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Abstract—Contrail optimization offers an efficient and cost-
effective way for aviation to immediately reduce its climate impact.
Open-source optimization, wherein the contrail and emission
effects are balanced based on meteorological open data, has been
presented in previous work. However, prior research overlooks the
importance of using forecasting data, as opposed to post-processed
reanalysis data. For contrail optimization to be implementable,
forecasting data needs to be available at a sufficient quality in the
flight planning stage in order to perform the optimization. In this
paper, a fully open non-linear optimal control flight optimization
is implemented and applied using both forecasting and reanalysis
data. A total of 120 days (175.440 flights) of flight data from
OpenSky are used in the analysis. We show that forecasts with
larger lookahead times (up to 12 hours) are equally effective when
compared to more recent forecasts (1 hour lookahead time) for
contrail optimization, with equally high accuracy. However, when
compared to more accurate post-processed reanalysis data, there
are considerable differences in predicted contrails formed. This
research shows there is still a long way to go before we can actually
implement contrail optimal flight planning.

Keywords—Sustainability, Contrails, OpenAP, Optimization,
OpenSky, Aircraft Surveillance Data

I. INTRODUCTION

Aviation currently accounts for approximately 5% of net
anthropogenic climate forcing [1]. This contribution is expected
to cause increasingly severe climate impacts as flight numbers
rise. Promising measures, such as alternative fuels and aerody-
namic aircraft designs, are under development, but their large-
scale commercial implementation is expected to take years or
even decades. Given the urgency of addressing the climate
crisis, sustainable aviation efforts should not only prioritize the
advancement of these technologies but also focus on immediate
implementations feasible for today’s aircraft fleet.

One significant factor contributing to aviation’s radiative
forcing over shorter timescales is the formation of contrail
cirrus, despite some uncertainties regarding the scale of the
impact [2]. During the daytime, contrails are understood to
have a cooling effect by scattering incoming solar radiation
back to space, akin to a parasol. However, both during the
day and at night, contrails trap terrestrial radiation, thereby
restricting outgoing radiation and causing a warming effect.
There is scientific consensus that the net radiative effect of
contrails is positive, meaning they contribute to warming the
Earth’s atmosphere [1]. Contrails have an immediate warming
effect, unlike CO2 emissions, which influence global warming
over a span of 20–40 years [3]. This underscores the importance
of minimizing contrail formation to mitigate aviation’s climate
impact, both now and in the future.

Re-routing aircraft to avoid contrail formation generally
results in additional fuel burn due to longer flight distances [3].
However, research has shown that significant net environmental
savings are possible with minimal operational changes [4], [5].
In [6], we presented a fully 4D non-linear optimal control
trajectory optimizer, which considers the wind field and an
objective function that considers both carbon emissions and
contrail impacts. In [6] the optimizer was used to analyse the
environmental savings possible through contrail-minimization
for half a million flights based on ECMWF ERA5 Reanalysis
data.

Said reanalysis data only becomes available a few hours
after actual takeoff. Hence, it is not available for, and cannot
be applied in, the flight planning phase. The two methods of
contrail optimization are outlined in [7], namely, pre-tactically
and tactically. With pre-tactical, a flight is planned more than
twelve hours in advance of flight departure, as opposed to
tactically, where contrail avoidance is done during the flight (as
with the MUAC trail [8]). The efficacy of both methods depends
greatly on the accuracy of the predicted contrail formation.
Additionally, [7] suggests that aircraft operators could pre-
tactically optimize the flight plan’s vertical component 12 hours
before the flight and finalize the horizontal component of the
flight plan with the most up-to-date forecast.

Contrail optimization based on forecasting data is seen in
literature [3], [9], [10], [11], [12]. However, these do not include
reanalysis data to assess the accuracy of the optimization. Fur-
thermore, in this paper, flights over an entire year are optimized,
contributing to understanding the seasonal effects of contrail
prediction. Finally, our contrail optimization is unique in its
use of solely open-source data and code, in combination with
the computational speed and customizability of the objectives.

In this paper, 175.440 flights have been contrail optimized
based on pre-tactically available forecasting data, and then the
obtained optimization outcome is reviewed using the reanalysis
data in order to assess the merit and capabilities of using
forecasting data in contrail optimization. This evaluation is an
essential step in the field of contrail optimization from the
perspective of air traffic management, in order to bring this
promising concept closer to implementation.

This paper is structured as follows. Section II explains the
background knowledge for the formation of persistent contrails.
Section III gives an overview of the collected and used data.
Section IV provides the details on the methodologies for this
study. Finally, Sections V, VI, and VII include the results,
discussions, and conclusion.



II. CONTRAIL FORMATION

Generally, contrails formed at low air temperature conditions,
-40 °C (233 K), and at a high relative humidity [13]. In order
for a contrail to be persistent and have an environmental impact,
two atmospheric conditions must be met:

1) Schmidt-Appleman Criterion (SAC), which states that the
temperature must be below the critical temperature.

2) The ambient air is supersaturated with respect to ice
(RHi > 100%) in an ice-supersaturated region (ISSR).

The well-established Schmidt-Appleman criterion [13] is a
thermodynamic model that takes into account ambient pressure,
humidity, and the water-to-heat ratio in exhaust plumes. As an
aircraft flies through atmospheric conditions satisfying SAC,
saturation with respect to liquid water occurs, and a contrail is
formed.

The specific temperature threshold (TLM) for contrail forma-
tion relies on the ambient relative humidity and the slope of
the isobaric mixing line (G), which can be defined as follows:

G =
EIH2O cp p

ε Q (1− η)
(1)

where the constants for Eq. (1) can be found in Table I. In
this paper, only cruise optimization is applied. A propulsion
efficiency of η = 0.3 is assumed for modern aircraft–engine
combinations [14].

In order to determine the threshold value TLC, the tempera-
ture TLM [13] must first be identified, which is given by:

TLM = −46.46 + 9.43 ln(G− 0.053) + 0.72[ln(G− 0.053)]2

(2)

Figure 1. A visualization of the geometric approach to determining the critical
formation temperature (TLC), using the saturation pressure for water, the
saturation pressure for ice, and the isobaric mixing line with slope G at ph
= 230 hPa. Zones of contrail persistence are also indicated in the graph.

Subsequently, the mixing line is defined as the tangent line at
the TLM point with the saturation water vapour pressure curve
(e*). TLC represents the intersection of the mixing line and the
saturation water vapour pressure curve over ice. This geometric
approach to identifying TLC is visualized in Figure 1. The RHi

(%) can be calculated through the specific humidity (q in %):

RHi =
q p Rv

Rd eice
(3)

where eice (hPa) is the actual vapour pressure over ice [15]:

log eice = 9.550426− 5723.265

T
+ 3.53068 ln(T )

− 0.00728332T
(4)

where p is pressure, provided by the reanalysis or forecast data.
Rv and Rd are gas constants for water vapour and dry air (see
Table I).

TABLE I: Constants used for contrail formation

Symbol Constant Value Unit

EIH2O Emission index 1.2232 − (kgH2O kg−1
fuel)

cp Specific heat capacity air 1004 J kg−1 K−1

ε
Ratio molar mass
of water vapor and air 0.622 -

Q Specific combustion heat 43× 106 J kg−1

η Overall propulsion efficiency 0.3 -
Rv Gas constant of water vapour 461.51 J kg−1 K−1

Rd Gas constant of dry air 287.05 J kg−1 K−1

III. DATA

In total, one full year of ADS-B flight data was gathered
and processed for this study, which included 175.440 flights.
Both weather forecasts and reanalysis data are also gathered
for the experiments. This section explains the data sources and
the steps taken before further processing.

A. Flight data

The OpenSky Network has been collecting global air traffic
surveillance data since 2013. The unfiltered and raw data from
the OpenSky Network, based on ADS-B, Mode S, TCAS, and
FLARM messages, are available for use [16]. The variables
used in this research include time, latitude, longitude, callsign,
and altitude.

In this paper, in order to provide an overview of a year
while also effectively using computational capabilities, every
three days of data is downloaded, starting from 1st of January
2022 over the European airspace (30 to 70◦ latitude and -20 to
50◦ longitude). If there is no contrail formation along a flight
trajectory, the flight is not considered in this research. In total
175.440 flights have contrail formation at some point along the
trajectory, a total of 33% of all flights.

B. Forecast and Reanalysis data

The ARPEGE (Action de Recherche Petite Echelle Grande
Echelle, which translates to research project on small and large
scales) is an open global numerical weather prediction model
from Météo France, in collaboration with ECMWF. The initial
conditions of the forecast are based on the assimilation of a
range of conventional observational data (sounding balloons
and aircraft, boat buoy and land measurements) and remote
sensing data (infra-red and microwave images, temperature
and humidity from satellite-GPS signals) [17]. The relative
weights between these measurements are estimated using an
assimilation of 25 short-range forecast scenarios. These weights
and parameterizations have been calibrated over numerous
measurement campaigns.
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Four times a day forecasts are made, at 00.00, 06.00, 12.00,
and 18.00 UTC, with forecasting step time from 0 to 12 hours,
at a grid of 0.1° x 0.1° (around 11 km) [17]. The 105 vertical
levels range from 10 m above the surface to 70 km. In short,
if a forecast is run at 06.00 UTC with a lookahead time of 3
hours, the forecast is valid for 09.00 UTC.

The European Centre for Medium-Range Weather Fore-
casts (ECMWF) ERA5 Reanalysis dataset provides hourly
atmospheric data on a high-resolution grid, which features a
horizontal resolution of 0.25 degrees and 37 vertical layers.

The main difference between a reanalysis and a forecast is
the amount of ‘real’ data assimilated into the initial condi-
tions. The reanalysis is obtained by assimilating observations
from radiosondes, aircraft, and stations, which is supplemented
by satellite observations. These measurements from different
sources greatly increase the accuracy of meteorological condi-
tions when compared to the forecasts.

Both ERA5 Reanalysis and ARPEGE are based on 4D-
Variational data assimilation, though they differ in their im-
plementation and purpose. While ERA5 maintains a consistent
physics package optimized for global, long-term performance,
IFS undergoes regular updates with specific regional tuning,
particularly for European weather patterns [18].

In both cases, data generated by a weather model is re-
assessed by assimilating observations, generating a new and
improved estimate of the atmospheric state [19]. With reanaly-
sis, observations within a 12-hour time window are incorporated
into the assimilation. Reanalysis benefits from the availability
of future observations, allowing for an improved historical
reconstruction, while IFS focuses on real-time forecasting with
a 6-12 hours window and incorporates recent observations.

IV. METHODOLOGY

A. Comparing Forecasts and Reanalysis

By its nature, reanalysis data is not available for pre-tactical
or tactical planning. However, reanalysis can be used to retroac-
tively determine the amount of contrail formation that occurred
during a flight.

Figure 2 illustrates how we couple the flight takeoff time to
two forecasts that are used for optimization. The nearest hour
to takeoff is represented in the solid and dotted top circles, and
the multicolored boxes below indicate the two forecasts to be
used for each hour of flights. To create a realistic scenario, the
forecast that runs at 00.00, 06.00, 12.00, and 18.00 cannot be
used for these hours since these would not be available yet.

To mimic the pre-tactical situation, the forecast that runs used
the 6 and 12-hour look ahead times are used at 00.00, 06.00,
12.00, and 18.00.

Subsequently, to determine the capabilities of incorporating
weather forecast data in flight planning to minimize the en-
vironmental impact of contrails, optimizations are run using
ARPEGE forecasts and ERA5 Reanalysis atmospheric data.
These two forecast-optimized trajectories are then compared
with the reanalysis-optimized trajectory through three metrics:

1) ∆t: change in flight time,
2) ∆d: change in flight distance and
3) ∆tcontrail: change in time of persistent contrail formation.

B. Optimizer

In our previous work [6], a fully open non-linear optimal
control flight optimizer for contrail avoidance and emission
reduction was presented. A high computational efficiency is
achieved by combining the most recent trajectory optimizer,
OpenAP.TOP [20], and atmospheric data handling tool, fast-
meteo [21].

In the optimizer, the balance between contrail avoidance
and emission reduction is determined through the coefficient
of influence (CoI), with a high CoI emphasizing emission
reduction more and low avoiding contrail formation more.
Based on the analysis in [6], we concluded that a large number
of contrails could be mitigated even with a lower CoI, without
significant penalty on additional distance flown, flight time, or
CO2 emissions. For these reasons, a CoI of 0.8 was selected
for this paper.

C. Data processing

Opensky flights were downloaded for every third day from
2022 and clipped to exclusively contain the start and end of
the cruise section and takeoff time. Based on the takeoff time
of the flights, the two closest hindsight weather forecasts are
downloaded, as explained in section IV-A. The optimizer from
[6] is run based on these two forecasts. Finally, this resulting
forecast-optimized trajectory is combined with reanalysis data
in order to verify the degree of contrail formation along the
route during the actual operation. Another optimization is run
based on reanalysis data, which is used as a baseline to compare
how the pseudo-optimal trajectory using forecast data differs
from the real optimal with the best post-op meteorological
information.
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Figure 2. Forecast timeline, where the nearest hour to takeoff is represented in the solid and dotted top circles. The boxes directly below indicate the forecasts
used for each takeoff hour. For example, at a 06.00 takeoff time, the newer forecast used is that of 00:00 with a lookahead time of 6 hours, and the older
forecast is from 18:00 with a 12-hour lookahead time. This sequence is repeated for hours 12 to 23.
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Figure 3. Cruise section of Flight AAL145 from Cyprus to Long Island, New York, United States on the 6th of January 2022. The OpenSky and the three (newer
forecast, older forecast and reanalysis) optimized trajectories are shown, together with a grid showing the newer and older forecasts. As only the cruise section
within Europe is considered, the flight is cut off over Iceland and starts off the coast of Cyprus.

V. RESULTS

To best illustrate the results and the meaning of the afore-
mentioned metrics, two flights are highlighted in the following
sections, after which histograms containing all 175.440 flights
are shown.

A. Forecast Optimization

In Figure 3, the two forecasts and the reanalysis optimiza-
tions for flight AAL145 from Cyprus to Long Island, New York,
United States on the 6th of January 2022, alongside the ADS-B
trajectory from OpenSky are shown. The background contours
show the newer (orange) and older (green) forecasts used for
the optimizations.

The difference between the two forecasts (specifically over
the North Sea) causes the two optimizations to differ, where
the newer forecast takes a northern route over the great circle,
and the older forecast lies more to the south. As can be
seen in Table II, the optimization based on the older forecasts
has a shorter travel time and distance, as compared to the
optimization based on the reanalysis data, while with the
newer forecasts, both increase. Besides this, both also have
significantly more travel time in persistent contrail forming
regions (increases of 61.8 and 43.0% compared to the reanalysis
optimization).

TABLE II: Comparison Metrics for Two Forecasts, AAL145
Forecast ∆t [MM:SS] ∆d [km] ∆tcontrail [MM:SS]

Newer +25:20 (+7.0%) 783 (+0.2%) 15:25 (+61.8%)

Older -19:25 (-5.3%) 39.8 (-0.01%) 7:11 (+43.0%)

In Figure 4, three optimizations for another flight are shown,
BCS7JG from Madrid, Spain to Leipzig, also on the 6th of
January 2022. In this instance, because the older and newer

forecasts align with each other well, the two forecast optimiza-
tions produce the same route. This entails that the metrics,
when compared to the optimization based on reanalysis data
(Table III), the difference is the same for both optimized flights.

TABLE III: Comparison Metrics for Two Forecasts, BCS7JG
Forecast ∆t [MM:SS] ∆d [km] ∆tcontrail [MM:SS]

Newer -02:35 (-2.6%) 40.5 (-3.8%) 6:11 (+55.8%)

Older -02:35 (-2.6%) 40.5 (-3.8%) 6:11 (+55.8%)

Compared to the two forecasts optimized flights, the
reanalysis-optimized flight deviates from the great circle to
a greater extent. This causes a comparative decrease in the
flight time and distance, as can be seen in Table III. However,
the contrail formation along the forecast-optimized routes is
significantly more (+55.8%). This is because the reanalysis op-
timization effectively routes around persistent contrail-forming
regions.

B. All Flights

In this section, we provide the aggregated statistics of all
175.440 flights, and the histograms of all these flights are shown
for each of the metrics discussed earlier.

1) Changes in flight time: After calculating the total flight
time of the three optimized trajectories, based on the older and
newer forecasts and the reanalysis, the percent change in flight
time was calculated with the reanalysis acting as a baseline.

The histograms in Figure 5 indicate that, on average, the
older and newer forecast-based optimizations have shorter flight
times (means of -5.4% and -4.7%) compared to the reanalysis-
optimized trajectory, due to less ISSR being forecasted in the
forecast dataset.
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Figure 4. Cruise section of Flight BCS7JG from Madrid, Spain to Leipzig, Germany on the 6th of January 2022. The OpenSky and the three (newer forecast, older
forecast and reanalysis) optimized trajectories are shown, together with a grid showing the newer and older forecasts. As only the cruise section is considered,
the flight is cut off before reaching Madrid and Leipzig.

Figure 5. Histogram of the change in flight time for newer (blue) and older
(green) forecast- vs reanalysis- optimized trajectories.

2) Changes in flight distance: Figure 6 shows a histogram
indicating the change in the flown distance. Both distributions
of the two forecast vs. reanalysis contrail optimized trajectories
exhibit a normal distribution centered around -2.1 (older) and
-1.4 (newer), indicating a slight increase in flight distance
for the forecast optimizations. This is related to the previous
observation on flight time.

Figure 6. Histogram of the change in flight distance for newer (blue) and older
(green) forecast- vs reanalysis- optimized trajectories.

3) Changes in time of persistent contrails: The third his-
togram of Figure 7 shows the change in time flown in persistent
contrail forming conditions (or contrail time). The histograms
in Figure 7 indicate a large spread from no change to a max-

imum of 88% increase of contrail time in the forecast-optimal
trajectories when compared to reanalysis-optimal trajectories.

Since only flights that form persistent contrails along some
section of the trajectory are optimized, there are no cases of
a change relative to 0 minutes of contrail time. There are also
no cases where the forecast had a shorter travel time than the
reanalysis-optimized trajectories, which makes physical sense.
On average, the median/mean increase in contrail time when
using the newer and older forecasts are very similar, which are
28.9/29.9 and 24.9/24.8, respectively.

Figure 7. Histogram of the change in contrail time for newer (blue) and older
(green) forecast- vs reanalysis- optimized trajectories.

C. Precision, Recall and Accuracy of Forecast

Figure 8 shows a comparison between two forecasts and their
persistent contrail forming regions, and of the reanalysis data
for the same time and location. Figures 8.a and b show two
forecasts with different lookahead times, and Figure 8.c shows
the reanalysis data set.

Even though the forecasts are run 6 hours apart, and with
a long lookahead time of 9 hours, we see alignment in the
forecast locations of persistent contrail formation. When com-
paring these two forecasts with the reanalysis, we see that
generally that the location of the regions with persistent contrail
formation predicted by the forecasts and the reanalysis weather
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forecast correlate to a high extent, but the extent of the regions
is underestimated in the forecast. In this section, using three
metrics of precision, recall and accuracy, the performance of
the forecast is evaluated against the reanalysis.

These three metrics are commonly applied to binary classifi-
cation tasks, based on the principle of True Positives (TP), False
Positives (FP), True Negatives (TN), False Negatives (FN).

• Precision is the ratio of correctly predicted positive obser-
vations to the total predicted positive observations, or TP
/ (TP + FP).

• Recall is the ratio of correctly predicted positive observa-
tions to all the observations, or TP / (TP + FN).

• Accuracy measures the proportion of correctly classified
observations from the total number of observations, or (TP
+ TN) / (TP + TN + FP + FN).

Table IV shows the values of these three error metrics for the
two forecasts as well as for the two contrail forming conditions,
SAC and ISSR (see Section II), and the combination of the two
for persistence.

TABLE IV: Error Metrics for Both Forecasts
Precision Recall Accuracy

SAC Forecast 1 0.476 0.477 0.353

SAC Forecast 2 0.476 0.476 0.353

ISSR Forecast 1 0.231 0.225 0.885

ISSR Forecast 2 0.223 0.223 0.886

Persistent Forecast 1 0.269 0.295 0.929

Persistent Forecast 2 0.261 0.291 0.929

The three error metrics were determined for the hourly
forecasts over the entire year. In Figure 9, the error metrics
are shown as a weekly average. Older forecasts are shown as
dotted lines in contrasting colors to the newer forecast’s solid
lines. Figure 9 shows the three error metrics are essentially the
same, with the maximum difference being 0.01 for precision
and recall and 0.001 for accuracy. An increase in precision
and recall during the colder winter months for the Schmidt-
Apppleman criterion (SAC) is also observed. Most likely, this is
due to there being more SAC-satisfying atmospheric conditions
[22] in the colder winter months, and so the precision and recall
will be higher.

As this forecast and reanalysis comparison is computed
hourly for two lookahead times, we can also investigate a
change in metrics caused by these varying lookahead times.
This is visualized in Figure 10. Similarly, no significant change
is observed here with increasing lookahead time for all three
of the persistent contrail forming conditions.

VI. DISCUSSION

A. Forecasts and Reanalysis comparison

Based on the accuracy, precision, and recall metrics shown
in Section V-C, we see that the forecasts underestimate the
regions where persistent contrails form, specifically for the
ISSR criterion. The extra contrail time in forecast-optimized
trajectories compared to reanalysis optimized is around 25%,
which shows a significant issue of using forecast data to

perform pre-tactical contrail minimization. The shorter flight
time and flight distance seen in Figures 5 and 4 indicate this
as well, where because less persistent contrails regions are
predicted, fewer deviations are necessary, and the flight can
prioritize fuel optimization to a greater extent.

This aligns with what is seen in [23], where a comparison is
made between an IFS (similar to the ARPEGE data used here)
and WRF forecasts. It states that WRF (Weather Research and
Forecasting) models, which incorporate multi-moment cloud
physics, offer a higher accuracy in the relative humidity with
respect to ice than IFS (Integrated Forecast system) models.

The analysis could be extended to include various other
forecasts, such as the WRF model, but also NOAA’s GFS or
the HRRR, which is already applied in aviation planning, in
wind-optimization, severe weather avoidance and turbulence.
While both the suggested forecasts and reanalysis are publicly
available, it is at lower vertical and temporal resolution.

B. Forecasts comparison

Figures 9 and 10 show that the newer and older forecasts
align to a great extent, with very small differences, between the
two. This is confirmed by the histograms in Figures 5, 6, and
7, where the two histograms in green and blue overlap as well.
This indicates that the older forecasts are just as effective at
predicting conditions for persistent contrail formation as those
made closer to the actual flight time.

C. Cooling effect of the contrails

As described in the Introduction, contrails can have both
warming and cooling effects on the climate, although the net
radiative effect of contrails is positive and so warming.

Currently, the cost function presented in this paper is con-
structed as a Coefficient of Impact (CoI) between avoiding
persistent contrail forming regions and fuel. This means that
forming potentially cooling contrails is also avoided. In future
work, based on meteorological and geographical data, a predic-
tion can be made whether the persistent contrail formed will be
warming or cooling can be made. Besides this incorporation,
instead of a CoI between contrails and fuel, a radiative forcing-
based ratio could be used.

D. Safety of diverted flight trajectories

In this paper, each trajectory is optimized individually, and
the complete air network is not taken into account. This implies
that it is possible for two flights post-optimization to no longer
be horizontally or vertically separated. However, safety impacts
are minimal [24], with only a slight increase in the number
of intrusions or conflicts when changing altitudes for contrail
prevention.

E. Uncertainty ERA-5 weather data

The presence of persistent contrails is determined using
ECMWF’s ERA5 dataset through the temperature and specific
humidity parameters. The temperature condition mentioned in
Section II can be predicted reliably [25].

However, the specific humidity parameter has some problems
with reliability, especially in the upper troposphere. The level
of relative humidity over ice is often underestimated [26].
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(a) ARPEGE forecast from the 6th of January 2022 at 12:00 UTC, with a lookahead time of 3 hours.

(b) ARPEGE forecast from the 6th of January 2022 at 06:00 UTC, with a lookahead time of 9 hours.

(c) ECMWF Reanalysis ERA-5 of the 6th of January 2022, 15:00 UTC.

Figure 8. Illustration of two persistent contrail forecasts (a and b) and reanalysis (c) of the same time and location for several flight levels.

Figure 9. Weekly averages of the three error metrics; precision, recall and accuracy for the two persistent contrail forming condition (SAC and ISSR) and the
combination of these two. These metrics are presented for the new (solid lines) and old (dotted lines) forecasts. The two forecasts are essentially equal, with a
maximum difference between the two being 0.01 for precision and recall and 0.001 accuracy.
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Figure 10. Box plots of the three error metrics: precision, recall, and accuracy for the lookahead times of the forecasts. The metrics do not change significantly
with increasing forecast lookahead times.

This leads to an underestimation of the instantaneous radiative
forcing [25]. Before strategies of contrail optimization, like the
ones presented in [7], become operational, the prediction of ice
supersaturation needs to be more reliable.

F. Improvements Schmidt-Appleman Criterion

In this paper, a propulsion efficiency of η = 0.3 is assumed
for modern aircraft–engine combinations. However, in Eq. (1)
η is defined as the fraction between resulting energy (thrust and
true airspeed) and required energy (specific combustion heat Q
and fuel flow) [13]. In future work, this parameter should be
dynamic and not assumed constant.

VII. CONCLUSION

This paper investigates the capabilities of using forecast
data in contrail optimization. From an air traffic management
perspective, this is an essential step in integrating contrail
optimization into the flight planning process, as opposed to
using post-reanalysis atmospheric data. To analyse the merits
of forecasting data, a year of OpenSky flight data from 2022,
175.440 flights, was gathered and optimized.

Two ARPEGE forecasts with different run times were used
in the optimization, an older and a new one. Despite the older
forecast having a lookahead time ranging from 12 to 7 hours,
from our analysis, we conclude that the older forecasts are just
as effective at predicting persistent contrail forming conditions
as the use of forecasts closer to the actual takeoff time of the
flight. While the error analysis shows that overall precision and
recall are lacking in comparison to more reliable reanalysis
data, the accuracy of the persistent contrail forming conditions,
upon which optimization is run, is high.

Both these conclusions, based on analysis from two weather
products, indicate that incorporating contrail optimization into
flight planning at an early stage in the process is possible, with

ample time before takeoff. However, due to the inaccuracies in
contrail-forming meteorological conditions in weather forecast
data, there is a large increase of actual contrail time when
compared with reanalysis-optimal trajectories. This hinders the
effectiveness of pre-tactical flight contrail-minimization.
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