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Abstract— The European transport policy envisions a multimodal 

transport system where different networks and services are 

planned and managed in a coordinated manner to maximize the 

efficiency, predictability, environmental sustainability, and 

resilience of the door-to-door passenger journey. To achieve this 

goal, transport planners need an in-depth understanding of the 

behaviors, preferences and needs of the different types of travelers 

within Europe. This paper presents a methodology for the 

identification and characterization of long-distance passenger 

archetypes based on the application of unsupervised learning 

algorithms to a set of travel behavior indicators extracted from 

anonymized mobile network data. The proposed methodology is 

demonstrated and evaluated through its application to long-

distance travel in Spain. 

Keywords- mobile network data; passenger archetypes; 

clustering; data fusion, transport planning.  

I. INTRODUCTION

A. Background and motivation

The European Commission’s Sustainable and Smart Mobility 

Strategy [1] has defined a multitude of goals and respective 

flagships that pave the way towards zero-emission, resilient and 

inclusive mobility, creating seamless and efficient connectivity 

and establishing the European Union as a connectivity hub. In 

line with this objective, the long-term vision for the European 

aviation sector outlined in the report ‘Flightpath 2050 - Europe’s 

Vision for Aviation’ [2] envisages a passenger-centric air 

transport system thoroughly integrated with other modes to 

ensure a seamless passenger experience. The need for better 

integration between air transport and other modes is also 

acknowledged by SESAR Strategic Research and Innovation 

Agenda [3], one of whose key research areas, ‘Multimodality 

and passenger experience’, focuses on coordinated planning 

and collaborative decision-making solutions that improve the 

integration of air transport in the intermodal transport system.  

To design an efficient multimodal transport system and 

improve passenger experience, it is crucial to understand the 

underlying demand and the passengers’ expectations. Long-

distance travelers encompass a wide variety of profiles, from 

business professionals prioritizing efficiency and reliability to 

families seeking comfort and affordability. Each of these groups 

has distinct expectations and varying sensitivities to different 

trip characteristics, such as the price, the CO2 emissions, the 

number of transfers, and the total travelling time. These different 

sensitivities will determine their mode and path choice when 

booking a trip. Moreover, beyond sociodemographic 

characteristics, mode choice and route election are also 

influenced by the traveler’s long-term travel patterns [4]. This 

means that groups of travelers sharing long-term travel 

behaviors tend to show similar attitudes towards modal choice. 

By identifying and characterizing these groups, transport 

planners can create more targeted and effective services that 

better meet the needs of each group, ultimately enhancing the 

overall passenger experience. The concept of ‘passenger 

archetype’ — or ‘passenger persona’ — provides a way to 

model, summarize and communicate the profile and behavior of 

distinct passenger groups [5]. 

The analysis of passenger behavior has traditionally relied 

on surveys. Surveys provide a detailed characterization of the 

respondent, but are expensive and time-consuming, which limits 

the sample size and the frequency of update. In recent years, 

different studies have explored how the digital traces generated 

by personal mobile devices can be exploited to study passenger 

behavior. Mobile network data (MND) are particularly suitable 

for this purpose, thanks to the possibility of working with large, 

well-distributed population samples with high temporal and 

spatial resolution ([6],[7]). The longitudinal nature of MND 

enables the continuous monitoring of long-distance travel 

demand: passenger travel diaries can be reconstructed and the 

location of passengers’ overnights throughout a long period of 

time can be identified. These diaries can then be extrapolated to 

the whole population using census data and other 

sociodemographic statistics, in a similar process to the sample 

expansion of a traditional travel survey ([6],[7]). In addition, 

MND provide sociodemographic characteristics such as age and 

gender. On the other hand, MND do not directly provide certain 

key features, such as the trip purpose (e.g., business vs leisure) 

or the passenger income level, which can have a strong influence 

on passenger behavior; to overcome this limitation, different 

approaches based on a combination of data fusion and machine 

learning techniques have recently been developed ([8],[9]). 

In this paper, we investigate how to use unsupervised 

machine learning methods, in particular clustering techniques, 

on different mobility indicators extracted from MND to identify 

and characterize passenger archetypes based on their annual 

long-distance travel patterns. 



B. Previous work

While models have been developed to analyze and forecast

interurban travel demand ([9],[11]), most of them do not 

consider the specificities of different groups of passengers. 

Regarding the analysis of passenger personas, most existing 

studies are based on the passengers’ demographics rather than 

on their travel patterns. The work developed in [12] proposes a 

typology of travelers based on people’s annual intercity travel 

patterns, using data from the 2013 Longitudinal Survey of 

Overnight Travel; this survey provides a year of data, addressing 

the nonroutine nature of long-distance travel, but is limited in 

sample size (1,220 respondents). Similarly, the classification of 

leisure traveler types conducted in [13] is based on applying 

latent class analysis to two surveys. The use of MND instead of 

survey data, as proposed in the present study, ensures a wider 

and better-distributed sample and eliminates the potential bias of 

survey respondents when describing their own behavior.  

C. Objectives of the study

This paper presents a methodology to extract passenger

archetypes based on the long-distance travel mobility patterns 

observed through MND. This methodology comprehends: (i) the 

application of unsupervised machine learning to identify clusters 

of passengers according to their travel behavior, (ii) the 

characterization of these archetypes by analyzing the common 

sociodemographic factors within each cluster, and (iii) the 

combination of these two factors to formulate passenger 

archetypes. The proposed approach is applied to the case study 

of long-distance travel of the residents in Spain using a whole 

year of MND. 

The rest of the paper is structured as follows. Section II 

describes the proposed methodology. Section III shows the 

results of the application of the methodology to the Spain case 

study. Section IV presents some additional analysis to validate 

the results obtained. Section V discusses the main conclusions 

of the study and suggests directions for future research. 

II. DATA AND METHODOLOGY

A. Data

The methodology presented relies on anonymized MND as

the main source for identifying long-distance trips. MND 

consists of records of interactions between mobile devices and 

the network of antennas managed by a mobile network operator 

(MNO), capturing data from both local users (the customers of 

the MNO) and foreign visitors (roaming-in users). Each record 

includes a device ID, a timestamp, and the identifier of the 

antenna in communication with the device. In addition to these 

records, the dataset contains information about the location of 

the antennas and basic sociodemographic information for each 

anonymous user, such as age and gender. 

The data is geolocated at the cell level, i.e., the position is 

known at the level of the coverage area of each antenna. 

Therefore, the geolocation accuracy depends on the density of 

antennas, ranging from dozens or hundreds of meters in urban 

areas to a few kilometers in rural regions. The temporal 

resolution depends on the type of interaction: active events (such 

as calls or data sessions) generally occur at intervals of 20-30 

minutes, while passive events (network scans) produce more 

frequent records, typically every 5-10 minutes. 

The sample size is usually substantial, with access to MND 

from a single MNO often providing data from 15-30% of the 

mobile devices in the target country. Since mobile phones are 

widely used across all population segments, except for children, 

the sample provides good representativeness of the adult 

population. 

B. Methodology

The proposed methodology consists of four main steps,

which are described in the following subsections. 

1) Generation of long-distance travel diary

Based on the methodology developed in previous studies 

([6],[7]) for the identification of long-distance trips from MND, 

a longitudinal analysis has been conducted to extract the annual 

travel plan of each individual in the sample. To do this, a 

nighttime interval is defined, during which the anonymized 

mobile phone records are analyzed, along with the minimum 

stay time within the nighttime interval to determine that the user 

has spent the night within the coverage area of the antenna the 

user is connected to. The result of this analysis is the overnight 

diary, which consists of the sequence of locations where the 

individual spends the night throughout the year, as shown in 

Figure 1. This data provides insights into the user’s annual travel 

behavior (i.e., where they travel, how often they travel and how 

long they travel for), along with sociodemographic information 

such as age, gender, income level, and home location. 

Figure 1- Overnights diary for each individual 

2) Feature extraction

This step involves identifying features that can be derived 

from the data and are representative of specific long-distance 

travel behaviors. A crucial preliminary task is to clearly define 

what constitutes long-distance travel. Following the usual 

convention [4], a one-way distance threshold of 100 km is set. 

All the trips falling below this threshold are filtered out from the 

overnight diary.  

The selected features aim to capture different travel patterns 

in the population along three dimensions: (i) volume of long-

distance trips; (ii) average behavior; and (iii) longitudinal 

variation. The following list of features is considered: 
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• Number of trips performed,

• Number of overnight stays outside home,

• Average one-way distance travelled,

• Average duration of the trips,

• Ratio of most common destination trips to total

number of trips,

• Ratio of weekday trips to total trips, where a

weekday trip excludes any overnight stay on

Friday, Saturday, or Sunday,

• Ratio of overnight stays abroad to total overnight

stays, which capture the frequency of international

destinations,

• Coefficient of variation of distance,

• Coefficient of variation of duration,

• Destination entropy, which assesses the degree of

dispersion or concentration of trips across different

destinations,

• Ratio of overnight stays during holidays to total

overnights stays, where holidays are defined as the

periods covering July, August, Christmas, and

Easter,

• Coefficient of variation of overnight stays per

month,

• Overnight stays per month, resulting in twelve

variables, one for each month.

Once the relevant features are calculated, a correlation 

analysis is conducted to identify any highly correlated features. 

Features with a Pearson correlation coefficient greater than 0.9 

are considered for removal. 

After feature selection, the next step is to standardize the data 

using min-max scaling. This technique rescales each feature to 

a range between 0 and 1, ensuring that all features contribute 

equally to the clustering, preventing variables with larger ranges 

(e.g., average one-way distance travelled) from 

disproportionately influencing the clustering outcome. 

To further reduce the dimensionality of the dataset, Principal 

Component Analysis (PCA) is employed. PCA identifies the 

most informative components that capture the maximum 

variance in the data. In our case, we retained components that 

explained 98% of the total variance. The choice to retain 98% of 

the variance in the PCA was driven by a balance between 

maximizing data representativeness and maintaining 

computational efficiency, i.e., achieving sufficient reduction in 

dimensionality while preserving the most meaningful 

information in the dataset. 

3) K-means clustering

The algorithm selected for clustering is k-means, an

unsupervised machine learning algorithm used to partition a 

dataset into K distinct clusters. K-means works by iteratively 

assigning each individual to one of the K clusters based on the 

similarity of their travel patterns, measured using Euclidean 

distance. The algorithm begins by allocating K cluster centroids 

randomly. Each individual is then assigned to the nearest 

centroid, determined by the lowest distance between its feature 

values and the centroids’ values, forming clusters. The centroids 

are then recalculated as the mean of all the individuals assigned 

to each cluster. This process is repeated until the centroids 

stabilize, and no further significant changes in cluster 

assignments occur. 

The k-means algorithm was chosen primarily due to its 

computational efficiency when dealing with large datasets. 

Since the data was obtained from MND, we had access to a vast 

sample of the population, which made scalability a crucial 

factor. Other algorithms, such as hierarchical clustering, 

encountered memory issues when processing such large 

datasets, whereas k-means is well-suited for handling large-scale 

data with lower memory requirements and faster convergence. 

A sequential k-means clustering was employed to handle the 

large dataset effectively. This approach involves two distinct 

stages. First, we separate individuals with zero trips during the 

studied period from the rest of the dataset. This step is necessary 

because the non-travelers do not provide meaningful 

information to the clustering of travel patterns and could skew 

the results if included. Then, the travelers are portioned into K 

clusters based on their travel patterns. 

A key hyperparameter of the k-means algorithm is the 

number of clusters, K. Choosing the right K is crucial for 

obtaining meaningful and actionable clusters. The within-cluster 

sum of squares (WCSS) and the silhouette score are calculated 

to determine the optimal number of clusters. WCSS measures 

the variance within each cluster. As K increases, WCSS 

generally decreases because the clusters become smaller and 

more specific. The goal is to find the "elbow" point in the plot, 

where the rate of decrease sharply slows down. The silhouette 

score assesses the quality of clustering by evaluating how well 

each point is clustered within its own cluster compared to other 

clusters. The score ranges from -1 to 1, where a value close to 1 

indicates that the point is well-clustered and distinctly separate 

from other clusters. 

4) Characterization of clusters and prototyping of

passenger archetypes 

Once the travel patterns are identified through clustering, we 

characterize these patterns by analyzing various 

sociodemographic attributes within each cluster. The 

sociodemographic characteristics examined include age, gender, 

home municipality, and income level. Age and gender are 

obtained from the customer profiling data provided by the 

MNO; home municipality is inferred from the MND; income 

level is obtained by combining the place of residence inferred 

from mobile phone data with official statistics on average 

income level per postal code published by the Spanish National 

Statistics Office. This analysis helps understand the 

demographic profiles and geographic distribution of each 

cluster. 

Finally, by examining both long-distance travel mobility 

patterns and sociodemographic characteristics within each 

cluster, we extract and define prototype passenger archetypes. 

This comprehensive examination allows us to identify distinct 
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passenger profiles that represent the key travel behaviors and 

demographic traits of different segments within the dataset. 

III. RESULTS

The data used for this analysis comes from MND provided 

by a major mobile network operator in Spain, which holds a 

market share of around 25%. The study covers the period from 

March 2019 to February 2020, inclusive. A random sample of 

259,000 individuals was selected from the data, representing 

more than 0.5% of the total Spanish population. 

We apply the methodology outlined in Section II. Initially, 

we finalize the set of features used for clustering. From the list 

presented in Section II, we exclude two features: the ratio of the 

most common destination trips to the total number of trips, and 

the number of overnight stays per month. The first feature aimed 

to identify individuals with a preferred destination (e.g., those 

frequently traveling to a second residence), but it proved to be 

insignificant in the clustering process. The second feature, which 

included 12 variables to capture longitudinal variation 

throughout the year, introduced unnecessary complexity and did 

not contribute effectively to the clustering. Therefore, the final 

set of features used for clustering is: number of trips performed, 

number of overnight stays outside home, average one-way 

distance travelled, average duration of the trips, ratio of weekday 

trips to total trips, ratio of overnight stays abroad to total 

overnight stays, coefficient of variation of distance, coefficient 

of variation of duration, destination entropy and ratio of 

overnight stays during holidays to total overnight stays. 

To determine the optimal number K of clusters, the k-means 

algorithm was executed with various values of K, and both the 

sum of squared distances and the silhouette scores were 

calculated. These metrics are illustrated in Figure 2 and Figure 

3, respectively. While Figure 2 does not clearly indicate an 

elbow point, Figure 3 suggests that six clusters (K=6) result in 

the best clustering quality. Consequently, we have chosen 6 as 

the optimal number of clusters for this study. 

The travel patterns of the six clusters identified through the 

clustering analysis, along with the non-traveler group, are 

detailed in Table 1. For each feature used in the clustering 

process, the average value within each cluster is provided. 

Figure 2: Sum of Squared Errors in function of the number of clusters 

Figure 3: Silhouette coefficient in function of the number of clusters 

To further characterize the clusters, we analyzed the 

sociodemographic attributes of each group. This analysis is 

illustrated in Figures 4 to 8. Figure 4 shows the age distribution 

across four categories: 0-24, 25-44, 45-64, and 65+. Gender 

distribution is presented in Figure 5. Income and home 

municipality size are displayed in Figures 6 and 7, respectively. 

Both income and municipality size are divided into five 

categories, based on quintiles observed across the entire dataset. 

A horizontal line in each figure represents the overall average 

for the total dataset, providing a reference point for comparison. 

Additionally, Figure 8 illustrates the geographical distribution of 

each cluster, where red regions indicate a higher presence of a 

given cluster compared to the average, and blue regions indicate 

a lower presence. Finally, Figure 9 provides a boxplot for each 

cluster, showing the distribution of overnight stays per month. 

This visualization offers a more detailed, longitudinal analysis 

of travel patterns over time. 

With this information, seven distinct passenger archetypes 

have been identified: 

• non-traveler: this archetype, representing 30% of the

population, does not engage in any long-distance travel

throughout the year. It is characterized by an older age,

with a slight predominance of females and individuals

with limited income. They tend to live in smaller cities;

• long-distance actives: the second-largest archetype,

representing 25% of the sample, is characterized by a

higher frequency of travel activity compared to all other

clusters. The trips undertaken by these individuals cover

various destinations and distances, and are distributed

throughout the year, with a slightly higher concentration

during the summer. They are young, high-income

individuals residing in large cities;

• sporadic international traveler: this group occasionally

embarks on medium-duration trips, very often preferring

international destinations. Their travel pattern does not

follow any specific seasonality. They are middle-aged

and do not align with any particular category of gender,

income, or home municipality size;

• international urbanite: they explore international

destinations during holiday periods (summer, Christmas,

and Easter). Their trips are long, averaging more than 7

days in duration. This group includes middle-aged

individuals with a very high-income, who live in big

cities, especially in large metropolitan areas such as

Barcelona and Madrid;
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• sporadic long-haul traveler: this group rarely engages in 

long-distance travel, typically taking fewer than two trips 

per year. However, when they do travel, they cover long 

distances, often choosing off-peak periods such as 

September and June, which may be related to their low 

income. They are not defined by any gender or age group, 

but they are more prevalent in rural and coastal regions; 

• domestic summer traveler: this passenger profile does not 

usually travel, only twice a year, but the duration of their 

trips is the longest among all the archetypes. They prefer 

domestic travel and almost exclusively travel in July or 

August. Demographically, they correspond to 

individuals with average income level and home 

municipality size, but they are concentrated in the range 

of 45 to 64 years old. Representing 18% of the 

population, this cluster closely mirrors the typical 

Spanish family living in the central, often hot, regions of 

the country and vacationing in coastal areas during the 

summer for one or two weeks; 

• occasional weekday traveler: this group tends to travel 

during the workweek, with medium frequency, and 

prefers shorter-duration trips. Their travel is spread 

throughout the year, with higher activity in autumn and 

spring. They are low-income individuals who live in 

medium or small cities. This archetype is most similar to 

business travelers. 

IV. VALIDATION 

To validate the results, two additional analyses have been 

conducted. The first one evaluates the impact of a different 

number of clusters, while the second one assesses the impact of 

the sample size. 

The choice of K=6 clusters, despite the absence of a clear 

elbow point, was based on achieving a balance between 

interpretability and practical application. We considered 

alternative cluster evaluation metrics, such as silhouette scores, 

and found that while these scores did not indicate a definitive 

optimal point, K=6 consistently offered an effective balance 

between within-cluster cohesion and separation from other 

clusters. This configuration allowed us to avoid excessive 

overlap or fragmentation, preserving the practical value of the 

clusters for actionable insights. To assess the robustness of the 

results and the impact of this hyperparameter, we repeated the 

analysis with K=5. The resulting clusters were almost identical, 

with the exception of the sporadic international traveler and 

international urbanite archetypes, which merged into a single 

cluster. This suggests that the remaining archetypes are well-

separated, but the two international travel archetypes share more 

similarities. We chose to retain both clusters because, although 

they both favor international destinations and are key targets for 

air travel, there are significant differences between them. 

International urbanites tend to live in large metropolitan areas, 

have high incomes, and primarily travel during the summer, 

whereas sporadic international travelers are more geographically 

dispersed, often near the coast, with medium incomes and no 

specific seasonal travel pattern. These distinctions are crucial for 

designing policies and developing transport networks. 

To assess the representativeness of the results and the impact 

of sample size, we repeated the analysis with smaller samples of 

100,000, 50,000, and 10,000 individuals. The results showed 

that with a sample size of 10,000, the clusters differed 

significantly from those presented here. However, with the 

100,000 and 50,000 samples, the clusters were very similar to 

the original results, confirming that the chosen sample size of 

259,000 was appropriate, balancing representativeness and 

computational efficiency.

 

TABLE 1: CLUSTER CHARACTERISTICS 

  
Non-

traveler 

Long-
distance 
actives 

Sporadic 
international 

traveler 

Internationa
l urbanite 

Sporadic 
long-haul 
traveler 

Domestic 
summer 
traveler 

Occasiona
l weekday 
traveler 

Number of trips 0 9.54 3.35 3.54 1.85 2.28 4.25 

Number of overnights 0 38.65 13.80 21.09 7.25 16.23 10.15 

Average one-way distance [km] 0 328.66 199.33 218.99 400.01 362.04 332.31 

Average duration 0 4.37 4.72 7.14 3.94 7.40 2.40 

Ratio weekday trips to total trips 0 0.08 0.13 0.04 0.01 0.02 0.67 

Ratio overnight stays abroad to 
total overnight stays 

0 0.11 0.83 0.80 0.01 0.02 0.05 

Coefficient of variation of distance 0 0.40 0.09 0.11 0.13 0.16 0.21 

Coefficient of variation of duration 0 0.69 0.38 0.52 0.20 0.40 0.31 

Destination entropy 0 1.30 0.41 0.49 0.32 0.39 0.67 

Ratio overnight stays during 
holidays to total overnight stays 

0 0.50 0.09 0.82 0.03 0.91 0.09 

Coefficient of variation of 
overnights stays per month 

0 1.46 2.45 2.42 2.84 2.78 2.33 

Size [%] 30 25 6 6 11 18 4 
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Figure 4: Age distribution within the clusters  
 

Figure 5: Gender distribution within the clusters 
 

Figure 6: Income distribution within the clusters 
 

Figure 7: Home municipality size distribution within the clusters 
 

 
Non-traveller Long-distance actives Sporadic international 

traveller 
International urbanite Sporadic long-haul 

traveller 
Domestic summer 

traveller 
Occasional weekday 

traveller 

       

Figure 8: Geographical distribution within the clusters 

 

Figure 9: Overnights per month distribution within the cluste
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V. CONCLUSIONS AND FUTURE RESEARCH 

This paper shows how the longitudinal nature of new big 

data sources, such as MND, open a valuable opportunity for 

the continuous and detailed monitoring of door-to-door 

journeys, enabling the early detection of emerging patterns 

and trends and providing airlines, airports, and ground 

transport operators with a deeper understanding of traveler 

behavior. In particular, the paper contributes to the 

advancement in the study of long-distance travel by providing 

a methodology for deriving long-distance passenger 

archetypes from the analysis of travel patterns extracted from 

MND. The study offers insights into the preferences and needs 

of different types of passengers — including when and where 

they travel — that can help optimize multimodal transport 

systems in order to better align transportation supply with 

travel demand and enhance passenger experience. 

Future work will encompass several research lines: 

• Future work could explore more advanced data 

preprocessing, dimensionality reduction, and 

clustering techniques to enhance the robustness of 

passenger archetype identification. Specifically, 

applying transformations like power or Box-Cox could 

improve data distribution for clustering, while 

comparing dimensionality reduction methods such as 

t-SNE or UMAP with PCA might improve cluster 

separability. Additionally, experimenting with 

alternative clustering algorithms, like DBSCAN, could 

address the limitations of K-means, especially 

regarding cluster shape assumptions and sensitivity to 

K-selection. 

• Extending the analysis to incorporate additional 

features, such as the mode(s) of transport used for 

long-distance journeys, will enrich our understanding 

of how different factors, such as travel time, cost, CO2 

emissions and the number of transfers, influence 

passenger choices. Furthermore, the analysis of how 

and from where these passengers access airports may 

reveal opportunities for enhanced coordination of 

multimodal networks, transforming airports into 

effective intermodal hubs. 

• The proposed methodology will serve as a basis for 

developing passenger archetypes at worldwide level. 

Expanding the analysis to other countries will enable a 

broader examination of long-distance travel patterns, 

offering a more comprehensive picture of passenger 

behavior across various regions. Additionally, this will 

allow us to compare the outcomes of our methodology 

with the passenger personas defined by other studies 

that use more conventional approaches based on 

demographics and/or questionnaires, such as [12] and 

[13]. 

• The defined passenger archetypes will be used to 

assess traveler sensitivities to different multimodal 

travel options. This will facilitate the development of a 

multimodal modelling and evaluation framework that 

supports the design, development, and assessment of 

different multimodal solutions, such as scheduling and 

disruption management solutions. 

In conclusion, by providing large-scale insights into 

passenger behavior, the proposed methodology opens up new 

opportunities for the development of a more efficient and 

integrated multimodal transport system. 
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