
Probabilistic Constraints Prediction with
Uncertainty Quantification in Trajectory Based

Operations (TBO)
Paolino De Falco
EUROCONTROL

Bretigny-Sur-Orge, France
paolino.de-falco@eurocontrol.int

Mehtap Karaarslan
EUROCONTROL
Brussels, Belgium

mehtap.karaarslan@eurocontrol.int

Abstract—The SESAR research for 4D trajectory data ex-
changes between Air Traffic Management (ATM) actors enables
Trajectory Based Operations (TBO) by introducing more accu-
rate and comprehensive flight data sharing. However, differences
in how various ATM actors consider Air Traffic Control (ATC)
Letter of Agreement (LoA) constraints, before flight departure,
leads to misalignment in trajectory calculations, impacting TBO
implementation. To address this problem, as part of the SESAR 3
Network TBO project Solution 1, this paper presents a machine
learning-based model predicting the probability for an ATC LoA
constraint to be applied during flight. Additionally, an approach
to quantifying the predictions’ uncertainty is developed, aiming at
helping users identify potential issues with predictions. The model
outcome will be subject to further assessment via operational
validation scenarios in a prototyping environment since it should
allow better trajectory alignment across ATM actors, facilitating
smoother Flight and Flow - Information for a Collaborative
Environment (FF-ICE) Release 1 deployment and advancing
TBO in Europe.

Keywords—Machine learning; probabilistic predictions; uncer-
tainty quantification; trajectory constraints; TBO; Trajectory
Based Operations; SESAR; FF-ICE

I. INTRODUCTION

One of the key European developments towards TBO was
the 4D trajectory data exchanges between all Air Traffic
Management (ATM) actors during the pre-departure phase.
This development supported the ICAO FF-ICE Release 1 (FF-
ICE/R1) definition. ICAO defined the FF-ICE as “The FF-
ICE is flight information-sharing between members of the
ATM community. It constitutes the necessary basis for the
most advanced ATM systems and the development of four-
dimensional (4D) trajectory management” [1]. The ICAO FF-
ICE/R1 eFPL exchange, amongst many other improvements,
revolutionises the flight data exchanges worldwide by enabling
4D trajectory (latitude, longitude, altitude, time) data exchange
rather than a 2D route (point, time) data exchange, which is
in place today.

Exchanging 4D trajectory data enables the different actors
to understand how others calculate the flight trajectories. In
the past, the SESAR 1, SESAR 2 Wave 1 and Wave 2 solu-
tions which developed the 4D trajectory exchanges between
ATM actors and used the data derived from these trajectories

identified that there is a misalignment between trajectories
calculated by Airspace User (AU), and Network Manager
(NM) and Air Navigation Service Providers (ANSPs). This
misalignment is negatively impacting the FF-ICE/R1 deploy-
ment and achieving TBO in Europe.

One of the reasons of these differences is the different
approach in applying the ATC LoA (Air Traffic Control
Letter of Agreements) constraints during pre-departure phase
which also impacts the post-departure phase. The ATC LoA
constraints describe how a flight shall be transferred from
one ATC to another by the Air Traffic Controller (ATCO),
during the flight execution. The ATC LoA constraint impacts
the flight trajectory in the vertical profile, i.e., the flight levels
and distances when crossing from one ATC to another.

During the pre-departure phase, the AU does not have to
comply with the ATC LoA constraints to obtain a valid flight
plan. Hence, the AUs do not systematically consider these
constraints in their trajectory calculations. Consequently, since
not all ATM actors apply them in the same manner, the
resulting different trajectories can cause misunderstandings.
Figure 1 comparing the trajectories illustrates this difference.
The desired trajectory represents AU 4D trajectory submitted
to NM via the FF-ICE Service. The agreed trajectory is the
trajectory calculated by NM and distributed to the concerned
ANSPs. Since, during the flight the ATCO may or may not
decide to apply an ATC LoA constraint entirely, the AUs do
not consider them predictable enough to apply systematically
during flight planning. The ATC LoA constraints consideration
in the AU trajectory calculation increases the fuel that the
aircraft shall carry. Therefore, the AU would consider an ATC
LoA constraint that the ATCO is most likely to apply.

During the post-departure phase, the trajectory predicted
by the aircraft during the flight (Extended Projected Profile
- EPP), based on the AU trajectory planned, potentially cal-
culates a different Top Of Descend (TOD) than the one the
ATCO expects. This difference prevents certain TBO use cases
such as “Descend When Ready via Datalink”.

There is a need to solve these problems to complete FF-
ICE/R1 deployment throughout Europe; and get closer to the
TBO implementation. Since the past SESAR projects identi-



Figure 1. Difference in Top Of Descent (TOD) between desired and agreed
trajectories.

fied that “the AU would consider an ATC LoA constraint
that the ATCO is most likely to apply”, the SESAR 3
Network TBO Project Solution #1 developed a prediction
model that is presented in this paper. The purpose of this work
is to calculate the probability of application of an ATC LoA
constraint along a trajectory by using machine learning (ML)
techniques. As a result, the AUs, NM, and ANSPs can predict
trajectories better and be aligned in terms of 4D trajectory
representation.

The purpose of this paper is to describe the methodology
developed (Section III) and its results (Section IV) based on a
probabilistic approach with uncertainty quantification (Section
II). The paper also discusses the open questions, and the next
steps that the project will take, as well as the conclusions
(Section V). The “ATC LoA constraint” will be referred to as
“constraint” from now on.

II. UNCERTAINTY QUANTIFICATION LITERATURE REVIEW

ML model metrics offer a broad assessment of a model’s
overall performance but do not provide insights into the quality
or reliability of individual predictions. This implies that, once
deployed in an operational environment, the model user can
rely on these metrics to assess the overall quality of predictions
without having the possibility of determining the reliability of
single predictions.

Model predictions and physical observations can be affected
by different types of uncertainty. As defined in [2], a common
approach is to distinguish between data uncertainty (also
called aleatory uncertainty), which arises from inherent class
overlap or noise within the data, and knowledge uncertainty (or
epistemic), which stems from a lack of information about input
regions that are either far from the training data or sparsely
represented in it [3]. This latter form of uncertainty occurs
when sampling from a different distribution than the one that
generated the training data. High knowledge uncertainty may
suggest that the model’s output should be approached with
caution or not trusted. Furthermore, as knowledge uncertainty
is a property of the model, it can be reduced by providing
more training data to the model. Data uncertainty, instead,
is a property of the underlying distribution that generated
the data, rather than a property of the model. A condition
for a classification model to capture data uncertainty in its
predictions is that it is trained using a negative log-likelihood

loss function [4]. To be effective, an infinite (or sufficiently
large) amount of training data is necessary. It can be shown
that prediction with a skewed probability distribution may
indicate low data uncertainty, whereas a uniform distribution
suggests high data uncertainty. Models that generalize well
tend to produce more accurate estimates of data uncertainty,
whereas models over-fitting the training data are likely to
provide less reliable estimates of this type of uncertainty [4].
Total uncertainty, finally, is the sum of both data uncertainty
and knowledge uncertainty.

Various approaches have been proposed in the literature to
estimate the uncertainty of individual predictions. Sensitivity
analysis methods, for instance, use the model’s output response
to small perturbations in the input data as a measure of
uncertainty [5]. Other methods, such as the Delta method
and Bayesian approaches [6], are typically computationally
intensive and have been applied for uncertainty quantification.
Quantile regression methods [7] enable the simultaneous com-
putation of multiple quantile values, producing a distribution
of the target variable for a given input. In this approach, the
difference between high and low quantile values can be used
to quantify the level of uncertainty for each prediction.

Recently, there has been a growing interest in ATM on
quantifying the uncertainty of individual predictions. Several
studies have focused on probabilistic predictions of flight
delays [8] [9], reactionary delays [8], and the associated costs
[10], as well as Air Traffic Flow and Capacity Management
(ATFCM) delays [11]. A recent research has focused on
probabilistic predictions of aircraft turnaround times [12],
while Bayesian probabilistic methods have been applied to
estimate trajectory predictions [13] and to guide active learning
for meta-modeling in large-scale simulations [14].

Although these studies offer various methods for quan-
tifying uncertainty in individual predictions, the distinction
between the two types of uncertainty was not addressed.
Knowledge uncertainty can be computed by using a single
model that learns a decision boundary separating the in-
domain region from the rest of the input space, provided
that suitable out-of-domain training data is chosen [15], [16].
However, although many of the methods based on single
models demonstrate good empirical results, few have a strong
theoretical foundation explaining why they are effective [4].

A more intuitive and rigorous approach to compute knowl-
edge uncertainty is to use an ensemble of ML models (i.e., a
set of models that are trained and combined to solve the same
problem) [3]. Ensemble approaches leverage the fact that each
single model, behaves predictably within the in-domain data
(i.e., input data falling within the feature space covered by
the training data) but exhibits undefined behavior for out-of-
domain data (i.e., inputs that a ML model encounters during
inference that are different from the data it was trained on).
As a result, an ensemble of independent models will produce
consistent predictions for in-domain inputs and a diverse set
of predictions for out-of-domain inputs, since each model’s
behavior will differ [4]. This property allows an ensemble to
assess both data uncertainty and knowledge uncertainty within

2



a unified probabilistic framework, eliminating the need for
out-of-domain training data which is instead necessary when
using single models. In an ensemble of models each model
provides a different estimate of data uncertainty, which is
represented by the entropy of its predictive distribution [4].
The entropy of the averaged probability distribution across all
models in the ensemble can serve as a measure of overall
prediction uncertainty (or total uncertainty). Additionally, by
analyzing mutual information, it is possible to decompose the
sources of uncertainty and compute knowledge uncertainty as
the difference between total and data uncertainties. Equations
to compute these quantities for binary classification problems
can be found in Section III-D.

In a recent work [3], an approach to quantify and distinguish
between the two forms of uncertainties using ensembles of
Gradient Boosting based on decision trees (GBDT) models
[17] has been developed. Specifically, uncertainty estimation
for GBDT models has been analysed by generating an en-
semble of models via bootstrapping and using CatBoost as
an algorithm [18]. The authors showed that measures of
knowledge uncertainty, achieved far better out of domain
detection performance (assessed using AUC-ROC curves [19])
than measures of total uncertainty.

In applications like out-of-domain detection it is desirable to
estimate knowledge uncertainty (rather than total uncertainty
[3]). When deployed in an operational environment, ideally,
a model could provide not only a probabilistic prediction
but also an estimate of the knowledge uncertainty associated
with it, signaling potential input outliers that could result
in undesired predictions or indicating potential issues with
the predictions. This additional information can influence the
user’s decision-making and assist in assigning a certain level
of trust to each prediction.

III. MODEL DEVELOPMENT

This section describes a ML binary classification model for
predicting the probability that each constraint in a planned
trajectory will be applied. Additionally, an approach to quanti-
fying prediction uncertainties will be presented using Catboost
[18], one of the Gradient Boosting based on Decision Trees
(GBDT) algorithms becoming highly popular in the context
of ML for delivering state-of-the-art results on tasks involving
heterogeneous features, complex dependencies, and noisy data.

A. Data Preparation & Labeling Approach

The ML model needed to be trained with the historical data
including the constraints that were considered on the planned
trajectories, and the constraints that were actually applied on
the flown trajectories. The NM archives contain two years of
planned (with all constraints applied) and flown (updated with
radar data) trajectories of the flights occurred in ECAC area.
However, this data does not refer to the constraints. Therefore,
these constraints had to be identified. In order to identify the
constraints on the these trajectories: the planned and flown
trajectories from 2023 were retrieved from the NM archives,
then the constraints on each trajectory were added by using a

tool developed for this purpose. The tool was reprocessing
the trajectories by using the NM algorithm to identify the
constraints along them. At the end of this data preparation
process, 365 days of planned and flown trajectories; and the
constraints impacting them were available for training the
ML model. Specifically, a trajectory point was labeled with
a constraint if, in both the planned and flown trajectories, the
same constraint identifier appeared.

Only samples describing trajectory points that were marked
with a constraint in the planned trajectory were used for
this study. At the end of this data labeling process, 45% of
observations were labeled with applied constraints, while 55%
with non-applied ones. The final dataset contains nearly ten
million observations from 2023 data.

In this study, static input features were used for model de-
velopment, which enables the application of the model across
any time horizon without the need for time-dependent data,
enhancing its flexibility across different temporal contexts and
prediction intervals. The set of input features that was selected
for this study is described in Table I. The point type describes
the nature of a trajectory point such as Top Of Descend (TOD).
Please access this link for further information.

TABLE I. ATTRIBUTES USED TO TRAIN THE MODEL.

Flight attribute Description Convention

Day of week Categorical dayWeek
Month of operations Categorical month
Aircraft type Categorical aircraftType
Aircraft identifier Categorical aircraftId
Aircraft operator Categorical aircraftOper
Origin airport Categorical origin
Destination airport Categorical destination

Trajectory point attribute Description Convention

Latitude of the point Numerical latitude
Longitude of the point Numerical longitude
Longitude east or west Categorical longitudeE-W
Flight level of the point Numerical flightLevel
Hour of operations Categorical hour
Point type Categorical pointType
Constraint identifier Categorical constraintId
Point distance From the origin (nm) pointDistance

B. Binary Classification with Bootstrapping

CatBoost was chosen for the binary classifier because it
efficiently handles categorical data without extensive pre-
processing and is robust against overfitting due to its ordered
boosting technique [20].

The Log-loss (or negative log-likelihood (NLL) loss) [19]
was selected for this model. Log-loss is indicative of how close
the prediction probability is to the corresponding actual/true
value (0 or 1 in case of binary classification). The more the
predicted probability diverges from the actual value, the higher
the log-loss value. The choice of Logloss aligns with the
goal of obtaining probability estimates, which are essential for
evaluating model performance and making informed decisions.

CatBoost allows for tuning multiple hyper-parameters to
optimize learning and model performance. In this study, the

3

https://docs.fixm.aero/#/general-guidance/trajectory-point-properties


focus was on optimizing tree depth and the number of trees, as
these significantly impact the loss function. Performance was
evaluated using k-fold cross-validation, where the model is
trained and tested across different data subsets to calculate an
average performance score. To find the best hyper-parameters,
GridSearchCV [21] was used, which exhaustively tests all
possible combinations to identify the optimal configuration.
As a result, the optimal settings were 100 estimators and a
maximum tree depth of 7. This analysis was conducted on
a single model using the entire dataset, rather than on each
individual bootstrapped model.

To enhance the model’s robustness, a bootstrap aggregation
technique was implemented [22]. Specifically, 50 bootstrap
dataset were generated from the original training dataset,
with each sample being extracted with replacement. Later, a
separate CatBoost model on each bootstrap sample was trained
using the previously identified optimal hyper-parameters. A
Langevin diffusion-based gradient boosting algorithm [23] was
used in CatBoost for training. By adding noise to gradi-
ent updates, this method explores the parameter space more
broadly, enhancing optimization and reducing over-fitting. It
is particularly recommended for the quantification of knowl-
edge uncertainty [3]. As a common practice, the dataset was
randomly split into a training and testing set using the ratio
80:20, as for all the models presented in this manuscript.

Each of the models within the ensemble outputs two proba-
bility values for each of the considered classes. In other words,
it provides a probability that a constraint in the planned trajec-
tory will be applied during flight as well as the probability that
it will not be applied. Both probabilities are complementary,
meaning that their sum is one. Overall, a prediction for a
certain observation is considered correct if the model outputs
a probability higher than 0.5 for the class that the observation
is labeled with. The bootstrapping approach allows for the
generation of 50 predictions for each observation that can be
used to define new metrics and provide additional information
to the potential model user. These metrics will be described
in Sections III-C and III-D.

C. Model Performance Assessment Metrics

After training the model on each bootstrap sample, the
predicted probabilities of each of the two classes (i.e., applied
and non-applied constraints) and of each observation in the
test dataset were averaged.

Using these mean probability values and specific threshold
values (as it will be shown in Section IV), which allow to clas-
sify an instance as belonging to either one class or the other,
the overall performance of the binary classification model was
assessed according to the accuracy, recall, and precision which
are standard metrics for binary classification models [19].
Specifically, an observation is predicted as belonging to a class
if the mean value of the predicted probabilities (computed over
the ensemble of bootstrap samples) for that class is higher or
equal to the threshold value.

Weighted and macro averages of precision and recall will be
considered in Section IV-B. Weighted averages adjust metrics

based on class proportions, reflecting the influence of each
class’s size. Macro averages, instead, compute metrics for each
class independently and then average them, treating all classes
equally.

D. Prediction Uncertainty Quantification Metrics

While accuracy, recall, and precision (described in Section
III-C) indicate the overall quality of the model, additional
metrics can be used to quantify the uncertainty of each
observation within an ensemble, as described in Section II.

Assuming N samples of binary classification models (k =
number of classes = 2) obtained via bootstrapping, the total
uncertainty for each of the j observations can be computed as
shown in Equation 1, where log refers to the natural logarithm
(the reader might refer to the CatBoost documentation for fur-
ther details: https://catboost.ai/en/docs/references/uncertainty).
Data and knowledge uncertainty, instead, can be computed
according to the Equations 2 and 3.

Total unc. = −
2∑

k=1

(
1

N

N∑
i=1

Pri,j,k) · log(
1

N

N∑
i=1

Pri,j,k) (1)

Data unc. = − 1

N

N∑
i=1

2∑
k=1

(Pri,j,k · log(Pri,j,k)) (2)

Knowledge unc. = Total unc. − Data unc. (3)

Other metrics such as the standard deviation and the differ-
ence between the 95th and 5th percentiles of the probabilities
from the 50 bootstrapped samples will be also considered as
an uncertainty measure since they provide insights into the
model’s disagreement and variability within an ensemble for
each individual observation.

For prediction assessment the Negative Log-Likelihood
(NLL) [19] will also be considered. The NLL can be computed
as shown in Equation 4, where yj is the true label of each
observation. Lower values of NLL indicate better performance,
meaning that the predicted probabilities are closer to the true
labels of the binary outcomes while higher NLL values reflect
poor model performance.

NLL = −
2∑

k=1

(yj · log(
1

N

N∑
i=1

Pri,j,k)) (4)

Quantifying the uncertainties and the spread of models’
predictions might help to further assess model performance
and reliability when deployed in an operational setting. These
metrics will be analysed in Section IV-C to provide a compre-
hensive understanding of the model’s performance variability.

IV. RESULTS

This section provides an overview of the binary classifier’s
performance, starting with an analysis of SHAPley values to
evaluate feature importance and contributions. Next, threshold
analysis is conducted to optimize decision boundaries and

4



assess classification performance across various thresholds.
Finally, the uncertainty quantification is addressed, focusing
on methods to measure and interpret the confidence level of
the model’s predictions.

A. SHAP analysis

Game theory principles can be applied to interpret the
predictions of a ML model by treating each input feature as
a player in a game and the model’s output as the reward.
When input features are included in the model in a random
sequence, the contribution of each feature can be determined
by calculating the average change in the reward that the
existing group of features (or coalition) receives when the
new feature joins. This contribution is known as the SHAP
(SHAPley) value in the literature [24].

The model initially used for hyper-parameter tuning was
utilised for a SHAP analysis. Figure 2 shows SHAP analysis
results highlighting the point type, constraint identifier, and
aircraft identifier as the most impacting input features.

Figure 2. SHAP analysis showing the importance of input features. The
vertical axis lists the feature names, arranged from most to least important.
Each dot along the horizontal axis represents the SHAPley value of the
corresponding feature for a single observation, with the color indicating the
feature’s magnitude, ranging from blue to red (low to high values). Categorical
features are in gray since no magnitude can be associated with them.

B. Threshold Analysis

After training the model, adjusting the threshold value,
which represents the probability level at which predictions
are classified into one or the other classes, can significantly
impact the classifier’s performance. As mentioned in Section
III-B, the bootstrap method allows to generate 50 probabilistic
predictions for each observation. For this analysis, the mean
value of the probabilities from the bootstrap samples has been
computed to assess the contribution of each observation in the
test dataset to the metrics. Figure 3 illustrates the performance
metrics of the binary classifier across various threshold values.

For this binary classifier, a threshold value of 0.5 appears
to balance these metrics optimally as all the metrics reach
their maximum. It is expected, indeed, that when a dataset
is balanced (i.e., the classes are roughly equal in size), the
optimal threshold value for a binary classifier is around 0.5.

The overall model performance, computed with a threshold
value of 0.5, is described in Table II. The binary classifier
exhibits an accuracy of 0.82, indicating that 82% of the
predictions are correct. Both the weighted and macro averages
of recall and precision are also ≈ 0.82, suggesting that the
classifier performs uniformly across different classes.

Figure 3. Accuracy, recall and precision as a function of the threshold values

TABLE II. MODEL PERFORMANCE METRICS COMPUTED ON THE TEST SET

Macro average (weighted average)
Precision Recall Accuracy

0.81 (0.82) 0.82 (0.82) 0.82

C. Knowledge, Data and Total Uncertainty

Until now, the overall model performance was described.
This section focuses on the quantification of the three types
of uncertainty: total, data and knowledge uncertainties. Specif-
ically, for each observation, these quantities have been com-
puted according, respectively, to the Equations 1, 2, 3.

Figure 4 illustrates the model’s performance over 10000
samples randomly selected from the test dataset, evaluated
using the NLL and three types of uncertainties. For this
analysis, a kernel density estimation (KDE) on the data was
performed [25]. Specifically, the density of data points was
computed using a Gaussian function as a kernel and the
Scott’s rule [26] for the bandwidth estimation. In Figure 4,
it is possible to observe that not only the overall trends but
also the orders of magnitude of total and data uncertainties
are comparable while the quantities describing the knowl-
edge uncertainties are relatively small. This outcome is not
surprising since knowledge uncertainty was computed on in-
domain observations sampled from the testing dataset which
belongs to the same distribution of the training dataset. It is,
instead, expected that the knowledge uncertainty will increase
when tested on out-of-domain observations. When the NLL
is relatively low (indicating correct predictions) both the total
and data uncertainty can vary significantly, showing that the

5



(a)

(b)

(c)

Figure 4. The relationship between NLL and different types of uncertainties,
illustrated using kernel density estimation (KDE). (a) Total uncertainty vs
NLL, showing the overall uncertainty in model predictions. (b) Knowledge
uncertainty vs NLL, highlighting uncertainty due to lack of model knowledge.
(c) Data uncertainty vs NLL, reflecting inherent uncertainty in the data.

noise in the data is uniformly spread. Knowledge uncertainty
remains close to zero for correct predictions and does not
increase significantly for incorrect predictions, at higher NLL
values.

Analyzing the results while differentiating between correct
and incorrect predictions could offer additional insights. Fig-
ures 5a and 5b show that, in case of correct predictions,
both the total uncertainty and the knowledge uncertainty tend
to increase when the model output for the class that was
correctly predicted is close to 0.5, while they are relatively
low for outputs close to one. For the sake of simplicity, plots
for the data uncertainty have been omitted since it has been
previously observed (in Figure 4) that both data uncertainty
and total uncertainty exhibit similar behavior. For incorrect

predictions, both types of uncertainty tend to increase when
the model output is close to 0.5 (Figures 5c and 5d).

Additionally, understanding how the percentile differences
(computed according to the description provided in Section
III-D) relate to the uncertainty values could provide further
indication on model performance. Figure 6 reveals a linear
relationship between knowledge uncertainty and the percentile
difference for both correct and incorrect predictions. In con-
trast, total uncertainty does not exhibit a clear pattern, making
it difficult to draw similar conclusions.

Interestingly, for correct predictions, the percentile differ-
ences tend to reduce when the model outputs probabilities
near one (when displaying the values of the correctly predicted
class), while for incorrect predictions, the percentile differ-
ences tend to increase when the model outputs probabilities
close to 0.5 (when displaying the values of the incorrectly
predicted class). Similar conclusions could be extended to the
standard deviation of the predictions within the ensemble, as
it was found that it linearly correlates with the the percentile
differences, in case of both correct and incorrect predictions.

V. DISCUSSION & CONCLUSIONS

ML model labeling is crucial, as it can influence the model’s
performance and results. In this work, the labeling process
relies on the constraints identification in planned and flown
trajectories that contain the same identifier. This approach is
expected to be effective when there are small differences (in
terms of time and distance) between the two trajectories, i.e.
the trajectories are comparable. In reality, there might be sub-
stantial differences, e.g. due to rerouting or longer delays. Such
planned and flown trajectories become incomparable. In these
cases, the labeling is challenging and requires further analyses.
This algorithm needs to evolve to identify comparable versus
incomparable trajectories.

ML models need a set of input data during inference.
A crucial factor is ensuring that this data is available. For
this work’s model, only static features have been used as
inputs, ensuring that the model remains usable at any time.
In the future, for e.g., one might include the weather forecast
indicators which might impact the constraints application and,
therefore, model’s performance.

In binary classification, selecting the threshold value is
important as it determines the probability level for classifying
predictions. For the presented binary classifier, a threshold of
0.5 optimally balances performance metrics, which is expected
for balanced datasets. Another aspect to consider regarding
the presented approach is the hyper-parameter search, which
was conducted using GridSearchCV over a predefined set of
parameters. This analysis was performed on a unique model
using all the available data and not for each individual boot-
strapped model, based on the assumption that the variations in
model inputs across bootstrapped samples do not necessitate
different hyper-parameter settings. Future work could explore
the impact of tuning hyper-parameters individually for each
model within the ensemble, although this approach may be
computationally intensive.

6



(a) Correct predictions (b) Correct predictions

(c) Incorrect predictions (d) Incorrect predictions

Figure 5. Total and knowledge uncertainty as a function of the mean probability values computed for each observation using the ensemble of 50 models.
Figures (a) and (b) show the results for correct predictions, while figures (c) and (d) display the results for incorrect predictions. Only the values for the
correctly predicted and for the incorrectly predicted classes have been considered, respectively, in figures (a)-(b) and (c)-(d).

(a) Correct predictions (b) Correct predictions (c) Correct predictions

(d) Incorrect predictions (e) Incorrect predictions (f) Incorrect predictions

Figure 6. Total and knowledge uncertainty as a function of the difference between the 5th and 95th percentiles of the probability values computed for each
observation using the ensemble of 50 models. Figures (a), (b) and (c) show the results for correct predictions, while figures (d), (e) and (f) display the results
for incorrect predictions. Only the values for the correctly predicted and for the incorrectly predicted classes have been considered, respectively, in figures
(a)-(b)-(c) and (d)-(e)-(f).

7



Quantifying model uncertainty can improve decision-
making by providing a clearer understanding of prediction
confidence. Additionally, it can support better risk manage-
ment by estimating potential errors and guiding actions based
on the level of uncertainty in predictions. In this work, an
approach to quantify total, data and knowledge uncertainties
has been proposed. It has been shown that the three types
of uncertainty follow similar patterns: they are generally high
when the model outputs probabilities around 0.5 and lower
when probabilities are near 1 or 0, depending on whether
the predictions are, respectively, correct or incorrect (please
note that in Figures 4 and 5 either the values for the cor-
rectly predicted or for the incorrectly predicted classes have
been shown). Interestingly, the percentile range, computed as
the difference between the 95th and 5th percentiles of the
probability distributions, exhibits a similar trend to knowledge
uncertainties (Figure 6). This suggests that the percentile range
could potentially replace the knowledge uncertainty metric.
A similar observation applies to the standard deviation of
probability values in the ensemble, as the standard deviation
and the percentile difference exhibit a linear relationship
(Section IV-C).

It is important to note that the magnitude of knowledge
uncertainties values is significantly lower compared to the
other two types of uncertainty, indicating that data uncertainty
is the predominant factor. This result was expected since
the knowledge uncertainties has been computed based on the
observations within the test dataset, which is part of the in-
domain-distribution of data. In the future research, out-of-
domain data could be generated to more accurately quantify
the trends and magnitude of knowledge uncertainty that users
might encounter when the model is provided with specific
types of out-of-domain input data. Various approaches have
been developed for this task in the field of generative Artificial
Intelligence (AI) [27]. Knowledge uncertainty values could be
converted into colors or other forms of representation to make
their interpretation easier. This will help the user identifying
potential input outliers or issues with predictions, influencing
the decision-making and the level of trust.

These results are inputs to the discussions with the oper-
ational experts about how this information can be used. To
facilitate these discussions, a web based tool is developed to
visually compare trajectories and see the constraint probability
by using real-time operational data or test data from NM
systems (Figure 7).

Figure 7. Agreed trajectory with a constraint probability vs flown trajectory.

With the tool and ML model results, the experts will be
looking for answers to the following questions:

• Is the probability acceptable for AU use? What would be
the threshold probability to apply a constraint?

• If and which other ATM actors can use the probability?
• If and how the uncertainty can be used?
And quantify benefits by answering the following questions:
• Will the AU trajectory be more predictable?
• Will the ATCO and Pilot workload will decrease?
• Will the ATM actors’ trajectories be more aligned?

REFERENCES

[1] “Manual on flight and flow information for a collaborative environment
(ff-ice),” ICAO, Doc 9965 AN/483, 2012.

[2] Y. Li, J. Chen, and L. Feng, “Dealing with uncertainty: A survey
of theories and practices,” Knowledge and Data Engineering, IEEE
Transactions on, vol. 25, pp. 2463–2482, 11 2013.

[3] A. Malinin, L. Prokhorenkova, and A. Ustimenko, “Uncertainty
in gradient boosting via ensembles. arxiv 2020,” arXiv preprint
arXiv:2006.10562.

[4] A. Malinin, “Uncertainty estimation in deep learning with application
to spoken language assessment,” Ph.D. dissertation, 2019.

[5] Z. Bosnić and I. Kononenko, “Estimation of individual prediction
reliability using the local sensitivity analysis,” Applied intelligence,
vol. 29, pp. 187–203, 2008.

[6] A. Khosravi, S. Nahavandi, D. Creighton, and A. F. Atiya, “Compre-
hensive review of neural network-based prediction intervals and new
advances,” IEEE Transactions on neural networks, vol. 22, no. 9, pp.
1341–1356, 2011.

[7] S. J. Moon, J.-J. Jeon, J. S. H. Lee, and Y. Kim, “Learning multiple
quantiles with neural networks,” Journal of Computational and Graph-
ical Statistics, vol. 30, no. 4, pp. 1238–1248, 2021.

[8] R. Dalmau, P. De Falco, M. Spak, and J. D. R. Varela, “Probabilistic
pretactical arrival and departure flight delay prediction with quantile
regression,” Journal of Air Transportation, vol. 32, no. 2, pp. 84–96,
2024.

[9] M. Zoutendijk and M. Mitici, “Probabilistic flight delay predictions
using machine learning and applications to the flight-to-gate assignment
problem,” Aerospace, vol. 8, no. 6, p. 152, 2021.

[10] P. De Falco and L. Delgado, “Prediction of reactionary delay and cost
using machine learning,” 2021.

[11] S. Mas-Pujol, L. Delgado, and P. De Falco, “Pre-tactical advice using
machine learning for air traffic flow management delay estimation,”
Airline Group of the International Federation of Operational Research
Society (AGIFORs), 2022.

[12] P. De Falco, J. Kubat, V. Kuran, J. Rodriguez Varela, S. Plutino, and
A. Leonardi, “Probabilistic prediction of aircraft turnaround time and
target off-block time,” 13th SESAR innovation days. Seville, Spain, 2023.

[13] R. Graas, J. Sun, and J. Hoekstra, “Quantifying accuracy and uncer-
tainty in data-driven flight trajectory predictions with gaussian process
regression,” 11th SESAR Innovation Days, 2021.

[14] C. Riis, F. Antunes, G. Gurtner, F. C. Pereira, L. Delgado, and C. M. L.
Azevedo, “Active learning metamodels for atm simulation modeling,” in
11th SESAR Innovation Days, 2021.

[15] K. Lee, H. Lee, K. Lee, and J. Shin, “Training confidence-calibrated
classifiers for detecting out-of-distribution samples,” arXiv preprint
arXiv:1711.09325, 2017.

[16] A. Malinin, A. Ragni, K. Knill, and M. Gales, “Incorporating uncertainty
into deep learning for spoken language assessment,” in Proceedings
of the 55th Annual Meeting of the Association for Computational
Linguistics (Volume 2: Short Papers), 2017, pp. 45–50.

[17] G. Ke, Q. Meng, T. Finley, T. Wang, W. Chen, W. Ma, Q. Ye, and T.-
Y. Liu, “Lightgbm: A highly efficient gradient boosting decision tree,”
Advances in neural information processing systems, vol. 30, 2017.

[18] L. Prokhorenkova, G. Gusev, A. Vorobev, A. V. Dorogush, and A. Gulin,
“Catboost: unbiased boosting with categorical features,” Advances in
neural information processing systems, vol. 31, 2018.

[19] I. Goodfellow, Y. Bengio, and A. Courville, Deep learning. MIT press,
2016.

8



[20] A. V. Dorogush, V. Ershov, and A. Gulin, “Catboost: gradient boosting
with categorical features support,” preprint arXiv:1810.11363, 2018.

[21] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion,
O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg et al.,
“Scikit-learn: Machine learning in python,” the Journal of machine
Learning research, vol. 12, pp. 2825–2830, 2011.

[22] C. Z. Mooney, R. D. Duval, and R. Duvall, Bootstrapping: A nonpara-
metric approach to statistical inference. sage, 1993, no. 95.

[23] A. Ustimenko and L. Prokhorenkova, “Sglb: Stochastic gradient langevin
boosting,” in International Conference on Machine Learning. PMLR,
2021, pp. 10 487–10 496.

[24] L. S. Shapley et al., “A value for n-person games,” 1953.
[25] S. Weglarczyk, “Kernel density estimation and its application,” in ITM

web of conferences, vol. 23. EDP Sciences, 2018, p. 00037.
[26] D. W. Scott, Multivariate density estimation: theory, practice, and

visualization. John Wiley & Sons, 2015.
[27] P. Marek, V. I. Naik, V. Auvray, and A. Goyal, “Oodgan: Generative

adversarial network for out-of-domain data generation,” arXiv preprint
arXiv:2104.02484, 2021.

9


	Introduction
	Uncertainty Quantification Literature Review
	Model Development
	Data Preparation & Labeling Approach
	Binary Classification with Bootstrapping
	Model Performance Assessment Metrics
	Prediction Uncertainty Quantification Metrics

	Results
	SHAP analysis
	Threshold Analysis
	Knowledge, Data and Total Uncertainty

	Discussion & Conclusions
	References



