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Abstract—This paper presents a comprehensive study on the
optimization of hyperparameters for deep semantic segmentation
models aimed at detecting contrails in GOES-16 satellite imagery.
The environmental impact of aviation contrails has received con-
siderable attention due to their potential contribution to climate
change. Accurate contrail detection is essential for developing
strategies to mitigate these impacts. Using the OpenContrails
dataset [1] and advanced computer vision techniques, we per-
formed a greedy hyperparameter search over different neural
architectures, loss functions, and preprocessing methods. Our
results indicate that using CoatNet as the backbone, coupled
with the Unet++ architecture and dice loss as the optimization
criterion, yields superior performance in contrail segmentation.
In addition, incorporating data augmentation and resizing im-
ages to 512 pixels significantly improves model accuracy and
generalization. The optimized model configurations demonstrate
a promising approach for improving contrail segmentation,
contributing to more accurate climate impact assessments and
the development of sustainable aviation practices.

Keywords—Contrail Semantic Segmentation, Aviation Sustain-
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I. INTRODUCTION

Aviation is an integral part of modern society, facilitat-
ing global connectivity and economic growth. However, the
environmental impact of aviation, particularly the formation
of condensation trails, has received increasing attention in
recent years. Contrails, the visible line-shaped clouds produced
by aircraft engine exhaust at high altitudes, probably play a
significant role in climate change [2], [3]. Important uncer-
tainties remain, so understanding and managing the complex
relationship between aviation contrails and their environmental
impacts is a critical challenge in contemporary scientific
research and policy development.

The relation between aviation contrails and climate change
has become a central focus of research. With advances in satel-
lite imagery and machine learning, researchers have gained
profound insights into the detection and characterisation of
contrails and the wider environmental impact of these high-
altitude phenomena.

In the quest for more accurate and comprehensive contrail
detection methods, the critical role of open-source labelled
datasets is increasingly recognised [1], [4]. The availability of
such datasets has the potential to catalyse significant advances
in contrail detection using computer vision techniques. As
we delve into the nuances of contrail formation, properties
and climatic impacts, it becomes increasingly clear that the

collaborative efforts of the wider scientific community in
labelling datasets on a larger scale are essential. This not
only fosters innovation, but also ensures that detection models
are robust and adaptable, ultimately contributing to a more
sustainable aviation industry.

In addition, the use of the OpenContrails dataset [1] in a
Kaggle competition [5] exemplifies the transformative power
of community collaboration in addressing this pressing issue.
Harnessing the collective intelligence of Kaggle’s vast commu-
nity of data scientists and enthusiasts, the competition spurred
the development of innovative machine learning models tai-
lored to contrail segmentation.

In this paper, we present a greedy hyperparameter search
focusing on semantic segmentation models for single-frame
contrail satellite images. Our objective is to distill and provide
a comprehensive review of hyperparameters employed in state-
of-the-art models for contrail satellite images segmentation.
The code use in the paper is avalaible as part of an open-
source library [6].

II. STATE OF THE ART

A. Contrail Detection

The complex relationship between aircraft contrails and
climate change has been a focus of research, with advances in
satellite imagery and machine learning providing deep insights
into the detection, characterisation and environmental impact
of contrail

Advances in the detection of contrails using satellite im-
agery have led to a multitude of studies over the last two
decades. Early research had already demonstrated the ineffec-
tiveness of using Advanced Very-High-Resolution Radiometer
(AVHRR) satellite imagery to detect contrails [7]. In [8], the
use of AVHRR for contrail detection revealed regional patterns
over Europe, but encountered difficulties in distinguishing
certain cloud structures . The Automatic Contrail Tracking
Algorithm (ACTA) was introduced in [9] and has proven
its effectiveness in real-world scenarios. However, shorter
contrails are sometimes not detected. [10] uses Himawari-8
satellite imagery and compares two potential contrail cover-
ages. A visual computing system that facilitates the analysis of
contrails from aircraft simulations, streamlining data compar-
ison is detailed in [11]. Convolutional neural network-based
approaches have shown to be effective in detecting aircraft
contrails with high accuracy, further highlighting their climatic



implications in [12]. Another convolutional neural network
model, ContrailMod, was optimised for contrail detection,
showing a strong correlation between contrail occurrence and
potential coverage [13]. A system based on a neural network,
the CiPS algorithm, was presented as an effective method for
recovering cirrus properties, showing greater accuracy for fine
cirrus clouds in [14]. The impact of the covid-19 pandemic on
the appearance of contrails in the United States and different
diurnal patterns were studied in [15] using modern deep
learning techniques.

Ground-based cameras calibrated with sky observations
have provided valuable insights when combined with synthetic
images from prediction models in [16]. Atmospheric monitor-
ing can be done cost-effectively using all-sky cameras that
use starlight absorption to map cloud structures [17]. Ground-
based studies showed that the visibility of contrails in satellite
imagery is largely dependent on their width, with current
algorithms often miscalculating contrail and cirrus volumes
[18].

In [19], a technique is proposed that uses a synthetic
dataset of contrails generated using a state of the art con-
trail evolution model called CoCiP( [20]). This technique is
combined with instance segmentation models and dedicated
tracking and matching algorithms to assign contrails to specific
aircraft. A similar methodology combining satellite imagery
and air traffic data to efficiently identify and match contrails to
corresponding aircraft trajectories has been proposed by Riggi
et al. [21]. The flight matching problem can be simplified by
using initial altitude estimates from the contrail shadow [22].

While newer models, such as one using augmented transfer
learning and dedicated SR loss, show potential, more extensive
validation is required [23]. The release of a labelled dataset of
Landsat-8 satellite imagery aims to advance contrail detection
methods, providing potential solutions to aviation’s contribu-
tion to global warming [4]. Similarly, the recent launch of the
OpenContrails dataset using GOES-16 ABI imagery has set a
new benchmark for contrail detection [1] and developpement
of machine learning segmentation models [24], [25].

B. Contrail avoidance

Amidst the plethora of research and advances in contrail
detection from satellite imagery and ground-based equipment,
the associated climatic implications of contrails have not
gone unnoticed. As the aviation industry grapples with its
environmental footprint, efforts are being made not only to
understand contrails, but also to develop strategies to mitigate
them.

One particular study examines the potential climate impact
of these contrails in Japanese airspace and highlights a dual
mitigation approach that includes strategic fleet diversions
combined with the implementation of new engine technolo-
gies. This dual strategy, if properly applied, could lead to a
potential 91.8% reduction in the climate impact of contrails
[26]. Similarly, another study in the same region explores the
benefits of vertical flight diversions as a means of mitigating
the adverse climate impacts of cirrus contrails. Specifically,
the study suggests that such diversions could result in a

remarkable 105% reduction in contrail energy forcing. In
addition, these diversions appear to be associated with minimal
fuel penalty and can be implemented without compromising
aviation standards [27].

In a different geographical context, the North Atlantic
corridor, there is ongoing research into design principles
for experiments aimed at mitigating persistent heat-trapping
contrails. This research provides invaluable insights into the
role that such contrails play in the wider spectrum of aviation-
related climate impacts. By providing detailed considerations
and proposed trial methodologies, the study serves as a critical
resource for stakeholders seeking to address this environmental
challenge [28]. Beyond these targeted regional studies, there’s
a broader movement to develop models that can address the
environmental footprint of aviation on a large scale [29]. One
innovative approach is the introduction of a time-dependent
subgraph capacity model, specifically designed to address
CO2 and contrail emissions simultaneously. A real-world
application of this model, as demonstrated in the French upper
airspace, shows the potential to achieve significant contrail
mitigation, further emphasising the need to adopt such novel
models and techniques across the aviation industry [30].

C. Segmentation

Deep image segmentation uses sophisticated neural archi-
tectures to divide digital images into semantically meaningful
regions, ensuring fine-grained recognition and detailed bound-
ary delineation.

Semantic segmentation, a notable area in computer vision,
has seen many breakthrough innovations. The Fully Convo-
lutional Network (FCN), which uses a ”skip” architecture to
merge layers of different depths, has made significant advances
in semantic segmentation, notably outperforming benchmarks
such as PASCAL VOC 2011 [31]. The DeepLab system
has also carved out a niche with its unique blend of atrous
convolution and atrous spatial pyramid pooling, leading to
state-of-the-art results on platforms such as PASCAL VOC-
2012 [32].

In the biomedical domain, the U-Net architecture, which
strikes an optimal balance between context capture and precise
localisation, has been validated to outperform existing segmen-
tation strategies in various tasks [33]. An adaptation of this
architecture, the 3D U-Net, further enhances its capabilities
by addressing dense volumetric segmentations and shows clear
superiority over its 2D analogues in 3D biomedical structures
[34]. The V-Net, another cornerstone of volumetric medical
image segmentation, presents a distinctive training approach
and ”value networks” that deliver unprecedented speed and
accuracy when applied to prostate MRI data [35]. UNet++,
with its nested architecture, bridges the semantic gap between
the encoder and decoder modules, demonstrating commend-
able segmentation performance in medical imaging [36].

To address the need for detailed object instance recognition,
Mask R-CNN, an evolution of Faster R-CNN, introduced a
mask prediction branch, setting new standards in multitask
adaptability [37]. Another innovative approach is the Pyramid
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Scene Parsing Network (PSPNet), which uses a pyramid pool-
ing module to exploit global context and achieve excellence
in capturing long-range dependencies [38].

Further advances in the DeepLab series, such as DeepLabv3
and DeepLabv3+, emphasised the role of atrous convolu-
tion in DCNNs and introduced efficient decoder modules,
respectively. These contributions consistently outperformed
benchmarks without the need for post-processing steps [39]
[40] [41].

Several other models, such as ICNet and RefineNet, have
addressed the balance between speed and accuracy in real-
time segmentation, with ICNet in particular demonstrating its
ability to fuse multi-resolution branches [42], [43]. SegNet,
tailored for scene understanding, has adopted a unique ap-
proach with max-pooling indices in its decoder, demonstrating
its effectiveness in various scene segmentation tasks [44]. An
intriguing blend of image segmentation and computer graphics
rendering led to the creation of PointRend, which efficiently
combines speed with high quality boundary predictions [45].
Finally, the boundary loss function introduced is tailor-made
for medical images, addressing unbalanced segmentation and
increasing accuracy [46].

III. DATASET DESCRIPTION & ANALYSIS &
PREPROCESSING

The dataset used in this study [1], [5] is from the GOES-16
Advanced Baseline Imager (ABI), with brightness tempera-
tures derived from Level 1B radiances. The satellite provides
coverage of North and South America and acquires a full disk
image at 10-minute intervals. The spatial resolution is 2x2 km
at nadir, which can be a challenge for detecting initial contrail
formations. However, the limitations may be advantageous for
studying contrails with more extensive heating effects.

A. Sample Generation & labelling

Samples are randomly taken from the visible range of
GOES-16 between April 2019 and April 2020, subject to
certain latitudinal and longitudinal constraints. To overcome
the rarity of condensation trails, the dataset was enriched with
positive examples. Aircraft tracks from terrestrial ADS-B data
and wind data from ECMWF ERA5 were used to guide the
sample selection. Additional layers including relative humid-
ity over ice and the Mannstein et al. [8] contrail detection
algorithm adapted for high recall were added.

An ”ash” false-color scheme was used to facilitate 24-
hour labelling, highlighting ice clouds as darker shades to aid
contrail identification. Each scene received annotations from at
least four human labelers, with consensus reached by majority
vote. An example of the ”ash” false colour and its associated
human labelled mask is shown in figure 1.

B. Description

The dataset consists of 20,544 training samples and 1,866
validation samples. Contrail annotations are present in approx-
imately 1.2% of the training pixels. An additional test set,
proportional in size to the validation dataset, is available on
the Kaggle competition website [5]. While the test data is

Figure 1. On the left is a false-color satellite image of ”ash”, and on the right
is the corresponding human annotation.

not directly accessible, it can be used for model evaluation
through a public score (representing 15% of the test dataset)
and a private score (representing the remaining 85%).

The data are stored in .npy format. Each sample consists
of a temporal sequence of images spanning the nine satellite
spectral bands (08 to 16). Each image in the sequence has a
resolution of 256x256 pixels. The human annotated mask is
either provided or to be determined for the fourth image in the
sequence. Although the dataset contains sequences, this paper
specifically addresses the single-frame problem, focusing only
on the fourth frame of each sequence.

C. Analysis

Several elements of the dataset were highlighted during
the Kaggle competition [5]. The labelling process, which
preferentially selected and re-centred images with a significant
proportion of contrails based on Google Street View, resulted
in a noticeable concentration of contrail-positive pixels in the
centre of the mask, as shown in Figure 2.

Figure 2. The figure shows the average mask for the validation set on the left
and for the training set on the right. The training set has a centred property.

A significant observation was the half-pixel shift in the
mask, possibly caused by the transformation from polygon
coordinates to pixel masks. Specifically, the top-left coordi-
nates might have been used instead of the centre coordinates
when converting human-labelled polygons to pixel masks. This
discrepancy was identified by several competitors and proved
to be consequential. In particular, it affected the effectiveness
of several techniques, especially those such as augmentation
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and test-time augmentation, which often rely on rotations.
The correction for this shift is discussed in the following
subsection.

IV. METHODOLOGY & MDELING

A. Hyper Parameter Search Methodology

In the course of developing our model using the GOES-
16 ABI dataset, we used a pseudo-greedy parameter search
to fine-tune and optimise the model’s hyperparameters. The
primary goal of this process was to identify a combination
of hyperparameters that would maximise the performance of
the model in terms of global dice score without extensively
exploring the entire hyperparameter space. Global Dice score
ensures robust evaluation of segmentation accuracy, especially
when dealing with sparse positive pixel classes, by balancing
precision and recall across the entire image. We started with
an initial set of hyperparameters, chosen either on the basis
of prior knowledge, literature review or simple intuition. This
set served as the starting point for our iterative optimisation
and is described in Table I

In our study, we primarily followed the principles of greedy
search, optimising one hyperparameter at a time while holding
others fixed. This method allowed us to efficiently navigate
the vast hyperparameter space by adjusting each parameter
individually across its range and identifying its optimal value.
Once an optimal value was found, it was fixed and the process
was repeated for the next parameter in the sequence.

However, there were specific instances, particularly in rela-
tion to the incompatibility between the backbone architecture
and the overall model architecture, where we deviated from
the strict rules of the greedy approach.

The main advantage of our greedy approach is its efficiency.
Instead of the combinatorial explosion of possibilities in grid
search, our method significantly reduces the search space.
However, it’s worth noting that the greedy nature of the method
can lead to local optima. This is a trade-off we have accepted
for the sake of computational efficiency and time constraints.

B. Loss function candidates

The Dice score is a function used to quantify the similarity
between two sets of data. In the context of image segmentation,
these sets are the predicted segmentation and the ground truth
segmentation. Mathematically, it is defined as:

Dice score =
2× |X ∩ Y |
|X|+ |Y |

(1)

Dice Loss = 1− Dice score (2)

Where:
• X is the predicted set of pixels (segmentation).
• Y is the ground truth set of pixels (segmentation).
• |X ∩ Y | is the cardinality of the intersection of the

predicted and ground truth sets.
• |X| and |Y | are the cardinality of the predicted and

ground truth sets respectively.

This loss function is particularly useful in cases where
there is class imbalance, as it provides a more robust error
signal even when the classes are not equally represented. In
the following, we distinguish the global dice score, which is
computed at the end of an epoch using the entire data set, and
the batch dice score, which is computed during training by
averaging each batch score.

The Binary Cross-Entropy (BCE) loss is a widely used
loss function in binary classification tasks. It quantifies the
difference between two probability distributions - the actual
label and the predicted probability. It is defined as

BCE loss = − 1

N

N∑
i=1

[yi log(pi) + (1− yi) log(1− pi)] (3)

Where:
• N is the number of samples.
• yi is the actual label of the ith sample, which is 1 if true

and 0 if false.
• pi is the predicted probability that the ith sample is in

class 1.
This loss function is particularly suitable for scenarios

where the model outputs a probability value, and effectively
measures the deviation of the predicted probability from the
actual label.

The Focal Tversky Loss function is an extension of the
Tversky index used in image segmentation, and is particularly
effective in cases of class imbalance. It is defined as

Focal Tversky Loss =
N∑
i=1

(1− Ti)
γ (4)

Where:
• Ti is the Tversky index for the ith sample, defined as:

Ti =
|Xi ∩ Yi|

|Xi ∩ Yi|+ α|Xi\Yi|+ β|Yi\Xi|
(5)

• Xi and Yi represent the predicted and ground truth sets
for sample ith respectively.

• α and β are hyperparameters to control the balance of
false positives and false negatives.

• γ is the focusing parameter to adjust the rate at which
easy examples are down-weighted.

• N is the total number of samples.
Focal Tversky Loss addresses class imbalance by modu-

lating the loss with respect to the difficulty of each sample,
focusing more on harder-to-classify examples. It is particularly
useful in medical image segmentation, where unbalanced data
is common.

C. Machine Learning particular processes

In deep learning, particularly for semantic image segmenta-
tion, the Exponential Moving Average (EMA) is a technique
used to smooth parameter updates during training. It gives
higher weights to more recent parameter updates, while the
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TABLE I
TABLE SHOWING THE INITIAL HYPERPARAMETERS OF THE PSEUDO-GREEDY SEARCH.

CHECKPOINT MASK ARCHITECTURE BACKBONE RESIZE EPOCHS BATCH SIZE
Loss Probability Unet Resnest26d 384 40 48

ACCUMULATION LOSS OPTIMIZER SCHEDULER WEIGHT DECAY LEARNING RATE WARM-UP
1 Dice AdamW Cosine 1e-4 5e-4 1

influence of older updates decreases exponentially. This ap-
proach helps to stabilise the training process, reduce noise,
and ensure that the model adapts effectively to recent data
trends without ignoring the broader historical context, thereby
improving overall learning efficiency.

Batch accumulation is a technique used in deep learning
to overcome hardware limitations during training. When the
ideal batch size for a model exceeds the capacity of the
available hardware, batch accumulation allows smaller batches
to be processed in successive forward steps. The gradients
from these smaller batches are accumulated, and a single
backpropagation step is performed after processing multiple
batches. This approach allows models to be trained with larger
effective batch sizes without the need for high-end hardware,
ensuring training effectiveness on more modest systems.

D. Training process and criteria to be explored
In our training process, we implemented a 4-fold cross-

validation method to increase the robustness and generalis-
ability of our model. The training set was divided into four
different folds, each serving as a combination of training (3
folds - 75% dataset) and selection (1 fold - 25% dataset) data
sets. This approach allowed for extensive training and selection
across different subsets of data, ensuring that the model was
exposed to a wide range of scenarios. To optimise model
performance and prevent overfitting, we used a checkpoint
mechanism. This technique involved saving the best model
based on its performance on the selection fold. The evaluation
and decision for hyper parameter search is based on an
ensemble approach. The global dice score is computed on the
4-fold ensemble model (average prediction) on the indepen-
dent validation dataset. This strategy provided a more robust
evaluation as it took into account the collective performance
of models trained on different data subsets, ensuring that
the final selected model demonstrated consistent and reliable
performance across different data samples.

In our greedy search approach, we examined a wide range
of parameters that are critical to improving the performance
and accuracy of our semantic segmentation model. This in-
cluded a nuanced examination of checkpoint criteria, where
we compared the effectiveness of using batch dice loss versus
global dice score. A key area of investigation was the input
mask format, where we evaluated the use of probability-based
masks versus binary masks from vote.

Backbone architectures formed a core part of our research,
with trials conducted on a range of networks including
Resnet26d, EfficientnetB7, MaxVit, Resnet101, EfficientnetV2
and CoatNet. In particular, we delved into a comparative analy-
sis between Maxvit and CoatNet for backbone refinement. The

architecture of the model itself was another critical point of
analysis, where we tested configurations such as DeepLabV3,
Unet and Unet++.

Loss functions were carefully evaluated, ranging from Dice
Loss, Cross Entropy, Focal and Focal Tversky to Lovasz,
Hybrid Loss and SR loss [23]. Another area of focus was
image resizing, where we experimented with dimensions of
like 384, 512. Finally, we also investigated the use Data
Augmentation (DA) into the training process.

V. RESULT

For all subsequent tables showing hyperparameter search
steps, scores are given using the Global Dice score in percent.
For both the training and validation categories, the scores
are averaged across the four fold models and the standard
deviation is given in parenth

The first step in the hyperparameter search is to find the
best checkpoint metric between the global dice score and the
batch dice loss. As shown in the table II, the batch dice loss
shows better performance on the validation test set.

TABLE II
TABLE SHOWING THE PERFORMANCE OF THE MODEL WITH DIFFERENT

CHECKPOINT METRICS.S

CHECKPOINT TRAIN VALIDATION ENSEMBLE
Batch Dice loss 64.18 (0.28) 62.80 (0.16) 64.87

Global Dice score 65.05 (0.59) 62.45 (0.71) 64.21

We observe that the use of a probability mask by the average
of all the labellers shows a better performance than the use of
the binary mask obtained by majority voting (Table III).

TABLE III
TABLE SHOWING THE PERFORMANCE OF THE MODEL WITH DIFFERENT

MASK TYPES.

MASK TRAIN VALIDATION ENSEMBLE
Probability 64.18 (0.28) 62.80 (0.16) 64.87

Binary 66.01 (0.29) 61.57 (0.20) 63.81

Regarding the backbones (Table IV), MaxVit, a trans-
former backbone, presents the better performance. However,
the performance on CoatNet, another transformer backbone,
cannot be achieved due to convergence problems related to
initial learning rate and warm-up steps. Therefore, a dedicated
MaxVit vs. CoatNet analysis is performed with different
learning rate and warm-up step parameters. CoatNet always
outperformed MaxVit and was then selected. The best perfor-
mance is displayed in Table IV.

In terms of architectures, DeepLabV3 presents incompati-
bilities with Transformer backone, therefore the comparison
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TABLE IV
TABLE SHOWING THE PERFORMANCE OF THE MODEL WITH DIFFERENT

BACKBONES.

BACKBONE TRAIN VALIDATION ENSEMBLE
Resnest26d 64.18 (0.28) 62.80 (0.16) 64.87

EfficientNetB7 64.06 (0.78) 63.85 (0.22) 65.76
MaxVit 64.73 (0.70) 64.22 (0.47) 66.48

ResNet101 63.78 (0.45) 63.35 (0.26) 65.21
EfficientNetV2 64.22 (0.11) 62.71 (0.35) 64.90

CoatNet 64.75 (0.34) 64.57 (0.19) 66.97

is made on ResNet26Dd backone in table V. Unet++ shows
the best performance, confirmed when applied with CoatNet
backone.

TABLE V
TABLE SHOWING THE PERFORMANCE OF THE MODEL WITH DIFFERENT

ARCHITURES ON RESNET26D AN COATNET BACKBONES.

BACKBONE ARCHI TRAIN VALIDATION ENSEMBLE
ResNet26d DeepLabV3 56.69 (0.28) 53.91 (0.33) 55.92
ResNet26d Unet 63.05 (0.36) 60.23 (0.14) 62.48
ResNet26d Unet++ 63.98 (0.28) 60.99 (0.39) 63.24

CoatNet Unet 64.75 (0.34) 64.57 (0.19) 66.97
CoatNet Unet++ 65.44 (0.70) 65.12 (0.22) 67.40

The results indicate that the Dice loss function exhibit the
best overall performance, with balanced training and validation
scores and strong ensemble results, suggesting good general-
ization. Although other configurations achieved higher training
scores, they showed signs of overfitting, evidenced by a more
pronounced drop in validation performance. Consequently, the
Dice-based loss emerges as the most effective choices for
optimizing model performance in this context.

TABLE VI
TABLE SHOWING THE PERFORMANCE OF THE MODEL WITH DIFFERENT

LOSS. LABELSMOOTHING IS ABREVIATED AS LS AND POSITIVE WEIGHT
AS PW

LOSS TRAIN VALIDATION ENSEMBLE
Dice 65.44 (0.70) 65.12 (0.22) 67.40

BCE (PW=5) 67.57 (0.27) 64.72 (0.30) 67.26
BCE (PW=5. LS=0.05) 67.64 (0.18) 64.43 (0.22) 66.87

Focal Tsversky 67.16 (0.51) 64.15 (1.91) 66.76
Focal (PW=1) 67.64 (0.18) 64.43 (0.22) 65.01

Lovasz 66.93 (0.36) 63.03 (0.60) 65.74
Dice + BCE (PW=1) 67.80 (0.11) 65.06 (0.68) 67.29
Dice + BCE (PW=5) 67.47 (0.13) 64.89 (0.34) 67.30

SR [23] 66.41 (0.03) 64.94 (0.19) 66.96

Resizing to 512 pixels outperforms 384 pixels, yielding
higher training, validation, and ensemble scores, indicating
better generalization and model performance. Hence, 512-pixel
resizing is recommended for optimal results.

TABLE VII
TABLE SHOWING THE PERFORMANCE OF THE MODEL WITH RESIZING.

RESIZE TRAIN VALIDATION ENSEMBLE
384 65.44 (0.70) 65.12 (0.22) 67.405
512 68.27 (0.28) 65.24 (0.25) 67.54

Incorporating data augmentation (DA) with (correction of
the pixel shift) significantly enhances model performance, with

improved training, validation, and ensemble scores compared
to the model without augmentation. The validation score
increased from 65.24 to 67.72, and the ensemble score from
67.54 to 68.56, indicating that data augmentation effectively
enhances the model’s generalization and robustness. Therefore,
utilizing data augmentation is recommended for achieving
optimal model performance.

TABLE VIII
TABLE SHOWING THE PERFORMANCE OF THE MODEL WITH OR WITHOUT

DATA AUGMENTATION.

RESIZE TRAIN VALIDATION ENSEMBLE
NO DA 68.27 (0.28) 65.24 (0.25) 67.54

DA 69.98 (0.33) 67.72 (0.19) 68.56

VI. DISCUSSION

The first point to note is that reported performance is
based on models trained on subsets of data during cross-
validation. Because each fold uses only a portion of the data
for training, the results may not reflect the full potential of the
model. If trained on the full dataset, the model could perform
better, benefiting from more comprehensive data exposure
and potentially achieving higher accuracy. Thus, the current
results are likely conservative estimates of the model’s optimal
performance.

In addition, the model was trained on GOES-16 data, which
limits its exposure to different atmospheric conditions. To
improve generalization, it would be beneficial to test its perfor-
mance on other satellites, such as Meteosat Third Generation
(MTG) or HIMAWARI, which cover different regions and
conditions. This could help to assess the adaptability of the
model and improve its usefulness for global contrails.

VII. CONCLUSIONS

In this study, we explored and optimized hyperparameters
for deep semantic segmentation models applied to contrail
detection in GOES-16 satellite images. Our research aimed to
enhance the accuracy and reliability of contrail segmentation,
a critical task for understanding and mitigating aviation’s
environmental impact.

The results of our hyperparameter search revealed several
key findings. First, we confirm that the choice a probability
masks outperforms binary masks generated by majority voting.
Among the backbone architectures, CoatNet emerged as the
most effective, particularly when combined with the Unet++
architecture, which demonstrated superior performance across
various metrics.

Our experiments with different loss functions highlighted
the Dice loss as the most effective for our application,
providing a good balance between training and validation
performance, thus ensuring better generalization. Additionally,
resizing images to 512 pixels and incorporating data augmen-
tation further enhanced the model’s accuracy and robustness,
demonstrating the importance of preprocessing and data han-
dling techniques.
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In conclusion, our study underscores the importance of
a systematic hyperparameter exploration in developing high-
performing models for contrail detection. The optimized model
configurations presented here offer a promising approach
for improving contrail segmentation accuracy, contributing to
more precise climate impact assessments and the development
of strategies for mitigating aviation’s environmental footprint.
Future work should continue to refine these models and
explore additional avenues for enhancing detection accuracy,
such as integrating multi-frame analysis and further leveraging
the full spectral range of satellite data.
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