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Abstract—A challenging and open topic in air traffic manage-
ment is the understanding of how aircraft interact between them
to avoid separation losses, consequently creating downstream
effects that go well beyond single pairs. We here present a
concise modelling technique of such interactions and of their
propagations, based on complex network representations of the
same. By relying on some basic hypotheses, we show how this
method can efficiently scale and be used to represent all flights
crossing the European airspace in one day. We then use this
methodology to study the resulting structures in three case
studies: the normal dynamics in Europe, the impact of COVID-
19 on it, and an hypothetical scenario involving free flight
trajectories. Among other results, we show how these structures
are a function of the main traffic flows, but not of the individual
flights, and are hence an emergent property of the system;
how COVID-19 impacted traffic beyond what expected from a
simple reduction in traffic; and how geodesic trajectories actually
dampen the propagation of interactions. We further discuss open
questions and possible venues for future research.

Keywords—Aircraft trajectories; interactions; complex net-
works.

I. INTRODUCTION

Amidst the increasing volumes of traffic that most air
transport systems are experiencing in the last decades, the
quest for increasing the efficiency of air navigation without
impacting safety stands out as a major goal. The cornerstone
of air traffic control is currently the concept of sectors, i.e.
predefined regions of the airspace where a controller is in
charge of directing traffic flows. While this concept has worked
well for decades, it also leaves little space to improvement.
Alternative solutions have been explored, including flight-
centric operations [1], i.e. a decentralised approach in which
each flight is controlled by the same air traffic controller
throughout its entire trajectory; flow-centric operations [2], in
which flight trajectories are organised in a way that reduces
conflicts between them; and free flight operations [3], [4], in
which aircraft have freedom of manoeuvre. In all these cases,
efficiency can be increased by delegating part of the separation
management, either to pilots or to automated systems; and this
in turn requires identifying “easy” flights, i.e. flights that will
take part in no conflicts, or in conflicts whose resolution will
not cascade into additional conflicts.

Predicting such future interactions is nevertheless not easy.
Conflicts can involve more than two aircraft at the same time;
and the resolution of one conflict may create a new one, i.e.,
what is known as downstream effects [5]. Additionally, such

derived conflicts may depend both on the choices made to
solve the original one; and on local conditions, e.g. winds,
that may affect the trajectories. Finally, as ubiquitous in air
traffic, future trajectories themselves are highly uncertain.

Not surprisingly, different attempts have been made to create
systems and models able to forecast such interactions and
downstream consequences; some leading to crucial results,
such as proving that implemented safety measures may not
avoid certain collisions when downstream effects are not
considered [6]. Methods have been proposed to generate
optimal deconflicted trajectories, e.g. through neural networks
[7], [8] or complex network metrics [9], also in the presence
of unmanned autonomous vehicles [9], [10]. Interactions and
downstream effects are also used to quantify the complexity
of the airspace, including aspects such as the possibility of
reaching deconflicted configurations [5], finding key conflict-
ing aircraft [11], and using interaction networks to evaluate
how strongly interactions propagate [12]. In spite of some
interesting results, these contributions are hindered by high
computational costs, limiting the scope of the analysis to small
spatial and temporal scales; consequently, the global dynamics
of downstream propagations has not been characterised.

In this contribution we leverage a previous work of the
authors [13] to propose a large scale model of the interactions
and their propagation observed in the European airspace
in the last decade. The approach involves creating network
representations of flights, in which each one is depicted as a
node, and pairs of them are connected whenever a potential in-
teraction is observed - i.e. whenever their distance falls below a
given threshold. The resulting structures can then be analysed
through the tools provided by complex networks theory [14],
[15], thus providing a picture of how interactions go beyond
pairs of flights. We start by introducing the methodology (Sec.
II), specifically the network reconstruction process (Sec. II-A),
the metrics used for the analysis of the resulting structures
(Sec. II-B), and the real data required (Sec. II-D). We then
propose three use cases involving the European airspace: i) the
analysis of historical interactions, and of how their structure
depended on the volume of traffic, from 2015 to 2019 (Sec.
III); ii) the analysis of the impact of COVID-19 in 2020 and
2021, specifically focusing on how it impacted the structure of
interactions (Sec. IV); and iii), the study of an hypothetical free
flight scenario involving the whole European airspace (Sec. V).
Results indicate that the interaction structure strongly depends



on the volume of traffic. More surprisingly, this is also strongly
modulated by the day of the week; and COVID-19 impacted
the observed topology beyond what expected from the traffic
drop alone. We finally draw some conclusions and suggest
future research topics in Sec. VI.

II. RECONSTRUCTING AND ANALYSING INTERACTION
NETWORKS

A. Reconstruction procedure

As previously introduced, the basic hypothesis of this work
is that potential interactions between flights can be mapped
into a complex network, which can then be analysed to
describe their propagation throughout the airspace. Following
this hypothesis, each flight within the studied airspace is
represented by a node. Whenever the distance between two
aircraft falls below a threshold, a link between the corre-
sponding nodes is created, containing the timestamp of the
event. This threshold represents the distance below which Air
Traffic Control Officers (ATCOs) must pay attention to the pair
of aircraft, and may intervene to change their trajectories to
avoid a potential conflict. We only consider the first interaction
between each pair, following the assumption that, once the
ATCOs have noted and resolved any potential conflict, no
further interactions among the same pair can take place;
hence each pair of nodes can only be connected by one link.
Additionally, no directionality is associated to the interactions;
and, once a link is added, it is never removed from the
network.

We illustrate this idea with a simple example - see also
Fig. 1 for a graphical representation. Let us assume two
aircraft flying conflicting trajectories at similar altitudes (left
panel), and interacting (i.e. getting closer than a given distance
threshold, see dashed circles) at time 00:30 (central panel).
Due to the conflict, the trajectory of one of the aircraft is
changed, and this creates a new interaction at time 00:45 (right
panel). In this example, the interaction between the two initial
aircraft has propagated (through its resolution) to the third
vehicle.

The propagation of these potential interactions can be
analysed through the paths present in the resulting network,
where a path is a sequence of nodes connected by temporally-
ordered links. Paths necessarily have to incorporate the tem-
poral dimension, i.e. the timestamps of the interactions, which
results in them being directed (even though links are not, as
previously explained). Considering again the example of Fig.
1, there is a path, and hence a propagation, from the first
to the third aircraft - the complete path will be [1, 2, 3], in
that order; but the path from the third to the first aircraft (i.e.
[3, 2, 1]) cannot exist, as it would require the second aircraft
to propagate the interaction backward in time.

In the present study we use a distance threshold of 10 NM,
and further only accept interactions when these involve aircraft
with a vertical separation of less than 2,000 ft - see Ref. [13]
for an analysis of these two parameters. We have additionally
imposed that each day (in UTC time) is represented by a
separate network; this allows to analyse large airspaces, at

the cost of losing the infrequent propagation of interactions
across multiple days.

B. Analysing interaction networks

Once interaction networks have been constructed, these have
been analysed through a suite of topological metrics, i.e. met-
rics quantifying specific aspects of the underlying structure.
The considered ones are a subset of the most foundational
ones available in the literature [16]; and are briefly described
below for the sake of completeness.

• Average degree: Average number of links connecting
each node, normalised by the maximum number of links
connecting a single node. This is thus equivalent to the
normalised average number of interactions each flight is
involved in.

• Degree entropy: Measure proportional to the heterogene-
ity of the degrees of nodes [17], and calculated through
the Shannon’s entropy of the distribution of these. Math-
ematically it is defined as:

S = −
Nmax∑
k=0

p (k) ln (p (k)) , (1)

where p (k) is the proportion of flights with k interac-
tions, and Nmax is the maximum degree.
Qualitatively, it states how much variety is observed in
the number the interactions that each flight participates
in.

• Isolated nodes: Number of nodes of zero degree, i.e. of
flights participating in no interactions, here normalised
by the total number of flights.

• Weak giant cluster size: Number of nodes composing
the largest subset for which a path among each pair of
them, in at least one direction, exists, normalised by the
total number of nodes. Qualitatively this represents the
largest number of flights which can pairwise (directly or
indirectly) interact.

• Efficiency: Metric assessing how easily information can
move in the network, here in terms of the propagation
of interactions. It is calculated as the sum of the inverse
of the distances between each pair of nodes, where the
distance is the shortest path (in terms of number of links)
between two nodes [18].

• 4 reachability: Number of nodes that can be reached
from a starting one through paths of length four or less.
In terms of interactions, this represents the number of
flights that can be affected by a source one through short
propagation paths. The metric has been calculated for
each node, normalised by the total number of nodes in
the network, and then synthesised through the mean of
the resulting distribution.

• Reachability modularity: The modularity of a network is
a metric assessing nodes’ organisation in communities
[19], i.e. groups of nodes strongly connected between
them and loosely connected with others. The modularity,
here estimated using the Louvain algorithm [20], has
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Figure 1. Graphical presentation of a simple scenario involving three aircraft, and the reconstruction of the corresponding interaction networks - see main text
for details.

been calculated over a modified network representing
the reachability, i.e. where pairs of nodes are directly
connected whenever they are reachable through any path.
This value gives an idea of how clustered, both in time
and space, interactions are. The formula to calculate it is:

Q =
1

2m

∑
ij

(
aij −

kikj
2m

)
δ (ci, cj) . (2)

aij is the ij element of the reachability matrix, and has
value 1 when the ij flight pair is connected through a path
in at least one direction, and 0 otherwise. Additionally,
ki is the number of other flights to which flight i is
connected, and δ (ci, cj) takes value 1 if flights i and
j belong to the same community, and 0 otherwise. m is
the total number of links the network has.

Some additional topological metrics were calculated, rep-
resenting variations of the aforementioned ones, but are here
not reported for providing limited complementary information.
These include the diameter, betweenness centrality, edge be-
tweenness centrality [21], maximum degree, the ratio between
the second and the largest degree, and the maximum 4
reachability.

C. Differences with previous work

As previously mentioned, the concept behind interaction
networks is based on a previous work of the authors [13]. The
reconstruction and analysis of such networks have nevertheless
been overhauled focusing on the optimisation of the computa-
tions, which has resulted in a wider spectrum of analyses that
can be performed.

The identification of interactions has been improved, firstly,
by calculating coarse-grained versions of all trajectories, for
then performing a first filter on possible interactions. This
substantially reduced the number of pairs of trajectories that
have to be analysed using the complete data, by excluding
flights that never coincided in the same region. Secondly,

the calculation of the shortest paths has been based on the
algorithm proposed in Ref. [22].

This has resulted in a major reduction in the computational
cost of the analyses, which in turn allowed to expand their
scope. To illustrate, while the previous work was limited to the
MUAC (Maastricht Upper Area Control Centre) airspace, now
the full European airspace could be processed - i.e. a four-fold
increase in the number of flights. Additionally, the evaluation
of the obtained networks has improved, as new metrics based
on shortest paths could now be computed - e.g. betweenness
centrality and edge betweenness centrality. In spite of this
increase in scope, the analysis of a full day of flights only
takes a few hours, and could thus in principle be executed in
real-time.

D. Available data

The data underpinning this work correspond to the EU-
ROCONTROL’s R&D Data Archive, a public repository
of historical flights made available for research purposes
and freely accessible at https://www.eurocontrol.int/dashboard/
rnd-data-archive. It includes information about all commercial
flights operating in and over Europe, completed with flight
plans, radar data, and associated airspace structure. Data are
limited at source to four months (i.e. March, June, September
and December) of seven years (2015-2021). We specifically
extracted the executed trajectories of each flight, and cropped
them to correspond to the approximate European airspace,
i.e. between −15◦ and 30◦ in longitude, and between 35◦

and 70◦ north in latitude. We further considered the FIR
and AUA versions, i.e. the trajectory points in which aircraft
crossed boundaries between these air control regions, see
Sec. V. Finally, the whole data set has been divided in two
parts, specifically before and after March 13th 2020, thus
corresponding to before and after the onset of the COVID-
19 pandemic.
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Figure 2. Evolution of the six topological metrics, across years 2015-2020, for the four months available in the data set. Each point corresponds to an individual
day; thick and thin dashed vertical lines indicate respectively changes of year and month. M: March; J: June; S: September; D: December.
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Figure 3. Scatter plots of the six topological metrics, across years 2015-2020,
as a function of the daily number of flight.

III. HISTORICAL INTERACTION STRUCTURES IN EUROPE

As a first analysis, network representations have been recon-
structed for each available day prior to COVID-19, i.e. up to
March 13th 2020, and have further been analysed through the
topological metrics described in Sec. II-B; results are depicted
in Fig. 2.

A strong annual oscillation can be appreciated in all of
them, with higher values during the summer season (June and
September) for the degree entropy, weak GC size, efficiency,
and mean 4 reachability - smaller values are in turn observed
for the remainder metrics. Additionally, a similar increasing

/ decreasing trend is visible when considering year-to-year
variations. In both cases, this suggests that the six topological
metrics are highly correlated with the volume of traffic - see
Fig. 3. When this hypothesis is tested using linear regression
models of the individual metrics as a function of the number
of daily flights, the obtained R2 values range between 0.349
and 0.613. In other words, other variables beyond the number
of flights are needed to explain the topology of the network.
Other non-linear fit functions were also tested, with similar
results.

A closer inspection revealed that some days of the week
had a similar dynamics, irrespective of their traffic level. To
illustrate, let us consider the evolution of the degree entropy
(top left panel of Figs. 2 and 3): two groups of points
stand out each year, especially during the summer months,
corresponding to Saturdays and Sundays. When a linear fit
was performed between each metric and the traffic level, but
including only a specific day of the week, results substantially
improved, with R2 always above 0.8.

In order to get a more complete and quantitative picture, an
analysis based on (random intercept) linear mixed models [23]
has been performed. These models were fitted to reconstruct
the relationship between each topological metric and the traffic
level (the fixed effect), but also incorporating as random effects
the day of the week, the month, and the year. In other words,
they allow to express whether each one of these effects is
impacting the linear model, and further provide an estimation
of the statistical significance. A synthesis of these models is
reported in Tab. I, specifically how the intercept is modified
by each day / month / year, and the corresponding significance
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Degree entropy Isolated nodes Weak giant cluster size Efficiency Mean 4 reachability Reachability modularity
Traffic slope (x10−4) 0.208 ∗∗ -0.038 ∗∗ 0.050 ∗∗ 0.006 ∗∗ 0.003 ∗∗ -0.012 ∗∗

Traffic intercept 1.805 ∗∗ 0.354 ∗∗ 0.542 ∗∗ 0.002 -0.001 0.062 ∗∗

Monday - - - - - -
Tuesday -0.021 0.006 -0.010 -0.001 0.000 0.000
Wednesday -0.023 0.007 -0.011 -0.001 0.000 0.000
Thursday -0.017 0.004 -0.007 -0.001 0.000 0.001
Friday -0.001 -0.001 0.001 0.000 0.000 0.001
Saturday 0.233 ∗∗ -0.046 ∗∗ 0.065 ∗∗ 0.009 ∗∗ 0.008 ∗∗ -0.006 ∗∗

Sunday 0.120 ∗∗ -0.030 ∗∗ 0.040 ∗∗ 0.005 ∗∗ 0.003 ∗ -0.002
March 0.018 -0.007 0.009 0.001 0.000 -0.001
June 0.171 ∗∗ -0.030 ∗∗ 0.047 ∗∗ 0.006 ∗∗ 0.006 ∗∗ 0.002
September 0.168 ∗∗ -0.029 ∗∗ 0.045 ∗∗ 0.006 ∗∗ 0.006 ∗∗ 0.002
December - - - - - -
2015 - - - - - -
2016 0.017 -0.001 0.003 0.001 0.001 0.001
2017 0.035 -0.003 0.006 0.001 0.002 0.001
2018 0.077 -0.012 0.017 0.003 ∗ 0.004 ∗∗ 0.001
2019 0.077 -0.010 0.014 0.003 ∗ 0.004 ∗∗ 0.002
R2, complete model 0.955 0.938 0.930 0.944 0.905 0.800

level. To illustrate, on Saturdays the degree entropy is on
average 0.233 larger than on Monday (which is taken as a
reference), and this is statistically significant at 0.01 level -
note how this is precisely what is intuitively described in the
previous paragraph.

Tab. I indicates that the topological properties are strongly
modified during Saturday and Sunday, and in June and
September. This, in turn, suggests that the main drivers,
beyond traffic levels, are the traffic flows in the network, i.e.
which pairs of airports are connected. Note that, when all
elements are included, the linear model is able to recover the
metrics’ values with very high precision - see the R2 values
in the last row of Tab. I. The only exception is the modularity,
due to its non-linear evolution. The impact of these findings
will be further discussed in Sec. VI.

IV. THE IMPACT OF COVID-19

The COVID-19 pandemic had a profound impact in our
societies in general and in air transport in particular, being
the restriction of movements the main tool initially used by
governments to reduce the spreading of the virus. While the
global impact of COVID-19 in air transport has widely been
studied in the literature [24]–[27], less is known about how it
affected air traffic control [28]–[30]. We are going to use the
proposed methodology to ask a basic question: did COVID-19
alter flights and their interactions beyond what expected from
the reduction of traffic? Or, on the other hand, was the situation
comparable to days before COVID-19 with low demand?

This issue has been tackled by evaluating if and how post
COVID-19 interaction networks deviated from those observed
in the pre COVID-19 years. Specifically, and taking advantage
of the linear tendencies found in the six metrics mentioned in
Sec. III for weekday-grouped data, we compared the distribu-
tion of the residuals for pre and post COVID-19 days. In other
words, we started by creating a linear fit using networks before
March 13th 2020, describing the evolution of each metric as
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Figure 4. Scatter plot of the degree entropy as a function of the number of
flights for Saturdays. Blue and red points respectively indicate pre and post
COVID-19 networks, and arrows examples of the calculation of the residuals.
The diagonal black line reports the best linear fit on networks before March
13th 2020.

a function of the number of flights; for then comparing the
residuals (i.e. the errors in the fit) in the two time periods -
see Fig. 4 for an example. To eliminate other confounding
factors, only residuals from data that fall in a volume of
traffic range present in both post and pre COVID-19 data are
used - see the dashed vertical lines in Fig. 4. Additionally,
Christmas days have been eliminated from the data set, as
they had an anomalously low traffic throughout the data set.
The distributions of the residuals of each metric, integrated
across all weekdays, are depicted in Fig. 5.

Residuals for pre COVID-19 networks are centred around
zero, as is expected by construction; on the other hand, post
COVID-19 ones are clearly different, as confirmed by a two-
sample Kolmogorov-Smirnov test [31] - see Tab. II. In other

TABLE I. LINEAR MIXED MODELS. ROWS REPORT THE SLOPES AND INTERCEPTS FOR THE FIXED EFFECT (TRAFFIC, OR NUMBER OF FLIGHTS); THE
INTERCEPT PARAMETERS FOR THE RANDOM EFFECTS; AND THE R2 OF THE COMPLETE MODEL. ∗ : p-VALUE < 0.05; ∗∗ : p-VALUE < 0.01.
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Figure 5. Histograms of the density distribution of residuals, for both the pre
(blue bars) and post (red bars) COVID-19 networks, for the six considered
topological metrics. Dashed vertical lines represent the median of the corre-
sponding distribution.

words, the propagation of interactions was modified beyond
what expected from a simple reduction in the number of
flights, suggesting a reconfiguration of the main flows across
Europe and not a simple uniform pruning [26].

The proposed analysis can also be used to explore whether
a “normal dynamics” can be identified in the European air
traffic; i.e. at which volume of traffic the interaction networks
lose their normal structure. To this end, we calculated a linear
fit for each weekday between a topological metric and the
number of flights, as previously explained. Next, the residual
of each day after March 13th 2020 has been extracted, and
normalised according to the standard deviation of the fitted
values. Finally, the evolution of such residuals as a function
of the ranking of the day is depicted, see Fig. 6. To illustrate,
in the case of the modularity (bottom right panel), days after
March 13th 2020 with high volumes of traffic (thus low
number in ranking, left side of the graph) have residuals close
to zero, i.e. they behaved as expected in the pre COVID-19 era.
A transition in most metrics can be observed around rank 130,
corresponding to approx. 10, 400 flights, as indicated by the
dashed vertical lines; networks with less flights (to the right
of the lines) present high residuals, i.e. they deviated from
the normal topology. This volume of traffic can therefore be
seen as a transition point, below which the structure of the
propagation network undergoes a complete breakdown.

V. HYPOTHETICAL SCENARIO: GEODESIC TRAJECTORIES

In order to show the usefulness of the proposed repre-
sentation in the context of the evaluation of hypothetical
scenarios, we here consider the case of aircraft following
geodesic trajectories (direct trajectories) with different restric-
tions. Specifically, we compare the network representations
obtained for year 2019 with those that would arise if all fights
followed geodesic routes, and geodesic routes constrained by
FIR and AUA (ATC Unit Airspace) structures.

Median Median p-value
pre COVID-19 post COVID-19

Degree entropy 4.49 · 10−3 1.09 · 10−1 2.38 · 10−7

Isolated nodes −7.64 · 10−4 1.27 · 10−2 5.78 · 10−7

Weak giant
cluster size −1.85 · 10−3 −1.32 · 10−3 8.49 · 10−3

Efficiency 1.66 · 10−4 3.92 · 10−3 2.68 · 10−7

Mean 4
reachability 1.25 · 10−4 4.77 · 10−3 2.76 · 10−11

Reachability
modularity −2.20 · 10−4 −2.53 · 10−3 9.38 · 10−7

TABLE II. STATISTICAL ANALYSIS OF THE RESIDUALS FOR PRE AND POST
COVID-19 NETWORKS.
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flights - i.e. decreasing number of flights from left to right. Red points denote
post COVID-19 days with traffic within the range of what observed before
COVID-19. Vertical lines mark the 130th data point in the ranking, for visual
reference.

A. Trajectories preparation

The calculation of the synthetic trajectories representing
geodesic routes follows three steps.

Step 1: Horizontal trajectory: In the first step, a two-
dimensional route is created, starting from the first airborne
available position report and ending in the last available one.
Note that these two points are not modified, to account for the
initial departure and final arrival procedures, and to ensure a
correct alignment with the corresponding runways. All other
points are deleted, and substituted with equidistant points
obtained according to the following rules:

• Full geodesic trajectory: positions are sampled across the
geodesic path connecting the initial and final points.

• FIR-constrained geodesic trajectory: the position of the
aircraft when crossing between two FIRs (as provided
in the original data set) is preserved; the geodesic path
is then calculated between these intermediate points, and
new synthetic position reports are added.

• AUA-constrained geodesic trajectory: same as the pre-
vious case, but preserving the positions when crossing
between two AUAs.
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Figure 7. Scatter plots of the total daily number of interactions (top panels) and
average degree (bottom panels), for the three sets of synthetic trajectories, as
a function of what observed in executed ones. The red dashed lines represent
the main diagonal, as a reference.

In other words, the first version corresponds to the optimal
(distance-wise) trajectory that each flight could follow; while
the remainder two are restricted versions of the same, in which
the hand-over points are preserved to facilitate the work of
ATCOs. Consequently, being AUAs contained within FIRs,
these three trajectories have increasing total distance, and
decreasing difference with respect to the executed one.

Step 2: Time over: Next, a speed profile is calculated for
each trajectory. For this, the original trajectory is split in two
halves, and two half-profiles are calculated: the speed as a
function of the time passed since crossing the initial airborne
point; and the speed as a function of the time before crossing
the last airborne point. In both cases, speeds correspond to
ground ones, and are simply calculated as the 2D covered
distance divided by the elapsed time. These speed profiles
are preserved in the new trajectories, i.e. we assume that the
acceleration profile does not depend on the trajectory; and they
are used to calculate the time over each point.

Step 3: Vertical profiles: As a final step, the same procedure
used to calculate the time over the points of the trajectory is
also used to calculate the altitude. In other words, we also
assume that the vertical speed of each aircraft is independent
on the trajectory; and furthermore, that procedures (e.g. con-
tinuous descent) do not change.

B. Results

We start the analysis of the results by comparing the
total daily number of interactions observed in each trajectory
modification scenario, against what observed in real executed
trajectories - see top panels of Fig. 7. Results are very similar,
with a small reduction observed in the case of full geodesic
trajectories (right panel); and are further confirmed when
evaluating the average degree of flights (bottom panels of the
same figure).
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Figure 8. Scatter plots of the number of isolated nodes (top panels) and of the
modularity (bottom panels), as a function of the number of flights. Blue and
red points respectively correspond to executed and synthetic (see top label)
trajectories.

AUA FIR Geodesic
Degree entropy -0.010 -0.033 -0.103 ∗∗

Isolated nodes 0.015 ∗ 0.027 ∗∗ 0.025 ∗∗

Weak giant cluster size -0.020 -0.032 ∗∗ -0.031 ∗

Efficiency -0.001 -0.002 -0.004 ∗∗

Mean 4 reachability 0.000 -0.001 -0.003 ∗∗

Reachability modularity 0.000 0.001 0.001

TABLE III. EXTENDED LINEAR MIXED MODELS, WITH ADDITIONAL RAN-DOM 
EFFECTS FOR AUA, FIR AND GEODESIC SYNTHETIC TRAJECTORIES. ∗ : p-VALUE 
< 0.05; ∗∗ : p-VALUE < 0.01.

Moving to the analysis of topological metrics, Fig. 8 reports 
scatter plots of the number of isolated nodes (top panels) 
and of the modularity (bottom panels), as a function of the 
number of flights; both for executed trajectories (blue points) 
and for synthetic ones (red points). Some important changes 
can be observed, especially in the case of the former and of 
fully geodesic trajectories. Note that this is to be expected, 
as the magnitude of changes in the trajectories is ordered 
according to AUA < FIR < Geodesic. We further analysed the 
impact on topological metrics by extending the linear mixed 
model of Tab. I to include the trajectory generation algorithms 
as random effects - see Tab. III. Note that the two metrics 
included in Fig. 8 corresponded to the ones yielding largest 
and smallest changes, respectively.

The observations indicate that the use of geodesic trajecto-
ries has a positive impact in the propagation of interactions: 
less flights interact, as measured by the increase in the number 
of isolated nodes; and those that do interact, have a more 
homogeneous degree. This is probably due to the fact that 
flights can use a larger share of the airspace, hence the proba-
bility of conflicts is reduced. Thus, even if each interaction 
may pose a bigger challenge for ATCOs, as flows are no 
longer ordered, these would be more sparse and have less of 
a systemic nature. As a final note, it is worth highlighting that 
these results are qualitatively similar to what was obtained in

7



the synthetic model of Ref. [13] when changing the laminarity
of trajectories; while beyond the scope of the present analysis,
this may indicate that the spatial distribution of the system is
large enough to be simulated by a random model.

VI. DISCUSSION AND CONCLUSION

In this contribution we have proposed an analysis of the
structures created by the interactions between flights, focusing
on the evolution of their properties through time and in specific
scenarios. We have initially focused on the topological analysis
of structures observed from 2015 to 2019, and highlighted their
dependence on both volumes and flows of traffic (Sec. III);
we further analysed the impact that COVID-19 had thereon
(Sec. IV); and finally applied the methodology to the study
of hypothetical scenarios involving different variations of free
flights (Sec. V). While hitherto not common in air transport,
this approach of representing interactions as complex networks
can effectively be used to understand their propagations,
and eventually support concepts like flight- and flow-centric
operations. Beyond the specific results already discussed, some
additional considerations ought to be drawn.

First of all, the fact that interaction structures strongly
depend on the day of the week and the month (see Tab. I)
suggests that the relevant element is the traffic patterns, i.e.
which pairs of airports are connected, and not the dynamics of
individual flights. In other words, while individual trajectories
themselves are highly uncertain and flights can be modified
by many factors, the global structure of interactions is mostly
stable and predictable - in statistical physics’ terms, the global
structure is an emergent property of the micro-scale dynamics
[32], [33]. This, on the one hand, implies that it may be
interesting to identify anomalous days - here not included
for the sake of conciseness; but also, on the other hand,
that interaction structures cannot easily be changed by small
modifications of the planning of flights, thus making their
manipulation a challenging problem.

Secondly, the analysis of the data corresponding to the
COVID-19 pandemic deserve some discussions. What here
found suggests that the structure of interactions was altered
in year 2020 beyond what would have been expected if only
the number of flights was changed. In other words, interactions
were modified by changes in the whole dynamics of the system
- as previously reported at a global and airport [29] level.
An interesting question (not here tackled due to limited data
availability) remains: has the system recovered its original
dynamics, or did COVID-19 change it permanently?

Thirdly, we have here illustrated how the proposed method-
ology can be used to probe hypothetical scenarios, focusing
on a simple one in which trajectories are changed to fol-
low geodesic paths while respecting the underlying airspace
structure - see Sec. V. Not all interactions are nevertheless
born equal: future versions of the model will have to take
into account both their complexity and the probability of their
propagation, in order to yield a more realistic picture. At the
same time, it is easy to envision additional scenarios of high

value and timeliness, as e.g. the study of the effects of altitude
capping and re-routing to reduce CO2 emissions.

In spite of some limitations, including for instance the
need for a better understanding of the operational meaning
of topological metrics, the approach here presented seems to
provide already some relevant results; and we strongly believe
a further analysis of the results and refinements of the model
can address the aforementioned limitations, leading to new
meaningful outcomes.
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