from audio, with a fast, efficient method, 
significantly improving it. The preprocessing pipeline includes 
our cutting-edge Voice Activity Detection (VAD), Speaker Turn 
Detection, and Speaker Role Detection (SRD) pipeline. We 
achieved a WER of 5.48%, in addition to improving the CRR by 
6.01%.  

Keywords: Air Traffic Control, Callsign Recognition, Air Traffic 
Controller, Automatic Speech Recognition, Contextual Speech 
Recognition.  

I.  INTRODUCTION  
ASR for ATC is an integral part of the Air Traffic 

Management (ATM) system. It plays an important role in 
reducing the workload of ATCOs (or controllers in short) with 

the ever-increasing air traffic. Even though the ASR 
technology has matured in generic natural language speech 
transcription, it remains a challenge in ATC ASR due to the 
noisy voice channel. ASR systems in the ATC domain demand 
high accuracy since they are directly related to the safety of the 
aircraft and the people. 

We have collaborated with the Civil Aviation Authority of 
Singapore (CAAS) to obtain ATC communication speech data 
from Singapore’s Changi Airport. The total amount of audio 
data after removing silence comes to about 400 hours, which 
was labelled by a third-party vendor. 

In the first part of this work, we focus on training baseline 
ASR models and fine-tuning pre-trained models with the same 
data. Two models were trained from scratch: the first being a 
Kaldi [1] based HMM-DNN model and the second, a joint 
Connectionist Temporal Classification (CTC)-Attention based 
End-to-End (E2E) model using the Wenet [2] toolkit. We also 
fine-tuned a Wav2vec2 conformer ASR pre-trained model 
with 400 hours of labelled CAAS data. We have benchmarked 
on the CAAS test data provided and found that the Kaldi-
based HMM-DNN model is still up to the mark. 

In the second part of the work, the focus is on improving the 
CRR. We employ two methods for this purpose. The first 
method is to exclusively build a contextual Language Model 
(LM) from the augmented training text corpus. The corpus is 
prepared in such a way that we first identify the callsigns from 
the text and replace them with the contextual callsigns. The 
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contextual LM is then trained from this augmented corpus and 
is used in the ASR decoding as usual. Since this method 
involves frequent re-training of the LM, it is not suitable for 
real-time use. In the second method, the attempt is to use the 
n-best from the lattice and search for a possible match for the 
callsign among it. Since both the trained hybrid and E2E 
models are lattice- generating models, it is suitable as a 
baseline for the second method. In this, the model is supplied 
with contextual callsign information along with audio data. 
The callsign is an important information in the voice 
communication between the pilot and ATCO. An ATCO talks 
to different pilots during a certain period using the same 
frequency, and they use callsigns to differentiate between the 
pilots. It is hence very important for recognizing these 
callsigns correctly. The contextual callsign information is 
obtained from either surveillance data or flight plan data. Our 
key contributions to this paper are as follows: 

• First comprehensive ASR system solution for 
Singapore ATC 

• Efficient preprocessing pipeline for ASR systems 
• Benchmarking ASR Engines against popular pre-

trained models 
• Simple and effective offline and online solutions for 

improved callsign detection by Contextual Speech 
Recognition (CSR) 

 

II. RELATED WORKS 

A. ATC ASR 
Work in this direction started as early as 2012, as in [3], 

where a system for transcribing ATC voice data in natural 
language is presented. The system in [4] focuses on assistance-
based speech recognition. Recent works like [5] use more 
complex architectures like TDNNF and CNN+TDNNF. There 
have also been efforts to use pre-trained ASRs like Wav2Vec2 
[6] and Whisper [7] models, by fine-tuning them with limited 
supervised ATC speech data. However, all these works are 
based on the publicly available datasets such as ATCO2[8], 
ATCOSIM [9], UWB-ATCC [10], which only covers 
European Airspace. Unfortunately, the models trained on these 
datasets fail to perform well with the accented Singaporean 
English speech. The main reason is the lack of labelled public 
data for Singapore ATC voice communications. LiveATC [11] 
provides access to data pertaining to Singapore airspace, but 
there are no labels, and the recorded audio is mostly very noisy. 
We have provided decoding results of the test set mentioned in 
section III-C, results and discussions, in Table-1 by using an 
open-source ATC ASR model from [12], to substantiate our 
point. 

B. Contextual Speech Recognition(CSR) 
There were many attempts earlier to use contextual 

callsigns for improving the callsign recognition rate in speech 
data. In [13], the authors have used HCLG and lattice boosting 
via FST composition. They have assumed that contextual 
information is specific to each utterance, which is very difficult 
to obtain in practice. In [14], authors trained a BERT-based 

model to predict the callsigns from the transcribed text. As an 
alternative to lattice-based contextual boosting, [15] suggest a 
method suitable for online implementation in graphics 
processing units (GPUs). A real-time system that predicts a 
sequence of likely commands in the transcribed speech is 
implemented in [16]. 

Section III gives an overview of the ATC ASR system 
including the Voice Activity Detection (VAD), Speaker Turn 
Detection, Speaker Role Detection, and baseline ASR systems 
used and detail the experimental set up and discusses the ASR 
results. Section IV gives details of the ways to include the 
contextual information into the ASR system, namely the 
Contextual Language Model (CLM) method and n-best 
matching method, with experimental set up and results. Section 
V concludes the work, with possible future work for improving 
the system. 

III. ATC ASR SYSTEM OVERVIEW 
Figure 1 shows the full pipeline of the ATC ASR system. 

A. VAD, Speaker Turn Detection(STD),Speaker Role 
Detection(SRD) 
An energy-based VAD is used to determine the silence or 

speech segments in the captured voice data. ATCO - pilot 
communication is usually done through a push-to-talk (PTT) 
mechanism. The impulse signal generated while pressing the 
PTT button is captured and filtered. This short-duration signal 
helps to determine the boundary of pilot-ATCO speech. The 
method is very simple and effective for CAAS data. A joint 
STD and SRD approach is presented in [16], by combining a 
BERT model with VAD by chunking ASR transcripts. 

Segmented speech segments after VAD and speaker turn 
detection should be identified as pilot or ATCO segments. 
Traditionally, the diarization approach [17] is used to detect 
such a turning point. As we know, the good diarization 
approach [18] still has a relatively high diarization error rate. 
Meanwhile, such continuous (without a silence interval) pilot 
and ATCO segments do not occur frequently during ATC 
communication. From the spectrogram of the CAAS data in 
Figure 3, we observed that there is a noticeable difference in 
the high- frequency range. Highlighted ellipsoids demonstrate 
that the high-frequency parts in the pilot are heavily attenuated 
compared to that of the controller. We exploit this difference to 
identify the segments by using the following condition: 

𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 𝑜𝑜𝑜𝑜 𝑒𝑒𝑒𝑒𝑒𝑒ℎ 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠ℎ 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

=
𝑙𝑙𝑙𝑙𝑙𝑙 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒
ℎ𝑖𝑖𝑖𝑖ℎ 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒

 

 
 
Here, the low-frequency band is from 200Hz to 2800Hz, while 
the high-frequency band is from 2800Hz to 3400Hz. If the  
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Figure 1. ASR system overview showing preprocessing steps, i.e., Voice 
Activity Detection (VAD), Speaker Turn Detection (STD) and Speaker Role 
Detection (SRD) 
 
 

 
 
Figure 2. A typical wav file before and after applying low-pass filter with cut-
off of 100Hz. 
 

 
Figure 3. A typical controller and pilot speech spectrogram. 
 
 
ratio is relatively small, then the segment is classified as a 
controller segment; otherwise, it is a pilot segment. 

Overall, this method of segmentation and speaker role 
detection achieves a 94% clustering rate on the CAAS dataset, 
based on the annotated segment labels. 

B. Baseline ASR 
The audio was recorded at the receiver site, which has access 
to both pilot and controller radio transmissions for most 
frequencies in the tower, approach, and enroute domains. The 
audio was then transcribed by a third-party vendor. Raw 
recordings contain long stretches of silence. So, to get 400 
hours of speech data, at least 4000 hours of recordings were 
required. The audio is then processed for separating into pilot 
and controller segments, using a speaker turn detection 
module. It then passed through a speaker role detection 
module to determine to which speaker each segment belongs 
to. 

• Kaldi Based Hybrid HMM-DNN Model 

In this benchmark, we used a standard hybrid approach 
from [19] (LF-MMI/Chain model) as a baseline for the 
evaluated ASR models. Generally, it consists of 2 
parts: an Acoustic Model (AM) and a Language Model 
(LM). The AM is a TDNN-F [20] which is used to 
predict a posterior distribution over the tied Hidden 
Markov Model (HMM) states corresponding to 

context-dependent phonemes. These posterior 
distributions are then combined with a pronunciation 
dictionary (i.e., the lexicon) and a n-gram LM to 
construct a search graph in the form of WFST [21]. 
During the inference, the decoding is done via the 
beam search, which looks for the best paths in the 
constructed graph. 

• Wenet Based E2E joint CTC-Attention Model 

E2E ASR models have replaced the traditional Kaldi 
based hybrid HMM-DNN models in almost all 
domains. One advantage of the E2E ASR model is its 
ability to model inter-word level dependency, making 
Language Models optional in the ASR system. 
Moreover, CTC models don’t need frame-level 
alignments, unlike HMM-DNN models. They can also 
be trained on massive amounts of data, due to its larger 
number of parameters. Here, we have chosen a joint 
CTC-Attention model from the Wenet [2] toolkit. 
Audio Encoder follows conformer architecture, while 
decoding is attention based. 

C. Experimental Set up 
• Hybrid HMM-DNN set up 

Lexicon: The lexicon was updated to include all 
words found in the new transcribed audio data 
corpus, which consisted of 400 hours of silence-
reduced audio from all three ATC domains. 
Additionally, the lexicon was updated to include all 
the new callsigns provided by CAAS. 
Language Model: We used a 3-gram language model 
trained with text transcripts of training set. 
Acoustic Model: The system utilizes 40-dimensional 
MFCC features and 100-dimensional features from i-
vectors as input. A 13-layer TDNN-F [19] was 
employed with 1280 dimensions for each hidden 
layer and 128 dimensions for the linear bottleneck. 
Data augmentation techniques [22] including speech 
reverberation (3 times) and speech perturbation (0.9 
to 1.3) were applied to increase the amount of 
training data and improve the robustness of the ASR 
system. The model was trained with audio samples 
having a sampling rate of 8KHz. 
 

• E2E ASR Set up 
The baseline E2E ASR is a joint CTC/Attention 
model, with the encoder following a conformer [23] 
architecture consisting of 8 attention heads, 12 
encoder blocks, and 2048 linear units. The decoder 
architecture is of bi-transformer type with 8 attention 
heads, 3 decoder blocks, and 2048 linear units. 
Spectral Augmentation [24] and Speed Perturbation 
are utilized as data augmentation techniques. The 
tokenizer used is Byte Pair Encoding (BPE) with a 
dictionary size of 5000, trained with the training text. 
We have not employed a language model. The beam 
search algorithm used is CTC prefix beam search 

VAD ASR STD SRD 
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with a default beam size equal to 10. A fast attention 
rescoring is used to select the final 1-best. The input 
feature is a filter bank with number of bins equal to 
80, with a frame size of 25 msec and a 10 msec frame 
shift. In the hybrid CTC/attention set up, the default 
CTC weight is set to 0.3. The E2E model has 121 
million parameters and was trained with audio 
samples with a sampling rate of 8KHz. Spectral 
Augmentation is chosen as the data augmentation 
method. The model is trained with 400 hours of 
CAAS data and 500 hours of Librispeech. 
 

• Fine-tuning Wav2vec2 Conformer Model 
The base model chosen for fine-tuning is Wav2Vec2-
Conformer-Large-960h-ft from Huggingface [25]. 
Wav2Vec2 Conformer is based on the Wav2Vec2 
[26] architecture with attention blocks replaced by 
Conformer [23] blocks. The fine-tuning data consists 
of CAAS  400 hours data. A batch size of 2 was used, 
with a total of approximately 162k samples. The total 
steps were 6000k and the learning rate was set to 1e-
5. Nvidia A40 GPU (4 cards, 46 GB each) was used 
for fine-tuning. Since the base model is trained on 
16KHz samples, the original 8KHz samples were up 
sampled to 16KHz before fine-tuning. 
 

• Results and Discussions 
Test Set: The test set was provided by CAAS, 
recorded during the period from June 13th to 18th 
June 2023, for a duration of 1 hour each from 2 PM 
to 3 PM. The audio data provided is from channels 
123.7 MHz and 133.8 MHz. Silence parts from the 
long audio are removed using the VAD described 
earlier. Each speech segment is decoded using the 
respective ASR models as shown in Table-I. 
 Table-I shows that, when fine-tuned with 
region-specific data and with LM, pre-trained models 
perform better than Kaldi and E2E models. However, 
Wav2Vec2 model has more than 10 times the 
parameters of the Kaldi HMM-DNN model. The E2E 
model, with 121 million parameters, can accept large 
amounts of data. However, we found that the 
performance of the E2E model with LM is not stable. 
If we want to add new words into the acoustics, then 
the model must be re-trained with additional audio 
data, which could be difficult to obtain. Kaldi models 
are flexible in this regard, as we can force it to 
understand new words by adding those into the 
lexicon and training with additional text data with 
lots of occurrences of the new words. 
 
 
 
 
 
 
 

TABLE-I FILE BASED WER RESULTS 
 

Filename 

Open-
source 
model 
[12] 

HMM-
DNN E2E 

Wav2 
vec2 
(with 
LM) 

123.7MHz-13-06-
2023 31.39 5.00 5.18 4.24 

123.7MHz-14-06-
2023 28.22 8.05 6.8 7.22 

123.7MHz-15-06-
2023 30.27 5.87 6.43 6.02 

123.7MHz-16-06-
2023 28.5 8.26 7.14 7.59 

123.7MHz-17-06-
2023 31.02 4.87 5.68 4.87 

123.7MHz-18-06-
2023 31.2 6.5 5.64 7.14 

133.8MHz-13-06-
2023 29.36 4.98 6.97 5.32 

133.8MHz-14-06-
2023 26.41 4.62 3.17 3.03 

133.8MHz-15-06-
2023 30.74 5.20 4.65 4.51 

133.8MHz-16-06-
2023 28.69 4.58 5.60 5.09 

133.8MHz-17-06-
2023 27.57 2.88 4.64 3.03 

133.8MHz-18-06-
2023 31.67 6.54 6.72 7.59 

Average 29.59 5.61 5.72 5.48 
 

IV.   ATC CONTEXTUAL SPEECH RECOGNITION 
A callsign is a unique identifier for each aircraft used by the 
ATCOs to address a specific aircraft. It follows a standard 
format set by the International Civil Aviation Organization 
(ICAO). The first part is airline name followed by a unique 
number. 

Callsign  Spoken Callsign 
 

SIA807 SINGAPORE EIGHT ZERO SEVEN 
 

CPA797 CATHAY SEVEN NINER SEVEN 
 

Pilots & ATCOs use spoken callsign during voice 
communication, which follows ICAO phraseology. The flight 
information including callsign can be obtained even before the 
arrival (through flight plan data) or immediately after the 
flight’s entry into the airspace (through surveillance 
information from radar). Typically, this contextual 
information can be used to improve the recognition 
performance of the ASR. 

The source of contextual information and the voice 
recording system are two separate systems, as shown in Figure 
4, which are synchronized by means of time stamps (TS). The 
source could be an Automatic Dependent Surveillance-
Broadcast (ADS-B) radar system or a system capable of 
predicting contextual information from flight plan data. The 
contextual information (including the callsigns) can be utilized 
by the ASR system to improve its performance, provided the 
audio and the contextual information are synchronized by 
means of timestamps. 
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Figure 4. Contextual information source and voice recording system. 
 
 
Now, how often the source could pass the contextual 
information depends on the implementation, but generally, it 
is difficult to synchronize both audio and contextual 
information at each utterance level. In our approach, we 
removed this constraint and developed a simple method that 
depends on the contextual information provided over a fixed 
window of 1 hour. This method can be applied to all lattice-
generating ASRs. We also implemented a second method for 
callsign recognition as an offline solution. It is similar to the 
method described in [14]. Here we are restricting the search 
space of the Weighted Finite State Transducer (WFST), by 
using a Contextual Language Model (CLM), which is a tri-
gram language model trained with the training text corpus 
after replacing the original callsigns with the contextual 
callsigns. Figure-5 shows the details of this approach. 
 

A. Using Contextual Language Model (CLM) for decoding 
 The contextual callsigns can be incorporated into the 
ASR system in two ways: at the pre- and post-recognition 
phases. In the pre-recognition phase, we alter the weights of 
the model, so that the search space is limited, while in the 
post-recognition phase, we match the contextual callsigns 
within the n-best sequences, hopefully finding a matching 
callsign within each sequence. The N-best approach works 
only if the callsign of interest is in the lattice. We propose both 
methods here, the former one as an offline solution and the n-
best matching as a real-time solution. 
 The newly constructed contextual LM is employed to 
decode new utterances containing callsigns that may not have 
been encountered by the acoustic model during its training. 
First, a contextual callsign list, obtained from flight plan data, 
is prepared for the duration under consideration. The callsigns 
in the training text are then identified and are replaced by 
contextual callsigns. This new text corpus is then used for 
training the contextual LM. This new contextual LM is used 
for further decoding. 
 

 
 
 
 

 

 

 

 

 

 

 

 

 
Figure 5. A diagram illustrating the process of utilizing contextual callsigns to 
construct a contextual Language Model (LM).  

B. N-Best matching method 
While the contextual LM method can improve the CRR, it 
cannot be applied to real-time scenario. Building contextual 
LM and HCLG graph will take 10-15 minutes in a reasonably 
good CPU system, by which time the contextual information 
becomes irrelevant for the ASR to make any improvements in 
CRR. When an aircraft enters the airspace of a country, the 
ADS-B system located at the nearest ATC command center 
can receive its callsign among other information. By 
processing this information along with the flight plan details, 
ATM system can provide the callsign information to the CSR, 
albeit with a possible delay of few minutes. But since the 
aircraft is going to be in the same airspace for the next 10-15 
minutes, CSR can make use of the contextual callsign 
information for improving its callsign recognition rate.  

The algorithm we developed and shown in Figure 6 can 
process contextual callsign information in real-time, so there is 
no further delay in transcribing when compared to normal 
ASR engine. In this method, the lattice to n-best selects the n-
best sequences, and each callsign is compared with the word 
sequence in the n-best list. Once a match is found, the whole 
word sequence is selected as the output. Otherwise, a 1-best is 
selected as the output as in the case of normal ASR 
 

C. Experimental Set up 
As described earlier, in a real system, contextual information 
can be obtained from surveillance or flight plan data. This 
contextual information is provided for a window of fixed 
duration, typically 1 hour. In the experiments we have used 
oracle contextual callsigns, which are obtained from 
transcribed test data by using our callsign detection script. In 
the deployment scenario, these callsigns can be obtained from 
a system that provides contextual callsigns that are relevant to 
a window of fixed duration of 1 hour. 
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Contextual 
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Contextual Info 

Audio with TS 

 TS 

Training set text 
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Identify 
callsigns
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Algorithm to 
build new 
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gram 

Contextual 
LM 
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Figure 6. Major blocks in real-time Contextual Speech Recognition. (N-Best 
Method) 
 

D. Results and Discussions 
In this section we discuss CRR performance for both baseline 
ASR and CSR. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

• Contextual LM Method 
 
For this method, the test set is a CAAS test set of 
3.28 hours duration which is different from the test 
set described under section III-C results and 
discussions. So, for this method, the contextual 
callsigns are obtained from the transcripts by using 
our callsign detection algorithm.  
 
TABLE-II CRR RESULTS FROM CONTEXTUAL LM 
METHOD 
 

 
Test Set Name 

Number 
of unique 
callsigns 

 
CRR 

(Baseline) 

 
CRR 

(CSR) 

test_C_APP 67 98.66 99.11 
test_C_ENROUTE 49 97.39 99.35 

test_C_TOWER 85 93.25 98.41 
test_P_APP 81 93.59 98.58 

test_P_ENROUTE 57 93.1 98.28 
test_P_TOWER 116 93.27 96.77 

Average  94.87* 98.4* 
 
The baseline ASR used for this experiment is a Kaldi 
Based HMM-DNN model from section III-B. 
 

• N-best Matching Method 
This method can be applied to any n-best producing 
ASR. For the experiments, we have considered the  
 

Kaldi HMM-DNN baseline model mentioned in 
section III. Each test file is of 1hour duration and top  
6 files are from channel 123.7MHz from 13th June 
18th June,2023. While the last 6 files are from 
channel 133.8 MHz from 13th June to 18th June in 
that order.  
 
TABLE-III CRR RESULTS FROM N-BEST MATCHING  
 
 
 

 
 

 
 
 

 
 

 
 
 
 
 

 
 

 

Filename Unique 
Callsigns 

Baseline 
CRR 

CRR 

123.7MHz-13-06-2023 
 

82 86.59 
 

95.12 
 

123.7MHz-14-06-2023 71 94.37 
 

98.59 
 123.7MHz-15-06-2023 

 
70 94.29 

 
100.00 

 123.7MHz-16-06-2023 
 

93 86.02 
 

94.62 
 123.7MHz-17-06-2023 

 
79 88.61 

 
96.20 

 123.7MHz-18-06-2023 
 

62 88.71 
 

96.77 
 133.8MHz-13-06-2023 

 
43 95.35 

 
97.67 

 133.8MHz-14-06-2023 
 

56 82.14 
 

92.86 
 133.8MHz-15-06-2023 

 
101 98.02 

 
99.01 

 
133.8MHz-16-06-2023 

 
71 88.73 

 
91.55 

 133.8MHz-17-06-2023 
 

66 83.33 
 

86.36 
 133.8MHz-18-06-2023 

 
30 86.67 

 
96.67 

 
Average 89.4 95.5 

WFST 
Decoder 

Feature 
extraction 

Acoustic 
Model 

Lexicon 

Language 
Model 

Select n-best 
from lattice. 

Get 
Contextual 
callsigns.  

Compute 
similarity. 

If found match, select 
that sequence. 

Else select 1-best. 
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We have chosen the Kaldi model as the baseline 
ASR for N-best matching experiments. Wenet 
based E2E also provides   N-best output during 
decoding. From Tables II & III we see that the 
performance of the contextual LM method is 
better than N-best matching method. This is 
expected, as we are restricting the search space 
in the LM method, and hence the search 
algorithm should work better. In the ATC 
scenario, WER is not a comprehensive metric, 
but recognition performance of callsigns, 
commands, values etc.  are important.  

V. CONCLUSION AND FUTURE WORKS 
We have  presented a full pipeline of ASR for 

ATC focusing on the Singapore region air space. Two 
ASR systems from scratch were trained using the data 
from CAAS. The fine-tuned pre-trained model with LM 
has better WER performance than hybrid and E2E 
models.  By making use of the contextual callsign 
information, we could improve the callsign recognition 
rate by 6.01%. The system is simple, and processing is 
real-time. In the future work, we plan to include various 
ATC commands apart from the callsigns in the contextual 
list. 
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