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Abstract—In recent years, the demand for Automatic Speech
Recognition (ASR) and Spoken Language Understanding (SLU)
systems within the Air Traffic Control (ATC) domain has been
increasing, especially systems that can be applied in practice.
These systems are essential for reducing the workload of pilots
and air traffic control officers (ATCOs) and ensuring the utmost
accuracy in communication between pilots and ATCOs. However,
ATC remains a low-resource and challenging domain. This paper
presents our work on developing an ASR engine and an SLU
system for ATC in Singapore, addressing these challenges. We
introduce the Singapore Air Traffic Control (S-ATC) dataset,
aimed at fostering research in this demanding field. We then
discuss our contributions to constructing an efficient ASR system
tailored for the ATC domain. Experimental results are provided
to evaluate the effectiveness of combining an ASR system with a
Natural Language Processing (NLP) model versus an End-to-End
system for the SLU tasks in this specific domain. Additionally,
we try to implement a model for Speaker Role Detection (SRD)
task and propose ideas to enhance the efficiency of these systems
in the ATC domain in the future.

Keywords—Robust Automatic Speech Recognition, Natural
Language Processing, Air Traffic Control Communications, Spo-
ken Language Understanding, Signal Processing

I. INTRODUCTION

Air Traffic Control (ATC) can be a highly stressful and
voice-intensive domain due to the critical requirements of
safety, reliability, and efficiency. The primary mode of commu-
nication between pilots and Air Traffic Control Officers (AT-
COs) is via Very High Frequency (VHF) radio, a technology
known for its dependable voice communication capabilities.
Nonetheless, VHF radio technology is not without its limi-
tations, particularly in terms of inherent noise. Furthermore,
the quality of VHF radio signals is greatly influenced by
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external factors, such as weather conditions [1]. These issues
can lead to incomplete reception of information by pilots,
causing misunderstandings of vital instructions and signifi-
cantly compromising aviation safety.

One of the challenges faced by ASR engines in the context
of air traffic control is the diversity of pilot and ATCOs
accents, as pilots come from various countries around the
globe, whereas most ATCOs in this scenario are Singaporeans.
Additionally, both pilots and ATCOs tend to speak rapidly due
to the demands of their work [2]. The presence of numerous
local terms, slang, and specialized jargon specific to the ATC
domain further complicates the task, necessitating thorough
research and sophisticated modeling to ensure accurate recog-
nition and understanding.

To address these challenges, we introduce a high-quality
ASR dataset specifically designed for the ATC domain. This
dataset includes more label types for the slot-filling task
compared to [3], and it can also support intent detection.
Using our dataset, we implemented both an ASR engine and a
Spoken Language Understanding (SLU) system. For the ASR
task, we experimented with several methodologies, such as
fine-tuning the OpenAI Whisper model [4], the Self-supervised
Learning (SSL) model Wav2Vec 2.0 [5], and training an End-
to-End system based on the WeNet framework [6] [7]. The
SLU system was developed using two primary approaches:
integrating an ASR model with a Natural Language Under-
standing (NLU) model or constructing an End-to-End SLU
system that directly extracts high-level information from the
conversation. Previous work [3] utilized ground truth text
in NLU tasks; however, ground truth text is not available
in practical applications. Thus, our research addresses this
limitation by developing SLU systems that operate directly
on audio input without relying on text transcriptions.



In addition to the challenges associated with ASR and SLU,
Speaker Role Detection (SRD) is also one of the important
tasks with significant practical applications in the ATC domain.
Ground truth texts were used in one of the earlier ATC studies
[3] for study in the SRD task in the difficult ATC domain. A
BERT model was refined in [3] utilizing the UWB-ATCC1

and LDC-ATCC2 datasets. The F1 score for the ground truth
texts is 0.84, with 0.85 for the “Pilot” label and 0.83 for the
“ATC” label. While the outcomes show promise, in actual
use, ground truth texts are not available, which means that
the model presented in [3] is not yet suitable for practical
situations. This paper presents several research findings on the
application of text, audio, and a combination of both text and
audio to address the SRD task in real-world conditions.

The subsequent sections in this paper are organized as
follows: Section II describes the construction of the ATC
dataset, and Section III discusses the experimental results of
the ASR system using different methodologies. Section IV
shows various experiments of Speaker Role Detection (SRD)
task in the ATC domain along with several ways to build the
SLU system in Section V. Finally, Section VI concludes our
contributions to this paper.

II. THE SINGAPORE AIR TRAFFIC CONTROL CORPUS

In this section, we provide an overall description of the
dataset utilized for our experiments. This dataset comprises
approximately 440 hours of short utterances from dialogues in
English between pilots and ATCOs. All audio files in the ATC
dataset are sampled at 8 kHz and 16-bit PCM, and originate
from SIN3 airport in Singapore.

Figure 1. The pipeline of preparing the Singapore Air Traffic Control (S-ATC)
dataset

Fig 1 illustrates the steps involved in creating the S-
ATC dataset. The audio in the ATC dataset, collected from
radio communication technology in the ATC domain from the
airport in Singapore. The transcriptions are manually created
to ensure the quality.

The data preprocessing pipeline implemented in this study
has established the dependability of the dataset for the ASR

1This corpus is public in: https://catalog.ldc.upenn.edu/ LDC94S14A.
2This corpus is public in: https://s.net.vn/c38y.
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task. As a result, the high-quality dataset enables experiments
to be conducted with assurance, thereby ensuring the precision
of the findings discussed in Section III.

A. The Air Traffic Control corpus for the ASR task

TABLE I. THE STATISTICS OF EACH ASR CORPUS

Training Testing
# of Utterances 343,279 2,000
# of Hours 440 2.73

TABLE II. THE STATISTICS OF TWO SMALL TESTING SETS

Pilots ATCOs
testing set testing set

# of Utterances 983 1017
# of Hours 1.21 1.52

This dataset is divided into two main subsets: training
and testing, as outlined in Table I. The testing set is further
subdivided into two distinct categories: one subset exclusively
containing audio from pilots, and the other subset consisting
solely of audio from ATCOs, as detailed in Table II. We will
conduct experiments on these two subsets to evaluate and
compare the effectiveness of different ASR models in these
distinct recording environments.

B. The Air Traffic Control corpus for the SLU task

For the SLU task, the ATC dataset comprises approximately
30 hours of around 27,000 short utterances and is divided
into three subsets: training, validation, and testing. Table III
provides the statistics for each subset of the SLU task.

TABLE III. THE STATISTICS OF EACH SLU CORPUS

Training Validation Testing
# of Utterances 20,412 3,205 3,346
# of Hours 25.35 3.34 3.63

TABLE IV. THE STATISTICS OF VARIOUS EXAMPLE LABELS FOR INTENT
CLASSIFICATION AND SPEAKER ROLE DETECTION TASK

# of Utterances
ATC INSTRUCTION CLIMB 2,407
ATC INSTRUCTION DESCEND 1,397
ATC INSTRUCTION REDUCE SPEED 318
PILOT RESPONSE DESCEND 1,770
PILOT RESPONSE HEADING 657

In accordance with the instructions provided in Section II-A,
this subset was extracted from the ATC dataset for the ASR
task. It has been manually annotated with intent, slot, and
speaker role labels for use in the SLU task.

In the previous dataset within the ATC domain [3], the
labels for the named entity recognition (NER) task included
Command, Value, and Callsign. In the current dataset, we have
introduced additional labels such as Airport/City, Greetings,
Waypoint, and Unit for the NER task. Furthermore, the dataset
we present is also annotated for intent classification and
speaker role detection tasks. We have combined the intent
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label and speaker role into a single category that encompasses
40 distinct categories, which are determined by common
commands from ATCOs or responses from pilots regarding
flight paths, aircraft movement directions, and other related
information.

For the speaker role detection task, the label “ATC” denotes
that the speaker is an air traffic control officer, whereas the
label “PILOT” is used for audio originating from pilots.

III. AUTOMATIC SPEECH RECOGNITION

Automatic Speech Recognition (ASR) refers to the process
of converting speech signals into corresponding text tran-
scripts. This section outlines the foundational methodology
employed in developing and training an ASR model within
the ATC domain. The primary objective of this research is
to create an ASR engine that can be effectively utilized in
the aviation sector. Our methodology encompasses several
key approaches: (1) training a hybrid model [8], (2) fine-
tuning a pre-trained ASR model along with a Self-supervised
Learning (SSL) model, and (3) constructing an End-to-End
(E2E) model.

A. System Overview

The hybrid model consists of two components: an Acous-
tic Model (AM) and a Language Model (LM). The AM
utilizes a CNN-TDNNF architecture [9] to predict posterior
distributions over the tied Hidden Markov Model (HMM)
states corresponding to context-dependent phonemes. These
posterior probabilities are then combined with a language
model developed using the SRILM toolkit [10].

With its remarkable performance, the sequence-to-sequence
attention-based encoder-decoder network (Transformer) has
been successfully applied in speech recognition [11] [12].
The encoder employs a conformer architecture that integrates
convolutional layers with self-attention mechanisms to effec-
tively capture both local and global contexts. Meanwhile,
the bi-transformer decoder processes the encoded speech in
a bidirectional manner, improving transcription accuracy by
utilizing both past and future contexts.

We also fine-tune the Wav2Vec2-Conformer [13] and the
OpenAI Whisper model [4]. These efforts are aimed at improv-
ing ASR performance and adaptability within the challenging
ATC domain.

B. Experimental Setup

Our experiments are conducted using the ATC dataset for
the ASR task, as outlined in Section II-A. The detailed
configurations for each model type utilized in the ASR task
are presented in the following sections.

1) Hybrid HMM-Deep Learning Model: Our methodology
utilizes the Kaldi toolkit [14] to train our HMM-DNN-based
ASR systems, its architecture is shown in Fig 2. The input
to the 13 layers of TDNN-F comprises 40-dimensional Mel-
Frequency Cepstral Coefficients (MFCC) features and 100-
dimensional features derived from i-vectors. Each hidden
layer has 1280 dimensions, with a linear bottleneck of 128
dimensions.

Figure 2. The architecture of the hybrid model

2) End-to-End Model: In our research, we train an End-
to-End ASR system, the architecture of which is described
in Fig 3, based on the WeNet framework [6] [7]. The input
features consist of 83 dimensions, including 80-dimensional
log-Mel filterbank coefficients extracted every 10 milliseconds,
along with 3-dimensional pitch features. During both training
and decoding, we apply global cepstral mean and variance
normalization to the feature vectors. The feature encoder
comprises 6 stacked multi-head attention blocks built on 2
CNN layers, designed to capture high-level or abstract features
and provide more discriminative attributes to support acoustic
modeling. Each CNN layer contains 256 filters, each with a
kernel size of 3x3 and a stride of 2x2.

Figure 3. The architecture of the End-to-End model

3) Fine-Tuned Models: We fine-tuned the Wav2Vec2-
Conformer4 model as the encoder and evaluated two decoding
strategies: one utilizing a 5-gram language model (LM) for
decoding with KenLM, and the other without any language
model.

To fine-tune the Whisper model, we first download a robust
pre-trained version of Whisper5 from Hugging Face. This pre-
trained model is subsequently fine-tuned for the ASR task.
Each fine-tuning process is conducted on an NVIDIA A40
GPU for a total of 20,000 steps.

During the experimentation, we maintain a consistent learn-
ing rate of γ = 5 × 10−5, utilizing a linear learning rate
scheduler.

4We use the pre-trained version of facebook/wav2vec2-conformer-rope-
large-960h for all the experiments.

5We use the pre-trained version of openai/whisper-large-v3 with 1550M
parameters for all the experiments.
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C. Experimental Results

TABLE V. PERFORMANCE OF ASR SYSTEM (WER)

Pilots ATCOs Entire
testing set testing set testing set

Hybrid model 8.07 3.71 9.90
E2E model 8.14 3.10 12.30
Wav2vec2 (w/o LM) 8.24 3.46 11.43
Wav2vec2 (w LM) 7.02 2.77 9.90
Whisper 11.21 3.6 11.6

To evaluate the accuracy performance of our system, we
designated a test set consisting of pilot-ATCO speech data
from all three Air Traffic Control (ATC) domains. We ensured
that the test data was recorded at various times and on different
days to achieve a diverse representation.

Performance evaluations are presented in Table V, where we
computed the Word Error Rate (WER) across three test sets:
the Pilots testing set, the ATCOs testing set, and the Entire
testing set for each implementation. WER is calculated as the
total number of transcription errors (insertions, substitutions,
and deletions) relative to the total number of words in the
ground truth.

The conventional hybrid model achieved an average Word
Error Rate (WER) of 3.71% for ATCOs and 8.07% for pilots.
Notably, the End-to-End (E2E) model based on the Wav2Vec2
architecture with a 5-gram language model (LM) using a
KenLM decoder consistently produced better results, achieving
an average WER of 2.77% for ATCOs and 7.02% for pilots.
This improvement can be attributed to the increased variability
in the ATC context, including differences in speaking rates
and varying phoneme durations, which present challenges for
alignment in hybrid models.

Furthermore, significant differences in performance were
observed between the ASR systems for ATCOs and pilots. The
Word Error Rate (WER) for pilots was consistently at least
5 percent higher than that for ATCOs, primarily due to the
differences in recording environments. While the audio from
ATCOs is recorded directly, the audio from pilots is collected
via VHF radio, which contributes to the increased error rate.

The performance of the Whisper model [4] was found to be
suboptimal compared to other ASR models, primarily due to
discrepancies in sampling rates between the model’s training
data and the ATC dataset used in this study. The ATC dataset,
which is essential for evaluating ASR systems in aviation
contexts, is sampled at 8 kHz. In contrast, the Whisper model
[4] can only be fine-tuned on data sampled at 16 kHz. As a
result, the ATC dataset had to be up-sampled from 8 kHz
to 16 kHz for training with the Whisper model. This up-
sampling process likely introduced artifacts and distortions,
thereby reducing the transcription accuracy of the Whisper
model [4].

IV. SPEAKER ROLE DETECTION

The Speaker Role Detection (SRD) task is crucial for
analyzing the journey of a plane within the ATC domain. This
task is typically viewed as either a text classification task or

an audio classification task, relying solely on audio or text
data. In [3], the applicability of ground truth texts in practical
scenarios is limited, and transcribed texts may contain errors
that impact the model’s accuracy. Therefore, we employ both
audio and text concurrently to complement one another and
improve the model’s overall accuracy. This section presents an
overview of the system and the model designed for the SRD
task in the ATC domain.

For all the experiments in this section, we utilized the ATC
corpus for the SLU task with the aim of detecting speaker
roles, as mentioned in Section II-B. To construct this dataset,
a long audio segment containing the conversation between
the pilot and Air Traffic Control Officers (ATCOs) had to be
segmented into smaller audio clips, and each clip was labeled
to identify the speaker. In real-world situations, segmenting
conversations can be challenging due to the spontaneous
nature of discussions, which may involve overlapping voices.
However, in the ATC settings, similar to voice communication
in Air Traffic Control (ATC) as mentioned in [15], commu-
nication over VHF radio simplifies this task. The requirement
for the speaker to press a button to talk creates natural pauses
in the conversation, resulting in blank spaces in the audio
spectrogram and waveform, as illustrated in Fig. 4.

Figure 4. Analyze an example audio: (a) Waveform, (b) Spectrogram.

Therefore, in this scenario, a straightforward Voice Activ-
ity Detection (VAD) model can be employed to effectively
segment the conversation into individual utterances, providing
suitable input for the ASR models that will be discussed later.
This approach also streamlines the labeling process for the
SRD task. While this paper will not delve extensively into the
VAD model, it will focus on enhancing a model for the SRD
task. Once the conversation is segmented into multiple small
audio clips, labels for the SRD task are manually assigned to
ensure the quality of the labels.
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A. System overview

To ensure optimal results for the Speaker Role Detection
(SRD) task, the quality of both the input text and audio must be
of the highest standard. The architecture of the entire system
is illustrated in Fig. 5. For the ASR model, we utilized the
Wav2Vec2-Conformer model [13], which was fine-tuned with
about 440 hours of the ATC dataset, achieving a 7% Word
Error Rate (WER) on the test set. Following this, the SRD
model was trained using both audio and transcribed text. The
detailed architecture of the SRD model will be presented in
the subsequent sections.

Figure 5. The architecture of the entire model

B. Architecture

1) Text-based Speaker Role Detection: Text classification
involves assigning a label or class to a sequence of words [16].
One of the most widely recognized tasks in text classification
is sentiment analysis, where the labels are positive, negative,
or neutral. Many state-of-the-art systems for this task are based
on the well-known Transformer [17] architecture. In this paper,
we also utilize the Transformer [17] architecture to classify
input text into two labels: “PILOT” and “ATC”.

Similar to [3], we fine-tune a pre-trained model for sequence
classification, specifically the BERT6 model [18], using the
ATC dataset. However, unlike [3], our experiments incorporate
both ground truth texts and transcribed texts from an ASR
model. The results from these two input types will be com-
pared to evaluate whether a Natural Language Understanding
(NLU) system can be practically applied, given that ground
truth texts are often unavailable in real-world scenarios.

2) Audio-based Speaker Role Detection: We approach the
Speaker Role Detection (SRD) task as an audio classification
problem, in addition to using text. Within the ATC industry,
there are notable differences in the communication contexts
between shore-based controllers and pilots. As such, these two
categories of audio have unique properties that deep learning
models can use to learn from. However, outside influences
like the sound of the air, the weather, and machinery noise
can negatively impact audio quality, which in turn affects the
model’s ability to learn.

6We use the pre-trained version of bert-base-uncased with 110 million
parameters for all the experiments.

We fine-tune Audio Spectrogram Transformer (AST) model
[19], which is the state-of-the-art model in audio classification
task using Google SpeechCommand dataset [20], with our
corpora mentioned in Section II. The Vision-Transformer
model [21] serves as the foundation for this model, which
was pre-trained using the ImageNet [22] and AudioSet [23]
datasets.

3) Audio-Text-based Speaker Role Detection: Owing to the
drawbacks and shortcomings of relying solely on texts or audio
for the SRD assignment, we created a system that employs an
ensemble algorithm to integrate the previously described text-
and audio-based models. Fig. 6 describes the architecture of
the combination between the AST model [19] and the fine-
tuned BERT model [18].

Figure 6. The architecture of the combined model

Using audio and textual data from the ATC dataset, respec-
tively, the AST [19] and BERT [18] models were individually
fine-tuned. Then, using ensemble techniques—more espe-
cially, the soft voting technique—the predictions from these
two models are integrated. We take the output probabilities
from each model and average them for each label. The final
forecast is given back to the label with the highest average
probability.

C. Experimental Results

The experimental findings of the models discussed above
are shown in Table VI, arranged according to F1 score. It
is evident that the combined model’s outcomes outperform
those of the two separate models. The capacity of the model
to learn features from both texts and audio is responsible for
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this improvement. These findings are similar to those in [3];
however, because this method does not rely on ground truth
texts, it may be used for the first time in real-world ATC
circumstances.

TABLE VI. THE EXPERIMENTAL SRD RESULTS OF EACH MODEL (F1
SCORE).

Pilot ATC Average
AST fine-tuned 0.80 0.84 0.82
BERT fine-tuned 0.89 0.90 0.90
(w ground truth text)
BERT fine-tuned 0.79 0.80 0.80
(w/o ground truth text)
Combined model 0.84 0.85 0.85

V. SPOKEN LANGUAGE UNDERSTANDING

In addition to accurately transcribing dialogues between
pilots and ATCOs, it is essential to extract critical information
for practical applications. This includes tasks such as entity
highlighting (commonly referred to as intent classification
and slot-filling) and speaker role detection. To address these
requirements, we have explored various methods for con-
structing a Spoken Language Understanding (SLU) system
within the air traffic control domain. We compare the perfor-
mance of extracting information from text (Natural Language
Understanding) and directly from audio (Spoken Language
Understanding) to identify the most effective approach for
this task. In addition to the named entity recognition task,
which is similar to previous work [3], we conduct intent
classification and speaker role detection simultaneously, as our
dataset contains shared labels for these two tasks, as outlined
in Section II-B.

A. Natural Language Understanding

In line with the method employed in [3], we fine-tune a
pre-trained BERT model [18] for ATC tasks. However, unlike
[3], our experiments utilize not only ground truth text but also
transcribed text obtained from an ASR model. The results from
these two input types will be compared to assess whether
a Natural Language Understanding (NLU) system can be
effectively applied, considering that ground truth text is not
available in real-world scenarios.

TABLE VII. EXPERIMENTAL RESULTS BETWEEN INPUT GROUND TRUTH
TEXT AND TRANSCRIBED TEXT

Input Slot Intent
F1 score Accuracy

Ground truth text 0.94 0.90
Transcribed text 0.75 0.87

Table VII presents the experimental results of slot-filling
and intent classification comparing ground truth text with
transcribed text. In this case, we chose the output text from
the Wav2Vec 2.0 model [5] because the results are detailed in
Section III. With a high-quality transcription achieving a 14%
Word Error Rate (WER), the output of the Wav2Vec 2.0 model
[5] retains much of its content compared to the ground truth

text. This retention of content enables the BERT model [18]
to perform effectively in the intent detection task. However,
certain errors in the ASR system’s output still impact the
results of named entity recognition, which necessitates precise
accuracy for every word in the sentence, as illustrated in Table
VII. To enhance the effectiveness of the BERT model [18] in
the named entity recognition task, we propose an alternative
approach for constructing the SLU system, which will be
discussed in the following section.

B. Spoken Language Understanding

To address the inefficient performance of the NLU system
caused by the poor quality of transcribed texts, we experi-
mented with an End-to-End (E2E) SLU system. This approach
omits the transcription stage to minimize errors and improve
overall accuracy.

Figure 7. The architecture of the E2E SLU system

This SLU system extracts high-level information directly
from the audio. As illustrated in Figure 7, the system inte-
grates a Self-supervised Learning (SSL) model as the feature
extractor, an Encoder-Decoder architecture, and a pre-trained
Language Model (LM) to comprehend the audio. For our
experiments, we utilized the Wav2Vec 2.0 model [5] as the
SSL model, integrated with the Conformer [24] - Transformer
[17] architecture, and the BERT model [18] as the LM model.
The aforementioned system is implemented using the ESPNET
framework [25].

Initially, we trained the Wav2Vec 2.0 model [5] with the
ATC dataset for the ASR task over 70 epochs. Next, we trained
the entire SLU system for 100 epochs using the same dataset,
while keeping the parameters of the pre-trained Wav2Vec 2.0
[5] and BERT model [18] frozen.

TABLE VIII. EXPERIMENTAL RESULTS OF THE E2E SLU SYSTEM

Input Slot Intent
F1 score Accuracy

Audio 0.96 0.89

As demonstrated in Table VIII, the results for both the
named entity recognition and intent detection tasks have
improved compared to the NLU system described in Sec-
tion V-A. This improvement arises from the elimination of
the intermediary step of converting speech to text, thereby
minimizing errors introduced by models during these interme-
diate transformations. This system can be practically applied,
differing from previous research [3] [26] [27] methodologies
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by not using ground truth text and effectively addressing errors
in transcribed text that affect sentence meaning.

VI. CONCLUSION

This paper introduces a dataset and the application of Au-
tomatic Speech Recognition (ASR) systems and Spoken Lan-
guage Understanding (SLU) systems in the specific domain of
Air Traffic Control (ATC). ATC is considered a challenging
and low-resource domain for applying ASR systems. However,
we provide several contributions aimed at addressing these
challenges and exploring new methods to reduce the workload
of pilots and ATCOs by leveraging recent advances in ASR
technology.

Various experiments were conducted to demonstrate how
each of the applied methodologies influences the performance
of ASR and SLU systems. We observed significant improve-
ments in recognizing named entities and detecting the intent of
speech by employing an End-to-End SLU system, as opposed
to a combination of ASR and NLP models. This system is
capable of detecting not only callsigns, commands, and values,
but also units, waypoints, greetings, and the names of cities
or airports from both speech and textual input. This capa-
bility holds particular significance for the ATC community,
as this high-level information can assist pilots in reducing
their overall workload. In addition, this paper also presents
research on the application of deep learning models to address
the Speaker Role Detection (SRD) task in the ATC domain.
Detecting speakers in the ATC domain aids professionals in
the field in analyzing issues and incidents that occur during
flight operations.

Finally, we believe that the experiments conducted in this
research will significantly benefit deeper applications and other
specialized fields in the future, such as the application of Large
Language Models (LLMs) [28] or Graph Neural Networks
(GNNs) [29] to End-to-End SLU systems to enhance their
efficiency. We hope that this research can be applied in practice
within the field of air traffic management, contributing to
improved service quality and enhanced safety in the aviation
industry.
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