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Abstract—The increasing demand and complexity of air traffic
management (ATM) systems necessitate significant advancements
in automation to ensure safety and efficiency. Artificial in-
telligence (AI) and machine learning (ML) are emerging as
promising solutions to manage this growing complexity, offering
enhanced decision-making and predictive capabilities. However,
the effectiveness of ML models in ATM heavily relies on the
availability of extensive, high-quality data. In many cases, such
data is scarce or incomplete, which presents a major barrier
for training robust models. Synthetic data generation (SDG) is a
viable solution to address this, enabling the creation of realistic
datasets that unlock the ML value proposition. The Terminal
Maneuvering Area (TMA) is a crucial segment of airspace
characterized by high traffic density and diverse trajectory types,
necessitating granular data to model these scenarios accurately.
The main research objective of this work was to investigate the
applicability of TimeGAN in generating synthetic 4-dimensional
aircraft landing trajectories capable of capturing traffic patterns
in this airspace, helping to analyze airspace constraints and delay
propagation. The resulting synthetic trajectories were evaluated
in terms of data diversity, fidelity and usefulness. The main
challenge identified during the research was the imbalance in data
classes, which affected the models’ ability to accurately capture
data patterns, particularly in less frequent scenarios. Generating
synthetic data based on separate groupings showed promise in
addressing these imbalances, although this approach was sensitive
to the designation of groups. This work proves the capability of
TimeGAN in generating diverse, realistic trajectories that are
difficult to differentiate from real historical data.

Keywords—Air traffic management, Deep generative models,
Generative Adversarial Networks, Multivariate time series gen-
eration, Synthetic data quality evaluation

I. INTRODUCTION

As air traffic management (ATM) systems face escalating
demands and increasing complexity, advancing automation
leveraging artificial intelligence (AI) and machine learning
(ML) has become crucial for maintaining safety and opera-
tional efficiency. However, the effectiveness of these technolo-
gies is limited by the availability of comprehensive datasets
needed for training ML models, constraining the ability of
capturing complex patterns. Acquiring sufficient training data
is often hampered by high costs and logistical challenges; aptly
named the data access problem. Moreover, datasets must meet
high standards of quality, adhere to data privacy laws, and
promote fairness to avoid perpetuating algorithmic biases [1].
Synthetic data generation (SDG) addresses these limitation by

creating realistic datasets that effectively bridge the data gap
and allow for model training. By generating accurate synthetic
data, one could optimize automation, improve prediction ac-
curacy, and enhance resource allocation within ATM systems.

The Terminal Maneuvering Area (TMA) is of particular
interest to model because it experiences high traffic density,
complex interactions between arriving and departing aircraft,
and varied trajectory patterns, making it crucial for optimiz-
ing airspace efficiency. Synthetic trajectories help examine
airspace constraints and delay propagation, while also pro-
viding data for training ML models in tasks like flight delay
prediction and full trajectory extension in synthetic traffic gen-
erators. This is one of the uses cases considered as part of the
SynthAIr project [2]. Within the TMA, synthetic trajectories
allow for detailed analysis of aircraft behavior during critical
phases of flight, such as takeoff and landing. This data supports
the design and evaluation of airspace procedures, air traffic
control strategies, and collision avoidance systems, ensuring
safety and efficiency in congested airspace [2]. Well-trained
models for generating synthetic data for landing phases have a
high potential for generalizability to other airports globally and
to different flight phases, including en-route operations. This
is because landing data offers inherent diversity, encompassing
scenarios like go-arounds, holding patterns, weather impacts,
capacity issues, and variability in air traffic control (ATC)
directives [3].

The majority of existing literature addressing the problem
of trajectory generation has been model-driven based on
flight dynamic equations [3]. The objective of this research
is to investigate the applicability of Generative Adversarial
Networks (GANs) to the ATM setting. In this context, the
inherent temporal relationships in time series data, beyond just
feature distributions, increase the complexity of the genera-
tive process [4]. GANs are promising due to their abilities
in generating realistic, high-dimensional synthetic data by
learning from existing data distributions, but have virtually
never been applied to a broad base on landing data at an
airport encompassing multiple runway approach patterns, air-
craft type, and operational conditions. A GAN architecture
comprises a generator and discriminator and is trained through
adversarial learning to generate realistic synthetic data. The
generator transforms random noise into synthetic data samples,



aiming to deceive the discriminator, which classifies samples
as real or fake. The iterative training process involves the
generator producing increasingly realistic samples while the
discriminator improves at distinguishing between real and
generated data [5]. TimeGAN differs from a standard GAN by
using a recurrent neural network (RNN) in its architecture to
capture temporal dependencies in sequential data and is trained
with both supervised and adversarial losses to ensure the
generated sequences are realistic and time-consistent [4]. This
can be extended with conditioning mechanisms to enhance
control of the generation process and enforcing diversity of
generated samples. Thus, the main research question addressed
in this paper: how effective are GANs in generating realistic
synthetic 4-dimensional aircraft landing trajectories in an
airports Terminal Maneuvering Area, including go-arounds
and holding patterns? The synthetic samples are evaluated to
quantify the quality, diversity, fidelity, and usefulness.

The paper commences with collating the literature and state
of the art comprising the theoretical background and related
work, in Section II. Subsequently, the five-step methodology
of applying TimeGAN to the problem of landing trajectory
generation is explained in Section III. Section IV presents
the results of the experiments in terms of the established
evaluation framework. Ultimately, the results from all experi-
mentation are integrated and discussed in light of the originally
proposed value proposition, in Section V. Concluding remarks
alongside future implications of this work are contained in
Section VI.

II. RELATED WORK

Methods for generating synthetic aircraft trajectories can
be broadly classified into model-driven and data-driven ap-
proaches. Model-driven methods use mathematical models of
aircraft dynamics and environmental constraints to generate
trajectories, where Base of Aircraft Data (BADA) [6] and
OpenAP [7] are the most well-known. These deterministic
methods often involve optimization processes to achieve ob-
jectives like minimizing fuel consumption or flight time [8].
However, their deterministic nature limits their ability to incor-
porate uncertainty and randomness [3]. Flight plan database
statistical extrapolation uses historical data to generate syn-
thetic traffic sets, creating trajectories that replicate real-world
traffic patterns. By leveraging existing data, this approach
can produce realistic synthetic trajectories without requiring
detailed physical modeling of aircraft dynamics, though its
efficacy depends considerably on the availability and quality of
historical flight data [9]–[11]. Markov chain models introduce
stochastic processes into trajectory generation, enabling the
modeling of uncertainty and randomness. This has been used
for estimating conflict probabilities in uncontrolled airspace,
as it represents the trajectory as a sequence of states with
probabilistic transitions, capturing the inherent variability [12].

Gaussian Mixture Models (GMMs) identify representative
trajectory patterns by clustering trajectories [13]. They gener-
ate trajectories reflecting the statistical properties of observed
flight paths, capturing the diversity and variability of real flight

trajectories. By fitting a mixture of Gaussian distributions to
the trajectory data, this method effectively represents different
common flight paths and deviations from those paths, making
it suitable for scenarios where the data exhibits multi-modal
distributions [14]. Most recently, deep generative modeling
techniques have been applied to the generation of synthetic
aircraft trajectories. A GAN was applied to generate aircraft
trajectories for detecting atypical approaches at Paris Orly
Airport. The model produced realistic synthetic trajectories for
the last 25 NM for a single runway and aircraft type, though
facing challenges with mode collapse and required smoothing
to remove unrealistic noise [15]. The Temporal Convolutional
Variational Autoencoder (TCVAE) presented in [3] represents
the acme of the state-of-the-art, serving as the benchmark
for this study. The authors were capable of generating 4-
dimensional landing paths at Zurich Airport for estimating
conflict probabilities through Monte Carlo simulations. This
model integrates a temporal convolutional network (TCN)
to capture sequential dependencies and uses a VampPrior, a
variational mixture of posteriors, for better handling complex
latent distributions. While high-density latent space regions
produced realistic trajectories, low-density areas generated less
realistic paths.

III. METHODOLOGY

This study systematically investigates the applicability of
TimeGAN [4] to aircraft trajectory generation, following five
stages: (A) data collection and preprocessing, (B) trajectory
labeling and clustering, (C) TimeGAN model implementation,
(D) the evaluation framework, and (E) model training and
optimization through experiments.

A. Data - Landing Trajectories

This study makes use of the available dataset of landing
trajectories at Zurich Airport (CH), parsed from Automatic
Dependent Surveillance-Broadcast (ADS-B) data originally
sourced from the OpenSky Network [16]. The circa 18.000
recorded landing trajectories occurred in the months of Octo-
ber and November in 2019, each initiating when the aircraft
is within a 40 nautical mile distance from the airport. The
vast majority (∼90%) of landings within this two month
period were on runway 14, with remainder usually allocated
to runway 28 (∼7%) and 34 (∼2%). Some of the trajectories
contain go-arounds and holding patterns.

Compared to take-offs, landing paths are much more com-
plex and varied due to arrivals appearing from any radial
and the crucial role of air traffic controllers in sequencing
aircraft through varying climate and capacity conditions. This
is reflected in occurrences of go-arounds and holding patterns.
A go-around (missed approach) is a standard procedure for
pilots when landing conditions are unsafe, involving full
power, retracting flaps and gear if necessary, and climbing to a
safe altitude to re-enter airspace, crucial for preventing runway
accidents [17]. Holding patterns are predefined flight paths
used by air traffic control to delay aircraft at congested airports
or during airspace congestion. Aircraft fly in a racetrack
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pattern above a fix, awaiting approach clearance, helping to
manage traffic flow and ensure safe separation [18].

Given the variation in approach procedures at Zurich Air-
port, the 18.000 trajectories are safely deemed representative
of arrivals at other major airports subject to equal operational
constraints due to local terrain, noise abatement, and emission
regulation [3]. The value proposition of a synthetic trajectory
generator is therefore safeguarded by this hypothesized gen-
eralizability to other geographic locations and flight phases
(take-offs and en-route). To ensure consistency in trajectory
representation, each trajectory is resampled at a fixed rate and
condensed to a state vector of longitude, latitude, and altitude
at each timestamp. The resampling and simplification of the
input dataset was varied during the experimentation/training
of the GANs to gain insight into performance sensitivity.

B. Trajectory Labeling & K-Means Clustering using DTW

The labeling of landing trajectories is essential for discern-
ing between different archetypical landing behaviors. The two
benefits thereof are the ability to conduct separate analysis
on various landing sequences to boost explainability, and it
opens the door to incorporating conditioning mechanisms to
the generative modeling process. The latter becomes especially
relevant for addressing lacking mode coverage of GANs by
attempting to exploit transfer-learning between labeled classes.
Trajectories are first categorized into three categories: trajec-
tories involving a go-around, involving holding pattern, and
normal procedures. Go-arounds are detected based on multiple
Instrument Landing System (ILS) alignments of the aircraft,
separated by a climbing phase. In some cases, the aircraft lands
on a different runway on the second attempt. Holding patterns
identification is based on the total change in track angle of
the aircraft’s flight path, and setting a minimum cumulative
track angle threshold for a trajectory to be labeled as such.
Additionally, each trajectory is further labeled based on the
specific runway used for landing.

Complementary to operational-based labeling, a more flex-
ible approach was taken. Trajectories were clustered by em-
ploying the k-means clustering algorithm with Dynamic Time
Warping (DTW) as the dedicated distance metric [19], [20].
DTW finds an optimal match between points in the two series
by stretching or compressing them along the time axis, which
is especially useful for comparing sequences with similar over-
all patterns but differing temporal dynamics. This approach
ensures that similar-shaped trajectories are grouped together,
even if there are temporal misalignments. The clustering
was performed using the longitude and latitude coordinates
alone. Omission of altitude proved effective as this lowered
the dimensionality of the space. The altitude profile is also
rather consistent between all trajectories, rendering this feature
more informative. Figure 1 depicts the clustering of nominal
trajectories on runway 14 for the case of four clusters centers,
as an example.

Figure 1. K-means clustering with DTW as a distance metric, for nominal
landings on runway 14 (N = 4), as an example

C. TimeGAN Model Architecture

TimeGAN [4] synthesizes realistic time-series data using a
combination of autoregressive and adversarial methods. The
architecture consists of four main components (depicted in
Figure 2): the embedding network, the recovery network, the
sequence generator, and the sequence discriminator. The em-
bedding network converts high-dimensional time-series data
into a compact latent space using RNN layers such as LSTMs
or GRUs. The recovery network reconstructs the original
time-series data from the latent space representation, ensuring
accurate data preservation. The sequence generator produces
synthetic latent sequences, which are then mapped back to the
original data space by the recovery network. The sequence
discriminator differentiates real sequences from synthetic ones,
providing feedback to improve the generator’s performance.

Figure 2. TimeGAN model architecture, retrieved from [4]. S, X , and Z are
the static, temporal, and random vector spaces, respectively

TimeGAN uses a combination of supervised and unsuper-
vised learning to capture both data distribution and tempo-
ral dynamics. The reconstruction loss (LR) ensures that the
embedding and recovery networks accurately reconstruct the
original data from the latent space. This loss is defined as
the sum of the differences between the original (s,x1:T ) and
reconstructed (s̃, x̃1:T ) data points, formulated in Equation 1
(from [4]). Where s and t refer to values of vectors in the
static and temporal spaces.
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LR = Es,x1:T∼p

[
∥s− s̃∥2 +

∑
t

∥xt − x̃t∥2

]
(1)

The generator is trained in two modes: open-loop and closed-
loop. In the autoregressive mode, it uses its previous synthetic
outputs (ĥS and ĥ1:t−1) to generate the next synthetic vector
(ĥt). This unsupervised loss aims to trick the discriminator,
and is formulated in Equation 2 (from [4]). yS and yt are
the discriminator’s outputs for real data, and ŷS and ŷt for
synthetic data.

LU = Es,x1:T∼p

[
log yS +

∑
t

log yt

]

+ Es,x1:T∼p̂

[
log(1− ŷS) +

∑
t

log(1− ŷt)

] (2)

In tandem, a supervised loss (LS) ensures that the generator
models step-by-step relationships in time-series by using real
data embeddings (h1:t−1), computed by the embedding net-
work to generate the next latent vector, in Equation 3 (from
[4]).

LS = Es,x1:T∼p

[∑
t

∥ht − gX(hS , ht−1, zt)∥2
]

(3)

D. Evaluation Framework

The evaluation framework used to determine the quality of
synthetic samples rests on four pillars (following a similar ap-
proach as proposed in [4]): data diversity, fidelity, usefulness,
and a statistical e-distance metric.

To assess diversity of synthetic time series data, a dimen-
sionality reduction approach was implemented to visualize
and compare the distribution of original and synthetic sam-
ples, using Principal Component Analysis (PCA) [21] and
t-Distributed Stochastic Neighbor Embedding (t-SNE) [22].
PCA provided a 2D representation of the data, facilitating a
comparison of distributions, whereas t-SNE emphasized local
structures and neighborhood relationships. By examining these
visualizations, one can determine whether the synthetic data
effectively captures the original diversity [4].

To assess the fidelity of synthetic time series data, a dis-
criminator model was employed to evaluate the ability of a
network to distinguish between original and synthetic data.
This model, comprising three LSTM layers followed by a
dense output layer, was compiled with the Adam optimizer and
binary cross-entropy loss function. It was trained to classify
samples as either original or synthetic [4]. Following training,
the discriminator was evaluated on separate test sets of original
and synthetic data. The model’s performance was quantified
by its accuracy through the generation of a confusion matrix,
specifically the True Positive Rate (TPR), True Negative
Rate (TNR), and Accuracy. In this context, positive indicates
synthetic and negative indicates real samples.

The usefulness of data was evaluated by measuring the
predictive performance of an LSTM model trained on synthetic
versus real data, relying on a time series regression approach.
During training, the model was optimized using the Adam
optimizer and mean absolute error (MAE) as the loss function.
After training, the performance of each model was evaluated
on the real test data to measure how well the synthetic data-
trained model generalized to unseen real data. The MAE of
predictions from models trained on both synthetic and real data
was compared, providing insight into the predictive usefulness
of the synthetic data [4]. This process facilitated a comparison
of the predictive performance and overall usefulness of the
synthetic data relative to the real data.

The energy distance metric was used to evaluate the simi-
larity between synthetic and real time series data. The energy
distance measures the divergence between the distributions
of two sets of random vectors [23]. It approaches a positive
constant if the distributions are similar and increases towards
infinity if they differ significantly. Energy distances were
computed over 100 random subsets from both the true and
synthetic datasets. The mean energy distance was then used to
assess which generation method produces synthetic trajectories
whose distribution is closest to the observed data [3]. A lower
mean energy distance indicates that the synthetic data more
closely approximates the distribution of the real data.

E. Experiments

The exploratory nature of this study is reflected in the design
of three experiments. These are aimed at investigating data
quality of synthetic samples when TimeGAN is trained on
either clustered groups (using k-means with DTW), separate
runway assignments, and flight operation (normal, go-around,
holding pattern). The following experiments were performed:

• Experiment 1: Cluster-Based Generation - Investigated
TimeGAN’s ability to generate trajectories when trained
on clustered groups of flight data. Trajectories were
grouped into five clusters using k-means with Dynamic
Time Warping (DTW), with each cluster representing
different flight patterns. The model was trained separately
on each cluster to learn specific trajectory characteristics.

• Experiment 2: Minority Runway-Specific Generation -
Investigated TimeGAN’s ability to generate landing tra-
jectories associated with different runway assignments. It
focused on simulating landings on two distinct runways -
28 and 34 - each with unique approach patterns. Whereas
runway 14 has a high frequency of use, data for runways
28 and 34 is limited, presenting a heavy data class
imbalance challenge for the model generalization.

• Experiment 3: Rare Operational Scenarios - Investigated
TimeGAN’s ability to generate data for less frequent
and challenging flight operations (i.e. go-arounds and
holding patterns). These patterns contains more abrupt
and sustained maneuvers and constitute a small minority
in historical data.
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IV. RESULTS

This section provides an analysis and evaluation of the
synthetic data generation capabilities of TimeGAN through
the three experiments described in Section III.F. Insights into
data quality and model adaptability under different conditions
are presented.

A. Experiment 1: Cluster-Based Generation

For the set of landing trajectories on runway 14, sampled at
100 data points, filtered for a maximum cumulative track angle
change of 180 degrees, TimeGAN was trained on each cluster
separately. The data imbalance for trajectories per cluster is
evident considering the range of 364 to 1212 trajectories per
cluster. The complexity of aircraft trajectories closer to the 40
nautical mile cut-off from an airport is significantly higher.
Within this critical distance, aircraft must adhere to Standard
Terminal Arrival Routes (STARs), which are intricate with
multiple way points, altitude restrictions, and speed constraints
to ensure safe and orderly arrivals. Adverse weather condi-
tions and noise abatement procedures further complicate the
approach phase, requiring deviations from standard procedures
and additional vectoring, all of which contribute to noisy and
intricate data. To remove unwanted noise, a smoothing filter,
such as a simple moving average, may be applied during
post-processing. The obtained synthetic trajectories for the
separate classes are combined and plotted in Figure 3, after
the application of filter with a rolling window of seven data
points.

The trajectory distribution is wider and sparser at the start
of the trajectories when the aircraft is in the air, 40 NM
from the runway, reflected in the difficulty of TimeGAN
to properly capture this. The latter half of each trajectory
is often considerably smoother, whereas the start sometimes
contains jagged paths (resembling noise) due to overfitting
of the model. With aircraft ground speed being a decreasing
function over time and sampling performed at fixed time
intervals, data points at the start of each trajectory are more
separated. This translates into a differential complexity along
a trajectory that the GAN must capture. The distribution of
longitude, latitude, and altitude become more narrow with
a function of time. GANs are notoriously unstable during
training due to the adversarial dynamics between the generator
and discriminator, which can lead to significant variations in
performance and realism across different clusters of landing
trajectories. When training GANs with the same parameters
across various clusters, the instability can become pronounced
because each cluster may have distinct characteristics and data
distributions. This discrepancy can cause the GAN to perform
well on some clusters while struggling with others, as the
generator might be better at capturing the features of more
common or less complex clusters but fail to generalize to
more varied or less frequent ones. In Figure 3, it is evident
that TimeGAN struggles the most with flights approaching
from the west as there is a higher concentration of noise.
Flights from the southwest are less frequent, and TimeGAN
falls victim to mode collapse. The remaining three clusters are

(a) Coordinate profiles for synthetic (red) and real (blue) trajectories;
moving average filter (window = 7)

(b) Altitude profiles for synthetic (red) and real (blue) trajectories; moving average
filter (window = 7)

Figure 3. TimeGAN synthetic samples (per cluster)

well captured by the model, and the synthetic samples thereof
are of high quality.

Pertaining to the full set, both PCA and t-SNE analysis
demonstrate reasonable coverage of the trajectory distribution,
largely steering clear of mode collapse (visualized in Figure 4).
In both cases however, clear clustering is observed, as opposed
to the more uniform spread in the original data. During
hyperparameter tuning, the risk of mode collapse proved to be
proportional to the number of training steps. Simultaneously,
an inadequate number of training steps leads to notable mode
collapse at the start of a trajectory, where the model seems
to resort to an averaging of the real data, with a minuscule
standard deviation in the starting point.

The results for the assessment of data fidelity and usefulness
are provided in Table I. Pertinent to data usefulness, the
Train-Real-Test-Real (TRTR) and Train-Synthetic-Test-Real
(TSTR) n-step (n = 5) ahead prediction performance figures
are included. The quoted value is a percentage change in
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(a) PCA (all landings) (b) t-SNE (all landings)

Figure 4. PCA & t-SNE analysis for the combined set of trajectories; synthetic
(blue) and real (red) trajectories

performance (in MAE) of the TSTR compared to the TRTR
evaluation paradigm. Lastly, e-distance provides a quantitative
metric for the distance between the synthetic and real trajec-
tory distributions complementary to the qualitative PCA and
t-SNE analyses. The mediocre accuracy indicates the trained
discriminator is deceived often. Real and synthetic samples
are difficult to differentiate, and the higher TPR indicates that
this largely stems from synthetic samples misclassified as real.
The low e-distance value suggests a high degree of similarity
between the real and synthetic data distributions.

With regard to usefulness, the trained LSTM seems to
learn similar patterns for both datasets. Simultaneously, this
diminishes the usefulness of the augmentation with synthetic
samples for predictive power.

TABLE I. PERFORMANCE METRICS (ALL LANDINGS)

Metric Value

Accuracy 0.608
True Positive Rate (TPR) 0.947
True Negative Rate (TNR) 0.269
TSTR vs. TRTR -0.473%
E-distance 1.482

The varying performance of TimeGAN for different clusters
is clearly visible in PCA and t-SNE plots for separate clusters.
Figure 5 depicts the results for two clusters with a large
discrepancy in diversity and similar coverage of the synthetic
samples. This coverage can be matched with visual inspection
of the trajectories in Figure 3. Whereas PCA aligns, the t-SNE
plot suggest considerable latent differences between the real
and synthetic samples in both clusters. Table II contains the
remaining performance indicators for each of the five clusters,
containing similar variations. In some cases, figures are less
representative due to fewer samples within a cluster.

In many cases, the LSTM model performing binary classifi-
cation cannot accurately distinguish between real and synthetic
samples. In the case of flights approaching from the southwest,
the real and synthetic sample are seen to be most accurately
distinguished. Interestingly, the results for the TSTR and
TSTR evaluation metrics prove an indifference in prediction
ability (except for flights originating from the southwest).

(a) PCA (north) (b) t-SNE (north)

(c) PCA (southwest) (d) t-SNE (southwest)

Figure 5. PCA & t-SNE analysis for separate sets of trajectories; synthetic
(blue) and real (red) trajectories

TABLE II. PERFORMANCE METRICS (PER CLUSTER)

Metric N NE E SW W

Accuracy 0.737 0.651 0.704 0.869 0.728
TPR 0.707 0.697 0.722 0.893 0.745
TNR 0.767 0.603 0.685 0.844 0.709
TSTR vs. TRTR -0.224% -0.127% -0.152% -2.401% -0.122%
E-distance 2.880 4.621 5.500 4.856 3.210

The e-distance values all approach a constant positive value,
which by the design of this test point to similarity in the
distributions. This ensures sampling from the learned model
generates consistently realistic results.

B. Experiment 2: Minority Runway-Specific Generation

The results for runway 28 and runway 34 (depicted in
Figure 6), demonstrated the effectiveness of TimeGAN in
generating realistic synthetic landing trajectories despite the
limited data available. Performance can partially be attributed
to the choices made during pre and post-processing stages.
The complexity was capped with a maximum cumulative track
angle (180 degrees) and low sampling rate (75).

Despite the lower data count for runway 34 leading to some
noise during the final turn towards runway alignment, the
combination of the preprocessing techniques helped mitigate
data sparsity issues and allowed TimeGAN to generate tra-
jectories that were closely aligned with real landing patterns.
The altitude profiles suffered more from noise, even with the
application of a moving average filter. This noise concentrated
at the start of the trajectories and points at a differential over-
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(a) Coordinate profiles for synthetic (red) and real (blue) trajectories on
runways 28 & 34; moving average filter (window = 13)

(b) Altitude profiles for synthetic (red) and real (blue) trajectories on runways 28
& 34; moving average filter (window = 13)

Figure 6. TimeGAN synthetic samples (per runway)

underfitting phenomenon along the temporal dimension, as
well as between geographic and altitude features. Trajectories
landing on runway 28 were more diverse according to both
PCA and t-SNE analysis. This can largely be attributed to the
fact that runway 28 contained nearly four times as many his-
torical samples to train from. Additionally, flights approached
it from more varied angles. This higher variation on runway
34 combined with its inherent rarity for landings put strain
on the stability of the training process. Overall, the data
fidelity and usefulness analysis demonstrates that TimeGAN
performed relatively consistently across both runways, with
similar accuracy metrics and slight differences in e-distance
(III). This finding is significant because it indicates that the
model’s performance does not degrade substantially with fewer
samples. The lower E-distance for runway 28 suggests that the
synthetic trajectories for this runway were slightly closer to the
real data, supported by the diversity assessment results.

TABLE III. PERFORMANCE METRICS (PER RUNWAY)

Metric Runway 28 Runway 34

Accuracy 0.694 0.704
TPR 0.528 0.722
TNR 0.861 0.685
TSTR vs. TRTR -0.129% -0.144%
E-distance 3.198 3.795

C. Experiment 3: Rare Operational Scenarios

This experiment highlights significant challenges in incor-
porating complex flight maneuvers like holding patterns and
go-arounds into TimeGAN training. Holding patterns, as in
Zurich’s airspace, involve intricate circular routes with variable
entry points depending on daily conditions. The problem inten-
sifies when integrating them with the full trajectory. Aircraft
can enter the same holding pattern from various directions,
creating a high-dimensional space that the current dataset
struggles to cover adequately. A similar conclusion is made
with regard to the mere 50 go-around samples available in the
dataset. This led to difficulties in capturing the full range of
maneuver behaviors, with TimeGAN prone to overfitting noise
from the remaining trajectory and failing to generate realistic
representations. Instead, following a similar procedure as laid
out in [14], go-arounds were pre-processed to start when the
aircraft initiates the go-around, and ends when it has landed.
With fewer than 50 samples it remained infeasible to generate
realistic samples and resulting trajectories were unflyable. To
address these issues, transfer learning offers a valuable strat-
egy. By leveraging models pre-trained on standard landings,
TimeGAN can apply learned representations to better handle
the complexities of go-arounds and holding patterns.

V. DISCUSSION

TimeGAN demonstrated the potential to generate high
quality synthetic aircraft landing trajectories, but encountered
challenges, especially when dealing with data imbalance.
Specifically, there was a significant challenge in adequately
capturing the underlying trajectory distribution in sparser ar-
eas, notably comparatively rare operational conditions. Train-
ing and generation based on individual clusters proved to
be a promising approach. However, this method was highly
sensitive to the number of cluster centers, meaning that careful
consideration is needed when clustering the data to avoid
poor generation quality in less populated clusters. Generation
of landings on specific runways could also be effectively
trained for separately, but operational conditions (go-arounds
and holding patterns) proved infeasible. Sparser regions of
trajectory data distributions could be learned by optimizing
the sampling rate parameter in the preprocessing step. A lower
sampling rate reduces the dimensionality and computational
burden, simplifying the data and making it easier for the
GAN to capture temporal dependencies, particularly in shorter
sequences. However, this simplification may result in the
loss of important details, producing less accurate and varied
outputs. Therefore, finding the optimal sampling rate is crucial:
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a higher rate enhances detail and complexity, while a lower
rate reduces complexity but risks oversimplification.

Previous work centered around go-arounds used a two-step
process of dimensionality reduction and multivariate statistical
distribution modeling [14]. By filtering and normalizing a
dataset of 407 trajectories and applying a method to map
two-dimensional aircraft paths to a single dimension, the
authors achieved more realistic synthetic data with Gaussian
mixture models (GMM) and statistical copulas. However, the
study’s limitations included its specificity to a single airport
and runway, the exclusion of irregular flight movements, and
the overall lacking potential for generalizability. Compared
to the 400 go-arounds in their dataset, the 45 available in
this case proved insufficient. In [15], the authors applied a
convolutional GAN to generate landing trajectories and detect
anomalies at Paris Orly Airport, focusing on Airbus A320
aircraft. Similar to TimeGAN in some cases, this approach
required smoothing to remove high-frequency noise. The au-
thors relied on trajectories that started at 25 nautical miles from
the airport, inevitably decreasing complexity and variation
compared to the 40 nautical mile cut-off used in this study. No
clustering or labeling of trajectories was performed, limiting
the controllability of the generation process. The most recent
work involved a integrated a temporal convolutional network
(TCN) to capture sequential dependencies and a Variational
Mixture of Posteriors (VampPrior) for the prior distribution,
in a VAE architecture [3]. The authors used the same data
but excluded go-arounds from the set. Sparser regions of the
learned latent space resulted in unrealistic trajectories. The e-
distance values obtained for the TCVAE are lower than for
TimeGAN, which could indicate greater similarity. Compared
to all previous work, this study expanded the evaluation
framework of synthetic samples. The inclusion of assessments
on data diversity, fidelity, and usefulness were particularly
valuable in revealing varying performance among classes.

This study’s assumptions, while necessary for model de-
velopment, introduce limitations that impact the generaliz-
ability and broader applicability of its findings. The focus
on a specific airport and trajectory type assumes that these
data are representative of other airports, which simplifies the
modeling process but restricts the model’s applicability to
diverse environments. This assumption may not hold true
across airports with different layouts, traffic patterns, or en-
vironmental conditions, potentially limiting the effectiveness
of the generated synthetic data in broader ATM scenarios.
Further research is needed to validate these models across
diverse datasets and explore alternative or complementary
approaches that can better capture the complexities of different
ATM scenarios. The concept of a Universal Time Series
Generator (UTG) provides the ultimate form of generalization.
By training on data from a few specific airports, the UTG
is able to generate synthetic flight path data for entirely
different airports. This capability allows for the modeling and
optimization of operations at unfamiliar and even hypothetical
airports without needing real-world data from those specific
locations. Incorporating controlled noise in generative models

for flight trajectories could enable the synthesis of plausible,
yet unobserved paths that anticipate future changes in airspace
management. This approach challenges traditional notions of
data fidelity and distribution-matching, suggesting a broader
utility for models that extend beyond historical data. However,
the unclear relationship between dataset characteristics and
optimal clustering calls for further empirical research.

Conditioning Extension & Transfer Learning

Conditioning in generative models involves guiding the data
generation process based on specific labels or constraints to
produce outputs that adhere to certain criteria. This has been
explored as an extension to work presented thus far, using the
TTS-CGAN model [24]. In attempting to generate synthetic
data for aircraft landing trajectories using TTS-CGAN, several
technical challenges emerged that hindered the model’s ability
to produce realistic outputs. While conditioning on specific
labels and utilizing advanced model architectures like self-
attention layers certainly seem promising aiming to benefit
from transfer-learning across classes, the model ultimately
struggled to handle the complexity and variability of the data,
failing to generate meaningful results. One significant reason
the TTS-CGAN model may have failed to produce the desired
results in synthetic data generation is due to the mismatch
between the model’s complexity and the available data. TTS-
CGAN consists of a combination of a conditional GAN and
self-attention mechanisms to generate time-series data that
adhere to specific conditional labels, such as different clusters,
runways, or operational conditions. The self-attention layers
are particularly adept at capturing long-range dependencies
within the data, theoretically allowing the model to gener-
ate more contextually consistent sequences. However, in the
context of generating synthetic aircraft landing trajectories,
the complexity of the self-attention mechanism can become
a drawback. Given the high dimensionality and variability of
the data—characterized by diverse trajectories under varying
operational conditions, the model’s self-attention mechanism
may have become overwhelmed, resulting in outputs that
are unexplainable and uninterpretable, overfitting to noise
rather than capturing true flight dynamics. This limitation
is compounded by the GAN’s inherent training instability,
particularly when the data distribution is complex and multi
modal. The integration of more domain-specific knowledge
(e.g. flight trends) or constraints directly into the model
architecture, could be more effective in this application.

VI. CONCLUSIONS & FUTURE WORK

This research explored the effectiveness of GANs in gener-
ating realistic synthetic aircraft trajectories during the landing
phase. Increased complexity in landing trajectories, repre-
sented by greater variability and higher dimensionality, posed
significant challenges for the GAN models. The risk of mode
collapse and overfitting was notable, emphasizing the need
for a balanced approach in model training and evaluation. The
results demonstrate that TimeGAN can successfully generate
realistic synthetic aircraft trajectories, particularly when data is
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clustered and trained separately for each class. This clustering
was essential in managing the complexity during training
and ensuring that the generated trajectories were diverse and
reflective of varied real-world operations. Key strategies that
proved effective included setting a maximum cumulative track
angle threshold to manage trajectory complexity and reducing
the sampling rate to make the training process more com-
putationally feasible. Post-processing techniques, by applying
smoothing filters, further refined the synthetic data. Even in the
event of severe minority classes, as was the case for runway
use, TimeGAN proved effective at capturing the patterns in
data, but required significant smoothing of the output time
series. With respect to go-arounds and holding patterns, the
available real datasets proved too limited for the model to
capture the diversity yet simultaneously maintain realism. The
variation in performance of TimeGAN between groups of
data underscores the sensitivity of the training procedure to
the underlying real distribution. Further testing of models
across various airports and operational environments, as well
as conditioning on factors such as weather and specific airport
data, can provide additional insight into their adaptability and
robustness. Incorporating flight simulators to assess flyability
and physical realism, including complex trajectories, will
further enhance the evaluation framework. However, a major
challenge remains: the limited availability of diverse real-
world data to train on. This paradox highlights the need for
rich real data to produce high-quality synthetic data, empha-
sizing the intricate balance between innovation and reality in
the field of trajectory generation.
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