
Automatic Control With Human-Like Reasoning:
Exploring Language Model Embodied Air Traffic Agents

Justas Andriuškevičius, Junzi Sun∗
Faculty of Aerospace Engineering, Delft University of Technology

Delft, the Netherlands
Corresponding Email: ∗j.sun-1@tudelft.nl

Abstract—Recent developments in language models have cre-
ated new opportunities in air traffic control studies. The current
focus is primarily on text and language-based use cases. However,
these language models may offer a higher potential impact in
the air traffic control domain, thanks to their ability to interact
with air traffic environments in an embodied agent form. They
also provide a language-like reasoning capability to explain
their decisions, which has been a significant roadblock for the
implementation of automatic air traffic control.

This paper investigates the application of a language model-
based agent with function-calling and learning capabilities to
resolve air traffic conflicts without human intervention. The main
components of this research are foundational large language
models, tools that allow the agent to interact with the simulator,
and a new concept, the experience library. An innovative part
of this research, the experience library, is a vector database
that stores synthesized knowledge that agents have learned from
interactions with the simulations and language models.

To evaluate the performance of our language model-based
agent, both open-source and closed-source models were tested.
The results of our study reveal significant differences in per-
formance across various configurations of the language model-
based agents. The best-performing configuration was able to solve
almost all 120 but one imminent conflict scenarios, including up
to four aircraft at the same time. Most importantly, the agents are
able to provide human-level text explanations on traffic situations
and conflict resolution strategies.

keywords – Air traffic control, self-learning agents, large language
models, experience library, function-calling

I. INTRODUCTION

Air traffic management is a system that is critical for en-
suring global airspace safety and operational efficiency. As air
traffic volumes increase, so does the complexity of managing
numerous flights and workloads for operators simultaneously
[1], which raises the risk of incidents due to operational
misunderstandings. These factors have historically contributed
significantly to aviation accidents.

One of the main developments in air traffic management is
the introduction of artificial intelligence in air traffic control
to reduce the workload of air traffic controllers. The SESAR
AISA project [2] was an early attempt to incorporate AI
into air traffic management by creating a system for artificial
situational awareness through the use of knowledge graphs and
machine learning for traffic prediction. The SESAR TAPAS
project [3] represented an advancement in the ATM field,
targeting explainability. The project tested explainable AI and
visual analytics in human-operated simulations that tried to

make AI’s decision-making processes accessible to controllers.
Similarly, another SESAR project, ARTIMATION [4], also
aims at producing a transparent AI through visualization.

Overall, the human-in-the-loop simulations revealed a gap
between artificial and human situational awareness, highlight-
ing room for improvement in AI’s complex decision-making
processes. This gap requires AI to offer more nuanced and
human-like reasoning capabilities in air traffic management.

Since 2023, researchers have experimented with the in-
tegration of large language models (LLM) into air traffic
management. Large language models are advanced AI sys-
tems capable of understanding and generating human-like
text. Their proficiency in real-time decision-making has the
potential to improve operational efficiency and automate labor-
intensive tasks. Most of the data used to train leading-edge
large language models, such as the latest Common Crawl
dataset [5], which comprises over 250 billion web pages,
sources information from publicly accessible internet sites.

This extensive training equips large language models with
a broad understanding of air traffic management standards,
including guidelines from the International Civil Aviation
Organisation, Federal Aviation Administration regulations, and
other global and local aviation protocols. Consequently, large
language models can interpret these contents effectively.

Several recent studies have explored use cases for aviation
applications. For example, [6] employs language models to
understand ground delay program text data. [7] fine-tunes
the open-source language models to better understand the
aviation context. A recent study [8] uses a language model
for text classification and clustering based on air traffic flow
management regulations and weather reports.

However, these use cases are primarily focused on natural
language processing; they have not utilized the full potential of
language models in managing air traffic operations nor looked
into how AI can provide human-like reasoning.

A new concept, the language model embodied agent, Voy-
ager [9], was introduced last year, which represents an inno-
vative step in leveraging the language model’s reasoning capa-
bility. It is designed for open interactions within the Minecraft
game environment, where Voyager agents can explore the
virtual world autonomously and, most importantly, acquire
skills by experience and then apply skills.

In a similar context, we also hypothesize that large language
models may act as intelligent assistants for air traffic control

operators, helping to manage routine tasks. More critically,
these agents can play a decisive role in conflict resolution
strategies—identifying potential conflicts and suggesting opti-
mal maneuvering strategies. By leveraging the function-calling
capability of the language model, they can also interact with
the air traffic simulator and start learning air traffic control
experiences like a new air traffic controller in training.

An exciting avenue for enhancing LLM-based approaches
is integrating reinforcement learning with human feedback
(RLHF), though it is outside the scope of this paper. RLHF
allows LLMs to learn not only from data but also from
feedback provided by human operators. This integration holds
promise for improving conflict resolution by maximizing the
overall "return" in terms of both efficiency and human trust.

This paper explores a novel application of the large language
model embodied agents in air traffic control. Our agent is
able to interact with air traffic scenarios, monitor traffic, build
up experiences, and resolve conflicts, all the while providing
reasons for its behavior like an air traffic controller. The study
assesses how effectively large language model agents can
resolve air traffic conflicts and discusses in detail the limita-
tions and potential for adopting our approach with human-like
reasoning capabilities to assist air traffic controllers.

II. METHODOLOGY

In this section, we discuss our efforts to develop two differ-
ent large language model embodied agent frameworks, which
are capable of interacting with the BlueSky simulator [10],
monitoring and interpreting traffic situations automatically,
and producing instructions to solve air traffic conflicts au-
tonomously and in real-time.

A. Large language model embodied Agent

A language model predicts the next word in a sequence
by analyzing the preceding words. Increasing the complexity
of models, like large transformer models, leads to awareness
of the extremely long context in text. The text includes
programming language and software code. By providing a
proper application programming interface, these models can be
integrated with various tools and virtual or real environments,
transforming them into embodied agents. An embodied agent
can either utilize specific tools, such as Python functions with
arguments or operate independently to generate responses.

In our research, we designed such agents that can interact
with the air traffic control interface, for example, the BlueSky
simulator. By providing the proper objective in a text (called
prompt), the agent is set to solve conflict scenarios.

Figure 1 shows the overview of the process, beginning with
the construction of a prompt that integrates the system prompt,
user prompt, and tools descriptions. The large language model
then evaluates whether a tool is needed for the task at hand.
If a tool is required, the agent executes the selected tool with
the specified arguments. For example, to change an aircraft’s
altitude, the agent would use a SendCommand() tool with
a generated altitude command. This command is sent to the
simulator, and the output from the simulator is then integrated

User input

LLM selects a
tool and args

LLMPrompt

LLM decides
whether to use tools

System message

Creates and adds
experience document

LLM provides
final summary

Tools:
GetAllAircraftInfo()

SendCommand()

ContinueMonitoring()

GetConflictInformation()

SearchExperienceLibrary()

API / Plugin

Yes
No

BlueSky

agent

Monitor

Conflict .scn

1

2

3

5

4

guidance

Execute

Figure 1. The language model embodied single agent setup

back into the prompt for further processing. This cycle repeats
until the large language model determines that no additional
tools are needed.

In the end, the agent can also provide a summary of the
situation and reasons for the conflict-solving s trategies. An
experience document (subsection II-D) is then created and
subsequently uploaded to an experience library, which can
be retried to further enhance the agent’s knowledge base and
capabilities for more complex tasks.

To demonstrate this process, Figure 2 presents a sce-
nario where a single agent effectively resolves a converging
three-aircraft conflict. T he r esolution p rocess b egins with
the agent querying all relevant aircraft data through the
GetAllAircraftInfo() tool. The agent automatically as-

sesses the conflict d ynamics b etween e ach p air o f aircraft
using GetConflictInfo() . Based on the results, the agent
then strategically issues a heading change to aircraft AB112,
directing it to alter its course to 225 degrees. This directive is
executed via the SendCommand() tool, utilizing the command
HDG AB112 225 .

After this initial conflict mitigation, the agent re-evaluates
the aircraft and conflict information. It then proceeds to issue
another command - this time decreasing the altitude of aircraft
AB426 by 2000 feet, further solving the remaining conflict.
After re-assessing the situation and confirming the resolution
of all potential conflicts, the agent concludes its task, having
successfully ensured a safe outcome.

We have also developed a multi-agent system capable of
handling an unrestricted number of LLM embodied agents and
facilitating increasingly complex challenges. This system is
illustrated in Figure 3.

In this multi-agent system, we designed three types of

2

Figure 2. Single Agent solving 3 aircraft conflicts without experience library. The LLM embodied agent automatically decides when and what
commands (in green text) are to be invoked at all stages.

Tools

GetAllAircraftInfo()
ContinueMonitoring()
SearchExperienceLibrary()

Tools

GetAllAircraftInfo()
ContinueMonitoring()
SearchExperienceLibrary()

Tool:

SendCommand()

Planner Agent

Executor Agent

Verifier Agent

1. Gather aircraft and conflict
information with tools
2. Search and retrieve experiences
3. Create an actionable plan

1. Monitor, create new plans if
there are more conflicts
2. Retrieve from experience library
3. Determine when to finish

Execution Plans

Finish

Figure 3. The structure of the multiple language model embodied agent,
containing planner, verifier, and executor agents.

agents: the planner, the executor, and the verifier. The planner
agent is responsible for generating a conflict resolution plan. It
begins this process by monitoring the airspace and analyzing
detected conflicts. After a plan is created, the executor agent
issues commands to BlueSky. While its tasks could be part
of the planner or verifier agents, the executor is vital to
system architecture. Research shows that forcing LLMs to
follow strict formats can harm reasoning, as discussed in
[11]. Though function calling uses structured output, it’s
designed to align LLMs with software functions by matching
outputs to expected parameters. In our system, the planner
generates natural language conflict resolution plans to use its
reasoning fully. The executor then interprets these instructions
and converts them into commands for simulation. As LLM
outputs vary across models and responses, a traditional parser
would struggle with this range, making the executor’s role as
a flexible interpreter crucial. Merging this into the planner or
verifier would disrupt their main functions, so the executor is
essential for reliable plan execution.

After the execution of the plan, the verifier agent plays a
critical role in ensuring the efficacy of the conflict resolution.
This agent continues to monitor the airspace to confirm
whether any conflicts remain unresolved. If conflicts persist,
the verifier agent devises a new resolution plan, which is once
again forwarded to the executor agent for implementation.
Conversely, if no further conflicts are detected, the conflict-

3

solving task is concluded. Additionally, when the experience
library is activated, both the planner and verifier agents can
search in this library to retrieve insights from previously
encountered conflicts.

B. Prompt

The prompt serves as a critical link between the objectives,
agent actions, and the underlying language model. We have
designed a prompt template to ensure the clarity and relevance
of the information processed by the large language model,
containing four different components:

system_prompt: pre-crafted text on role and objectives
user_input: instructions from human
chat_history: memories about llm inputs and outputs
agent_scratchpad: memories about environment interactions

System Prompt: This component is crafted to provide
both context and explicit instructions to the agent. Each agent
receives tailored directives specific to their role. For instance,
the planner agent is instructed to gather aircraft information,
monitor airspace, and provide an actionable plan according to
the separation requirements that would also avoid introducing
new conflicts.

User Input: A brief on tasks and preferences that can
enhance agent performance. For instance, the planner agent
may be asked to check for conflicts and create a plan based
on preferences, such as changing heading, altitude, or both.
These instructions are less detailed than the system prompt.

Chat History: Acting as a memory block, which stores the
inputs and the output with the language model, it maintains a
continuous record of interactions.

Agent Scratchpad: This component memorizes descrip-
tions of the tools used, logs all intermediate steps, and records
results from the tools. It is vital for tracking the agent’s
operational processes and the adaptations made during task
execution.

C. Tools

Our system integrates several specialized tools (functions
in Python programming language) to facilitate interactions
between the large language model and the BlueSky simulator.
These tools are crucial for the effective execution of tasks and
data retrieval:

• GetAllAircraftInfo() : This tool sends a command to
BlueSky and retrieves a comprehensive list of aircraft,
detailing their position, heading, track, altitude, vertical
speed, calibrated, true airspeed, and ground speed, as well
as Mach number.

• GetConflictInfo() : This tool sends a command to
BlueSky and retrieves information about aircraft pairs
in conflict. It provides details such as Time to Closest
Point of Approach (TCPA), heading differences, separa-
tion distances (total, vertical, and horizontal), distance to
Closest Point of Approach distance (DCPA), time to Loss
of Separation (tLOS), and altitude information.

• ContinueMonitoring(duration) : This tool commands
BlueSky to retrieve changes in conflict status over a
specified duration, enabling ongoing monitoring of the
airspace.

• SendCommand(command) : This tool sends a traffic com-
mand to BlueSky and retrieves the resulting output from
the simulator, allowing for dynamic interaction with the
simulation environment.

• SearchExperienceLibrary(args) : This tool queries the
experience library and returns the most relevant experi-
ence document based on different arguments, including
conflict description, number of aircraft involved, and the
formation of the conflict.

It is important to emphasize that the large language model
decides when to utilize a tool, and it is also responsible for
generating proper functional arguments that enable precise and
context-appropriate responses. This function-calling capability
enhances the agent’s ability to interact with and manipulate the
environment effectively and freely.

In principle, it is also possible for the agent to write its own
tools, considering that sufficiently large language models are
also capable of code generation. However, this was not tested
in our experiments.

D. Experience Library

The Experience Library is a crucial component that enables
our LLM embodied agent to recall stored memories about
past conflict solution experiences. We use an open vector
database, Chroma [12], to store and retrieve past conflict
resolutions effectively. A vector database encodes text (a.k.a.
tokens) into numerical vectors, which can be compared based
on similarities. The agent can create and search the experience
library on its own.

D.1 Creation of Experience Documents

After an LLM agent resolves a conflict, it processes the
entire conflict resolution log to create an experience document.
A concise conflict description is generated with the language
model based on the initial states of the aircraft and the conflict
information. It then categorizes the executed commands into
whether they are helpful or not helpful.

Commands that have eliminated at least one conflict pair are
deemed helpful, while others are not. The absolute values (like
altitudes and headings) of these commands are converted into
relative values. The conflict description and the categorized list
of commands are then combined. Finally, the language model
enhances the document by adding insights and reasoning for
each command tailored to the specific conflict description.
Additionally, aircraft callsigns are anonymized in the final
steps of creating the experience document. This ensures that
when an agent retrieves the document later, it won’t be
confused by the presence of the same callsigns in both the
current conflict and the experience document.

The conflict description is encoded into a 3072-dimensional
vector embedding using the text-embedding-3-large model

4

> Entering new AgentExecutor chain...

Invoking: 'GETALLAIRCRAFTINFO' with
'{'command': 'GETACIDS'}'

[Aircraft Information OF FLIGHT1 and
FLIGHT2....]

Invoking: `CONTINUEMONITORING` with
`{'duration': 10}`

Conflict Information FLIGHT1 and
FLIGHT2

Invoking: 'SENDCOMMAND' with
'{'command': 'HDG FLIGHT1 180'}'

Invoking: `CONTINUEMONITORING` with
`{'duration': 10}`

Conflict Information FLIGHT1 and
FLIGHT2

Invoking: 'SENDCOMMAND' with
'{'command': 'ALT FLIGHT2 18000'}'

Invoking: `CONTINUEMONITORING` with
`{'duration': 10}`

No conflicts detected.

Number of Aircraft: 2 (FLIGHT1,
FLIGHT2)

Conflict Type: Converging

Conflict Description:
FLIGHT1 and FLIGHT2 are positioned
relatively close to each other, both
maintaining the same altitude,
indicating they are flying at the same
flight level. FLIGHT1 is heading
southwest, while FLIGHT2 is heading
southeast, suggesting they are on
converging paths. Both aircraft are
maintaining level flight with no
vertical speed, indicating neither is
ascending nor descending. The aircraft
are on a collision course due to their
converging headings and identical
altitudes.

Current heading of FLIGHT1 is 150 deg
HDG FLIGHT1 180
-> New heading of FLIGHT1 is 180 deg | Don't

Current altitute of FLIGHT2 is 20000 ft
ALT FLIGHT2 18000
->New altitute of FLIGHT2 is 18000 ft | Do

1. | HDG FLIGHT1 180 | Don't
2. | ALT FLIGHT2 18000 | Do.

1. | Increase heading of FLIGHT1 by 30 deg | Don't
2. | Decrease altitude of FLIGHT2 by 2000 ft | Do

1. | Increase heading of FLIGHT1 by 30 deg | Don't
| This command did not help to resolve the
conflict as it did not change the converging
trajectory enough of FLIGHT1 with FLIGHT2

2. | Decrease altitude of FLIGHT2 by 2000 ft | Do
| This command helped to resolve the conflict by
ensuring FLIGHT2 descended below the flight path of
FLIGHT1, preventing a convergence.

⦿ Combine conflict description
 and command lists text.

⦿ Anonymise the call signs
 (e.g FLIGHT1 -> AIRCRAFT_A)

⦿ Extract number of aircraft
 and conflict type as metadata

⑥

Categorize commnads into "Do"
if solved at least 1 conflict,
otherwise into "Don't"

②

Creat a short and
concise conflict
description

①

Extract aircraft state
before and after command

③

Transform absolute values in
commands into relative values④

Add insights and
reasoning for
each commands

⑤

⦿ Embed text in 3072
 diemension vector

⦿ Saving embeddings, text,
 and metadata to vector database

text-embedding-3-large

Vector DB
(Experience Library)

Figure 4. Creating the experience document from the operation logs of the agent

from OpenAI1. The embeddings of the experience, along with
text and metadata on conflict type and the number of aircraft,
are then uploaded to the vector database.

The entire experience generation process is illustrated in
Figure 4. It is worth noting that we only need to encode the
conflict description. This is because when an agent searches
the experience library, it can describe the current conflict.
Matching conflict descriptions directly yields higher similarity
and the most relevant results than when comparing the full
document with commands, suggestions, and insights.

D.2 Experience Library Search

When an agent wants to retrieve the closest memory from
past experiences before solving the conflicts, it invokes the
SearchExperienceLibrary() tool (shown in Figure 5). The

agent first generates a concise description of the current
conflict, including the number of aircraft involved and the type
of conflict. The initial metadata filtering reduces the search
space in terms of aircraft formation and number of aircraft.
The conflict description is also encoded as a 3072-dimensional
vector with the embedding model.

The search process uses the Hierarchical Navigable Small
World (HNSW) algorithm with Cosine Similarity for vector
search, returning the document with the highest textual simi-
larity. Cosine similarity is chosen over other popular methods,
such as Euclidean distance, due to the curse of dimension-
ality, where in high-dimensional spaces, Euclidean distances
between vectors tend to become nearly uniform, making it
hard to distinguish similarities effectively. Cosine similarity,

1Many other embedding models can be used, for example, https://
huggingface.co/models?other=text-embeddings-inference

however, measures the angle between vectors, focusing on
direction rather than magnitude, which remains effective in
high-dimensional spaces and offers more reliable results.

III. EXPERIMENTS AND RESULTS

In this section, we describe the experimental setup and
the results of various agent configurations under many sim-
ulated conflict scenarios. The performances of different agent
models with and without access to the Experience Library
are explored. Our experiments are structured to assess the
effectiveness of addressing a range of increasingly complex
scenarios.

A. Initial tests

An initial experiment was conducted with a small dataset
containing 12 conflict scenarios, which included four types
of conflicts (head-on, parallel, t-formation, converging) with
three different aircraft numbers each (2, 3, and 4 aircraft).
We first tested a single agent configuration without experience
library with the following models: Llama3:7B , Llama3:70B ,
Mixtral 8x7b , gemma2:9b-it and GPT-4o .

We also evaluated different range of temperatures: 0.0 ,
0.3 , 0.6 , 0.9 , and 1.2 . The temperature determines how

conservative a language model predicts the next token. The
higher the temperature, the more creative the agents become.

This initial experiment was designed to identify the most
promising models based on a limited set of scenarios. The
tests narrow down the number of models to focus on for
later more extensive testing. We score the effectiveness of the
setting based on the criteria in Table I.

5

https://huggingface.co/models?other=text-embeddings-inference
https://huggingface.co/models?other=text-embeddings-inference

Invoking: `SEARCHEXPERIENCELIBRARY` with
{
 'conflict_description': 'FLIGHT1 and FLIGHT2
are flying at the same altitude of 31600 ft
with headings 183 and 003 degrees respectively,
approaching each other.',
 'num_ac': 2,
 'conflict_formation': 'Head-On Formation'
}

Conflict Report
- Number of Aircraft Involved: 2 (AIRCRAFT_A, AIRCRAFT_B)
- Relative Conflict Description: AIRCRAFT_A and AIRCRAFT_B are
positioned closely to each other with both aircraft maintaining
the same altitude. AIRCRAFT_A is heading southward, while
AIRCRAFT_B is heading northward, indicating they are moving in
opposite directions. Both aircraft are flying level, with no
changes in their vertical speed. The aircraft are on a
collision course, with each maintaining a steady track directly
towards the other.
- Conflict Formation: Head-On Formation

1 | Increase altitude of AIRCRAFT_A by 2000 ft | Do's
Reason: This command was helpful because it created vertical
separation between AIRCRAFT_A and AIRCRAFT_B, which were
previously at the same altitude and on a collision course. By
increasing AIRCRAFT_A's altitude, the risk of collision was
mitigated as the aircraft were no longer in the same flight
level.

Remember this is only a similar conflict and not identical. Use
the information wisely'

Conflict description is embeded
into 3072 dimension vector

text-embedding-3-large Metadata filtering:

num_ac: 2
conflict: Head-On Formation

Vector search using Hierarchical
Navigable Small World (HNSW)
algorithm and Cosine Similarity

Experience document with the highest
similarity is returned

Figure 5. Filtering and searching in the experience library based on
experience embeddings

TABLE I. SCORES FOR EVALUATING CONFLICT RESOLUTION

Score Outcome Description

1 Conflict is solved (successful)
0 Conflict results in loss of separation (unsuccessful)
-1 Conflict results in near miss or collision (unsuccessful)

Based on these tests, the Llama3:70B (open-source) and
GPT-4o (commercial) models exhibited the best performance

success rates. And the temperature of 0.3 provides the most
stable results.

B. Generating large conflict scenarios

To assess the performance of the Llama3:70B and GPT-4o
models in solving air traffic conflicts, we generated a dataset
comprised of 120 distinct conflict scenarios for BlueSky.

The dataset contains 40 scenarios, each with two, three,
or four aircraft conflicts. The conflicts are categorized into
four primary types: 1) head-on, where aircraft are on a direct
collision course; 2) T-formation, which involves perpendicu-
lar flight paths; 3) parallel, where aircraft fly close parallel
courses; and 4) converging, where multiple aircraft are on
intersecting paths heading towards the same point. There are
30 conflict scenarios in these four types.

In addition to conflict type, we also consider changes in
flight levels. Some scenarios have all aircraft at the same level,

while others involve climbing, descending, and level flights,
adding further complexity to the conflict dynamics. Examples
are shown in Figure 6.

F L I G H T 1
F L 2 1 7
1 8 6

F L I G H T 2
F L 2 2 3 🡓
2 8 7

F L I G H T 3
F L 2 6 0
2 6 5

F L I G H T 1
F L 2 6 0
2 0 4

F L I G H T 2
F L 2 6 0
2 9 1

F L I G H T 3
F L 1 6 5
2 4 6

F L I G H T 1
F L 1 6 5
2 4 4

F L I G H T 2
F L 1 6 5
2 4 9

F L I G H T 3
F L 2 3 4 🡓
1 9 0F L I G H T 1

F L 2 1 9
1 8 1

F L I G H T 2
F L 2 2 7 🡓
1 6 2

F L I G H T 4
F L 2 4 2 🡓
2 7 7

Head-On Conflict

Parallel Conflict Converging Conflict

T-Formation Conflict

Figure 6. Examples of Conflict Scenarios

All scenarios are designed under the assumption that, with-
out timely intervention, the aircraft involved will inevitably
collide. This design ensures that each scenario presents a
genuine challenge that tests the models’ abilities to effectively
navigate and resolve potential airborne conflicts i n high-risk
situations.

It is also worth noting that all these scenarios present
imminent conflicts w ith v ery s hort r esponse t ime. T hey are
incredibly challenging for human operators, especially when
involving more than two aircraft.

C. Results

These conflict scenarios are tested with single-agent and
multiple-agent configurations using different language mod-
els. Figure 7 shows the success rates across different agent
configurations for GPT-4o and Llama3:70B models. We
also test their performance when they have access to the
SearchExperimentLibrary() tool.

For single-agent setup, we can see that GPT-4o performs
better than Llama3:70B . And by including experience li-
braries, significant improvements are observed. For multiple-
agent setup, the success rates are all high, even for the open-
source Llama3:70B with a significantly smaller model size.

Table II shows the exact number of times the conflicts
resulted in the collision, loss of separation (LoS), and conflict
resolved. We observe that the best result is achieved by the
single-agent backed by GPT-4o with experience library, where
only 1 out 120 was not fully cleared.

6

GPT-4o Llama-70B
0%

20%

40%

60%

80%

100%

Single Agent

Single Agent + Experience

Multi Agent

Multi Agent + Experience

Figure 7. Success rate for different agent configurations, t ested for a total of
120 conflict cases.

TABLE II. PERFORMANCE WITH SINGLE / MULTIPLE AGENTS

Model Configuration Collision LoS Resolved

GPT-4o

Single Agent 4 4 112
Single Agent + Exp 0 1 119
Multiple Agent 4 0 116
Multiple Agent + Exp 4 0 116

Llama3:70B

Single Agent 13 45 62
Single Agent + Exp 6 23 91
Multiple Agent 2 3 115
Multiple Agent + Exp 2 3 115

In Figure 8, we illustrate how the success rate of con-
flict resolution varies with the number of aircraft involved
for both models. Here, we can observe the GPT-4o model
manages to solve all conflicts for two-aircraft and three-
aircraft cases and missed a few four-aircraft scenarios. Model
Llama3:70B missed a few three-aircraft and four-aircraft

cases in a multiple-agent setup.

IV. DISCUSSIONS

A. General observation on performance

The single-agent setup with Llama3:70B model demon-
strated the weakest performance. This outcome can be related
to the smaller model size and context window compared to
GPT-4o . However, its performance can be significantly im-

proved when utilizing the experience library, with its success
rate improved from 52% to 76%. This suggests that an agent
with a smaller LLM can make use of knowledge from the
experience library to significantly enhance its problem-solving
efficiency.

Moreover, the smaller Llama3:70B model achieved the
most optimal performance in a multi-agent configuration. In
this setup, the distributed processing load allows each agent
to handle less information. This is especially beneficial given
the smaller context window of only 8,000 tokens available to
Llama3:70B , allowing more efficient information processing

and decision-making across multiple agents.
GPT-4o had a high success rate across all the agent

configurations. The single-agent configuration without expe-

0%

20%

40%

60%

80%

100%

GPT-4o

Single Agent

Single Agent + Exp

Multi Agent

Multi Agent + Exp

2 3 4
Number of Aircraft

0%

20%

40%

60%

80%

100%

Llama-70B

Single Agent

Single Agent + Exp

Multi Agent

Multi Agent + Exp

Figure 8. Success rate by the number of aircraft in conflict for
different agent configurations, for a total of 120 cases.

rience can already achieve a success rate of 93%. With the
experience library, it only had a single unresolved conflict,
arriving at a 99% success rate. Multiple-agent setups with and
without experience demonstrated similarly high performances,
suggesting that the LLM’s size and larger context window play
a more significant role t han t he model architecture.

B. Optimising the experience library

The experience library architecture evolved over time. Ini-
tially, entire experience documents were embedded, but we
found that embedding only the conflict description improved
search accuracy and relevance, making results more applicable
to current conflicts.

This change reflects how agents use the library. Agents
search by describing current conflicts, so embedding only
conflict descriptions—excluding lists of commands and in-
sights—reduces noise and increases search reliability.

We observed issues with Llama3-70B when summarising
experiences; it often produced inaccuracies and struggled
to resolve conflicts effectively, as shown in section III. Its
resolution strategies did not reduce conflict pairs, resulting in
documents with only non-recommended commands, which are
unhelpful for resolving conflicts.

To ensure quality, we retain only GPT-4o documents.
Additionally, we limit experience documents to cases with no
more than seven commands, which keeps them concise and
compatible with Llama3-70B ’s smaller context window. This
constraint excluded only a few cases, yielding 110 documents
out of a possible 120.

7

C. Detailed analysis of failed scenarios

The single-agent Llama3-70B model and the multi-agent
Llama3-70B configuration without the experience library

frequently failed to resolve aircraft conflicts due to halluci-
nations and poor reasoning. These failures are inherent to the
model’s limitations and cannot be mitigated through prompt
engineering; improving the model itself is necessary.

For example, the multi-agent Llama3-70B without the
experience library exhibited hallucinations in reasoning. In the
example below, the planner incorrectly asserts that a vertical
separation of 500 ft exceeds the required 2,000 ft:

To resolve the conflict between FLIGHT3 and FLIGHT4, I instruct
FLIGHT3 to descend to 15,500 ft.
FLIGHT4 to climb to 16,000 ft. This will ensure a vertical

separation of 500 ft between the two aircraft, which is
more than the required 2,000 ft.

Such failures are due to the model’s inherent limitations,
and such hallucinations cannot be resolved through prompt
improvements alone.

While the GPT-4o models and the multi Llama3-70B
agents with the experience library performed better, some un-
resolved scenarios remained. We identified specific issues and
implemented prompt improvements to enhance performance.

The Llama3-70B planner or verifier agents sometimes
blindly implemented suggestions from the experience library
without considering the current conflict, introducing new con-
flicts, even when there is a remark in the system prompt: "This
is a similar conflict, not an identical one, hence you must
still use your judgement to solve the current conflict.". An
improvement is to include this remark within the experience
document itself as the last instruction.

In another case, while the planner agent followed recom-
mendations, a problem arose when an aircraft was instructed
to change altitude by 4,000 ft. The verifier agent, acting too
soon, created a plan directing two aircraft to climb towards
each other, leading to a conflict. The verifier agent faces the
challenge of knowing how long to monitor before acting.
The planner agent could suggest a monitoring period, using
the longest estimated time for each aircraft to reach its new
altitude or heading.

In GPT-4o failed scenarios, the executor agent inconsis-
tently handles commands involving maintaining altitude or
heading, sometimes ignoring them. For example, the planner
instructs FLIGHT1 and FLIGHT3 to maintain their current
altitudes, but the executor agent does not send altitude com-
mands.This inconsistency could be improved by modifying
the prompts, as the executor agent currently lacks specific in-
structions on handling commands to maintain current altitude
or heading.

1. **FLIGHT1**: Maintain current altitude of 26200 ft.
2. **FLIGHT2**: Descend to 25000 ft to ensure vertical

separation from FLIGHT1 and FLIGHT3.
3. **FLIGHT3**: Maintain current altitude of 27800 ft.
4. **FLIGHT4**: Climb to 30000 ft to ensure vertical separation

from FLIGHT3.

This plan ensures a vertical separation of at least 2000 ft
between all aircraft in conflict.

> Finished chain.
> Entering new AgentExecutor chain...
Invoking: ‘SENDCOMMAND‘ with ‘{’command’: ’ALT FLIGHT2 25000’}‘
Command executed successfully.
Invoking: ‘SENDCOMMAND‘ with ‘{’command’: ’ALT FLIGHT4 30000’}‘
Command executed successfully.

Agents tend to favour altitude changes over heading ad-
justments, but some conflicts, like parallel ones, are easier
to resolve with heading changes alone. To improve conflict
resolution, agents should be encouraged to use both altitude
and heading changes where suitable.

Furthermore, in some cases the agent misinterpreted data
from the CONTINUEMONITORING tool, assuming an aircraft was
descending to a certain altitude when it was already there but
still descending. This suggests the tool’s output description
could be clearer. Overall, the following improvements can be
made:

• Improve the executor agent’s prompts to ensure it handles
instructions related to maintaining altitude or heading.

• Modify the SEARCHEXPERIENCELIBRARY tool to include
a reminder for agents to exercise judgment rather than
blindly following past solutions.

• Ensure the planner agent provides a monitoring period
with the plan to prevent premature re-planning by the
verifier agent.

• Clarify the output format of the CONTINUEMONITORING
tool to avoid misinterpretations.

• Encourage the use of both altitude and heading changes
to solve conflicts.

We reran the unresolved conflict scenarios with these
changes. The results are presented below:

TABLE III. UNRESOLVED CONFLICTS BEFORE PROMPT
IMPROVEMENT

Model Configuration Collisions LoS Total

GPT-4o Single Agent 4 4 8
Single Agent + Exp 0 1 1

GPT-4o Multi Agent 4 0 4
Multi Agent + Exp 4 0 4

Llama3-70B Multi Agent 2 3 5
Multi Agent + Exp 2 3 5

TABLE IV. UNRESOLVED CONFLICTS AFTER PROMPT
IMPROVEMENT

Model Configuration Collisions LoS Total

GPT-4o Single Agent 0 0 0
Single Agent with Exp 0 0 0

GPT-4o Multi Agent 0 0 0
Multi Agent with Exp 1 1 2

Llama3-70B Multi Agent 4 0 4
Multi Agent with Exp 0 0 0

The prompt improvements significantly enhanced per-
formance across configurations. Notably, all configurations
showed dramatic improvements except for the multi-agent

8

Llama3-70B without the experience library, which only im-
proved from 5 to 4 unsuccessful scenarios. This minimal im-
provement underscores that hallucinations cannot be resolved
through prompt engineering alone.

In the GPT-4o multi-agent with experience library, one
loss of separation and one collision remained. In one case,
the planner provided an instruction without numerical values,
leading the executor to skip it. In another, a suboptimal plan
caused a collision.

These remaining unresolved scenarios highlight the need for
further refinement, especially in ensuring that instructions are
explicit and correctly executed by agents.

D. Complexity of the traffic

Looking at Figure 8, it is evident that as the number of
aircraft involved in a conflict increases, the success rate for
resolving these conflicts declines. This outcome is expected
as the more significant number of aircraft introduces more
information that the large language model must process, which
in turn impacts its performance.

Notably, the GPT-4o agent configurations maintain similar
performance levels when dealing with conflicts involving
two or three aircraft. There is a slight decrease in perfor-
mance when the number of aircraft increases to four. For
Llama3:70B , the performance is similar in multi-agent setups.

E. Computing resource constraints

Our testing was impacted by computing resource access,
especially for model hosting and processing speed.

All models except GPT-4o were hosted by Groq, a cloud
platform with a Language Processing Unit delivering around
1,000 tokens per second, but with strict token-per-minute and
token-per-day limits. This constraint limited the number of
parallel models and conflict s cenarios w e c ould test.

We also attempted to run Llama3-70B using Ollama on
the TU Delft DelftBlue cluster [13], equipped with NVIDIA
A100 GPUs. However, the inference speed on this platform
was too slow for our needs.

Table V shows the substantial difference in token processing
speeds between Groq and DelftBlue. Groq processes about
38,543 input tokens per second and 325 output tokens per
second, whereas DelftBlue handles only 10.41 input tokens
and 4.11 output tokens per second—3,700 times and 79 times
slower, respectively. For complex scenarios like four-aircraft
conflicts w i th p r ompts u p t o 8 , 000 t o kens, D e lftBlue would
take over 10 minutes, limiting real-time responsiveness and
scalability.

Groq’s high token throughput allows fast processing even as
prompt sizes grow, essential for efficient r e al-time operations
and testing multiple scenarios concurrently.

TABLE V. COMPARISON OF TOKEN PROCESSING SPEEDS BETWEEN
GROQ AND DELFTBLUE PLATFORMS

Platform Input Tokens (tokens/s) Output Tokens (tokens/s)

Groq 38543 325
DelftBlue 10 4

V. CONCLUSION

This study explored the application of large language mod-
els as embodied agents in air traffic control scenarios, focusing
on their ability to resolve conflicts autonomously.

Our experiments with both open and closed-source models
such as Llama3:70B and GPT-4o demonstrate the great po-
tential of large language models embodied agents in perform-
ing air traffic control tasks. This new approach could reduce
the gap between artificial and human situational awareness.
We have demonstrated that it provides human-like reasoning
with timely control instructions or recommendations.

The findings highlight that larger models outperform smaller
models in complex conflict resolution scenarios. The incor-
poration of an experience library further aids in boosting
efficiency by providing access to past conflict resolution
insights, which is particularly beneficial for smaller models
like Llama3:70B .

Moreover, the study has shown that multi-agent systems,
where tasks are distributed among specialized agents, yield
high success rates in resolving conflicts as well. This research
paves the way for new research paths to apply language
model-embodied agents in more complex tasks for air traffic
management.

REFERENCES

[1] G. Skaltsas, J. Rakas, and M. G. Karlaftis, “An analysis of air traffic
controller-pilot miscommunication in the nextgen environment,” Journal
of Air Transport Management, vol. 27, pp. 46–51, 2013.

[2] U. Linz, S. Consulting, T. U. Braunschweig, U. P. D. Madrid, Z. H.
F. A. Wissenschaften, Skyguide, and S. U. Z. F. P. Znanosti, “AI
Situational Awareness Foundation for Advancing Automation.” https:
//www.aisa-project.eu/, 2022. Accessed: 2024-09-01.

[3] Y. Zou and C. Borst, “Investigating transparency needs for supervising
unmanned air traffic management systems,” in 13th SESAR Innovation
Days, 2023.

[4] C. Hurt, A. Degas, A. Guibert, N. Durand, A. Ferreira, et al., “Toward
a more transparent and explainable conflict resolution algorithm for air
traffic controllers,” in 34th Conference of the European Association for
Aviation Psychology, European Association for Aviation Psychology,
2022.

[5] “Common crawl.” https://commoncrawl.org/. Accessed: 2024-07-22.
[6] S. Abdulhak, W. Hubbard, K. Gopalakrishnan, and M. Z. Li, “Chatatc:

Large language model-driven conversational agents for supporting strate-
gic air traffic flow management,” arXiv preprint arXiv:2402.14850,
2024.

[7] L. Wang, J. Chou, A. Tien, X. Zhou, and D. Baumgartner, “Aviationgpt:
A large language model for the aviation domain,” in AIAA AVIATION
FORUM AND ASCEND 2024, p. 4250, 2024.

[8] G. Jarry, P. Very, and R. Dalmau, “The effectiveness of large language
models for textual analysis in air transportation,” EasyChair preprints,
2024.

[9] G. Wang, Y. Xie, Y. Jiang, A. Mandlekar, C. Xiao, Y. Zhu, L. Fan, and
A. Anandkumar, “Voyager: An open-ended embodied agent with large
language models,” ArXiv, vol. abs/2305.16291, 2023.

[10] J. M. Hoekstra and J. Ellerbroek, “Bluesky atc simulator project:
an open data and open source approach,” in Proceedings of the 7th
international conference on research in air transportation, vol. 131,
p. 132, FAA/Eurocontrol Washington, DC, USA, 2016.

[11] Z. R. Tam, C.-K. Wu, Y.-L. Tsai, C.-Y. Lin, H. yi Lee, and Y.-N. Chen,
“Let me speak freely? a study on the impact of format restrictions on
performance of large language models,” 2024.

[12] “Chroma.” https://www.trychroma.com/. Accessed: 2024-07-22.
[13] Delft High Performance Computing Centre (DHPC), DelftBlue Su-

percomputer (Phase 2), 2024. https://www.tudelft.nl/dhpc/ark:/44463/
DelftBluePhase2.

9

https://www.aisa-project.eu/
https://www.aisa-project.eu/
https://commoncrawl.org/
https://www.trychroma.com/
https://www.tudelft.nl/dhpc/ark:/44463/DelftBluePhase2
https://www.tudelft.nl/dhpc/ark:/44463/DelftBluePhase2

	Introduction
	Methodology
	Large language model embodied Agent
	Prompt
	Tools
	Experience Library
	Creation of Experience Documents
	Experience Library Search

	Experiments and results
	Initial tests
	Generating large conflict scenarios
	Results

	Discussions
	General observation on performance
	Optimising the experience library
	Detailed analysis of failed scenarios
	Complexity of the traffic
	Computing resource constraints

	Conclusion
	References

