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Abstract—The rapid development of drones (or Unmanned
Aerial Systems) and their potential deployment in urban areas
poses a number of safety issues. Some degree of automation
is most probably necessary to ensure that the UAS missions
are safely and efficiently performed in urban environments.
In a context where a large number of non-cooperative, non-
communicative UAS would fly in dense urban areas, decentralized
and autonomous approaches naturally come to mind. In such
approaches, each agent would navigate among the buildings
while avoiding the other traffic. ORCA (Optimal Reciprocal
Collision Avoidance) is a state-of-the art geometric method for
robot collision avoidance that could be used as a Detect & Avoid
logic on-board UAS. It was initially designed for the 2D-motion
of holonomic robots and requires some adaptation in order to be
applied to flying objects in an urban environment. In particular,
ORCA is a short-term collision avoidance that is not designed
for path planning in a complex urban environment.

In this study, we introduce a hybrid method combining ORCA
with an A∗ path-planning algorithm and show that ORCA-A∗

significantly reduces the separation losses when compared with
the baseline ORCA in artificial scenarios of dense UAS traffic.

Keywords—Detect and Avoid, U-Space separation manage-
ment, Conflict resolution, Urban environment, Decentralized
multiagent pathfinding,

I. INTRODUCTION

The integration of drones into a wide array of tasks
and contexts is one of the foremost challenges in modern
robotics. Drones have the potential to revolutionize numerous
applications, including surveillance, freight and passenger
transport, civil security, and even military operations, thanks
to their affordability, maneuverability, and the continuous
advancements in their carrying capacity and autonomy.
However, a critical requirement for drones is the ability to
safely navigate from an initial point to a target destination.
This is particularly challenging in a multi-agent environment
where communication between drones is not possible. In
such scenarios, ensuring safety hinges on the ability of each
drone to independently detect and avoid collisions with other
drones in the shared airspace.

State-of-the-art collision avoidance in robotics include ge-
ometric approaches based on Reciprocal Velocity Obstacles

(RVO), such as ORCA (Optimal Reciprocal Collision Avoid-
ance) [1]. For each pair of robots, a reciprocal velocity obstacle 
(RVO) materializes the area into which the relative velocity 
must not fall in order to avoid collision within a given 
time horizon τ . With both robots sharing the effort to avoid 
collision, each one implements a constraint on its velocity so 
that the relative velocity moves outside the RVO. In a multi-
agent context, the RVOs of multiple pairs of robots define a 
convex polygon of constraints on the velocity of each agent.

ORCA is a reactive method where each agent takes its 
decisions based solely on a) the current positions and velocities 
of all the agents, b) its preferred direction (toward the destina-
tion). Assuming all agents share the same view of the traffic, 
ORCA provides coordinated lateral maneuvers that guarantee 
conflict-free t rajectories w ithin t he n ext τ  s econds, without 
requiring communication among the agents.

Introducing obstacles (such as buildings, in an urban 
environment) can be done by adding specific velocity 
constraints. However, ORCA does not plan the robot’s best 
possible route avoiding the obstacles. The robot might get 
stuck behind large obstacles obstructing its path toward the 
destination, or take a longer path than necessary.

In this paper, we propose to combine ORCA with an A∗ 

algorithm. In this hybrid approach, the A∗ algorithm operates 
on the visibility graph defined b y t he o bstacles, a nd finds 
the best route to the destination, and ORCA is in charge of 
avoiding collisions with the other agents while following the 
successive waypoints calculated by A∗. This preliminary study 
focuses on lateral trajectory deviations only, considering that 
all UAS fly a t a  same, l ow a ltitude among t he buildings.

The rest of the paper is organized as follows. Related works 
are presented in Section II. The ORCA and A∗ algorithms are 
briefly presented in sections III and IV respectively. Section V 
details the proposed method combining the reactive ORCA 
algorithm with the A∗ shortest path algorithm. Section VI 
describes the parameterization of this new method and the 
design of scenarios used to compare ORCA-A∗ with the 
baseline ORCA. The results of this comparison are presented 
in Section VII, before concluding in Section VIII.



II. RELATED WORKS

A. Centralized vs. decentralized methods

A number of methods have been proposed in the litera-
ture to deconflict trajectories and avoid collisions between
flying objects (aircraft, Unmanned Aerial Systems). Some rely
on a centralized approach where deconflicting trajectories is
addressed as a global optimization problem, using various
methods such as MILP (Mixed Integer Linear Program) [2],
semidefinite programming [3], genetic algorithms [4], or ant
colony optimization algorithms [5]. These approaches provide
high-quality solutions. However, they require an omniscient
view of the environment in which the flying agents operate,
as well as knowledge of their intentions (flight plans).

Other approaches are decentralized, with each flying agent
deciding of its own maneuvers to avoid collisions with the
other agents, based on what they perceive of the environment
(obstacles, positions and velocities of the other agents).

Among these, reactive approaches select the action to be
performed at an instant t based solely on the observation of the
environment at that moment. They limit the planning horizon
to the next step only. Two representatives of these approaches
are APF (Artificial Potential Fields) and methods based on
RVO (Reciprocal Velocity Obstacles).

APF are the most well-documented reactive approaches.
They involve designing a potential function, often by analogy
with physical phenomena, such as electrostatics [6] [7] [8].
Each mobile agent and obstacle induce an influence on all oth-
ers. Obstacles exert a repulsive force, while the target and the
other agents exerts an attractive force. These methods initially
suffered from local minima in the potential functions, which
could lead to deadlocks. New approaches have been developed
to avoid these pitfalls. They are based on biharmonic functions,
such as those inspired by fluid mechanics in [9], [10], and [11].

The use of RVO dates back to the Relative Velocity
Paradigm by Fiorini and Shiller in 1993 [12]. The ORCA
(Optimal Reciprocal Collision Avoidance) algorithm [1] is
the state-of-the-art in geometric reactive algorithms based
on RVO. Currently, there are many variations of ORCA:
AVO (Acceleration-Velocity Obstacle) [13] computes solutions
based on acceleration; NH-ORCA (Non-holonomic ORCA)
[14] handles the case of non-holonomic drones; VR-ORCA
(Variable-Responsibility ORCA) [15] ensures optimal sharing
of avoidance responsibilities between two drones; CS-ORCA
(Constant Speed ORCA) [16] addresses cases with low speed
variation; DH-ORCA (Dual-Horizon ORCA) [17] proposes
adding a decision time horizon to ORCA to limit the occur-
rence of pathological trajectories.

Finally, there are approaches based on deep learning,
particularly reinforcement learning algorithms such as Deep-
Q Learning [18].

Reactive methods are of particular interest in this study. In
an operational context, they allow for rapid calculations based
on the observation of the environment at time t. Reactive
methods are well-suited for implementing autonomous and

embedded Detect and Avoid algorithms. In particular, this
paper focuses on the ORCA method. ORCA is reactive,
geometric, and decentralized.

B. Motion-planning in discretized environments

Solving a motion planning problem involves determining
a sequence of states (e.g. successive positions and velocities)
that allows the mobile agent to reach its target in the most
efficient way. A brute force algorithm is impractical given
the large size of the solution space. The planning problem
is, in the best case, PSPACE-complete [19]. It is necessary
to use methods that accelerate the exploration of the solution
space, typically by discretizing the space, and possibly using
stochastic approaches in exploring the discretized space.

There are many different discretization methods: grid-based
and graph-based. These involve selecting a set of nodes that
represent the entire configuration space; cell-based methods,
such as trapezoidal and rectangular decompositions [20] or
CDT (Constrained Delaunay Triangulation) [21]; the most
sophisticated methods are navigation meshes like LCT (Local
Clearance Triangulation) [22] and ECD (Explicit Corridor
Map) [23]. The underlying principle is always to simplify the
representation of the space and thus reduce the size of the
solution space.

Stochastic methods involve sampling the configuration
space more efficiently. They converge in probability to
the optimal solution and are widely used in practice for
high-dimensional problems. Common examples include: RRT
(Rapidly Exploring Random Trees) [24] and its variants like
RRT* [25], RRT-Connect [26]; PRM (Probabilistic Road
Map) [27]; RPF (Random Potential Fields) [28]; The state-of-
the-art in stochastic methods is currently FMT (Fast Marching
Trees) [29] due to their faster convergence speed.

C. Our hybrid approach

In this paper, we are interested in planning safe routes
for UAS flying in an urban environment, while avoiding
collisions with one another and with obstacles. We assume no
communications and no explicit cooperation among the agents.
We simply assume that every agent has a perfect and total
view of the positions and velocities of the other agents, and
that all agents apply the same anti-collision logic. Moreover,
measure uncertainties are not taken into account and only
lateral maneuvers are considered in this study.

Our approach to solve this decentralized, non-cooperative
multi-agent motion planning problem consists in combining a
path-finding A∗ algorithm with a geometric reactive method,
ORCA. The chosen space discretization on which the A∗

operates to find a path for each UAS is the visibility graph
defined by the obstacles. ORCA is in charge of avoiding
collisions with the other UAS, and is slightly modified to
take account of the route determined by the A∗ path-planning
algorithm. In our work, ORCA is the tactical short-term
planner. It is the final decision layer that returns the velocity
vector aiming at the next waypoint while avoiding other flying
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agents. The A* algorithm combined with the visibility graph
is the strategical long term decision layer that returns the
overall path to reach the drone goal. Our hybrid method is
therefore using both tactical and strategical layers to perform
collision avoidance. This idea is already part of the VLL (Very
Low Level) UAS geographical zones regulation. Z-Volumes,
in particular, are designed to ensure high-density traffic and
provide both in-flight tactical and pre-flight strategical colli-
sion avoidance services. The key difference is that our work
focuses on a decentralized process that should be more flexible
and scalable. The next three sections describe these methods
and how we hybridize them.

III. ORCA

ORCA, which stands for Optimal Reciprocal Collision
Avoidance [1], is a geometric avoidance algorithm for holo-
nomic agents. That is, agents that can, at any given time t,
choose a velocity vector in any direction. ORCA uses veloc-
ity obstacles to ensure collision avoidance between moving
robots.

Figure 1. ORCA velocity obstacle (light red) and admissible velocity domains
(in green) for two agents A and B

The situation is illustrated in Figure 1, considering a pair of
agents A and B at a time t0. Without loss of generality, we
can assume t0 = 0 in the following.

At time t0 = 0, agent A and agent B have velocities v⃗A
and v⃗B , respectively. In Figure 1, the safety distance to be
maintained is R, so the agent A must never be inside the
circle D(B,R) centered at B with radius R. Let us consider
the moving reference frame attached to the agent B, and the
relative velocity of A with respect to B, denoted v⃗r = v⃗A−v⃗B .

The relative velocity vector leads to a loss of separation
between A and B within a time horizon τ if and only if
for some t ≤ τ , v⃗r · t ∈ D(B,R). Thus, if the relative
velocity vector is within the disk D(Bτ ,

R
τ ) and assuming

that the relative velocity remains unchanged, then it can
be asserted that there will be a loss of separation at τ
seconds. This reasoning can be extended to any time t < τ ,
resulting in the rounded cone shaded in light red in Figure 1.
It represents the set of relative velocities v⃗r that lead to
a loss of separation at some time within the time interval [0, τ ].

In order to avoid collision, the velocities of both agents A
and B must be changed so that the relative velocity v⃗r falls
outside the forbidden zone (the rounded cone in light red).

The smallest effort consists in moving v⃗r toward the closest
boundary of the velocity obstacle. This move is represented
by the vector c⃗ on Figure 1. The effort to move v⃗r outside the
velocity obstacle is shared between the two agents A and B.
The collision avoidance domain for the velocity v⃗A is the semi-
plane (in green) defined by the parallel to the cone boundary
and an offset of c⃗

2 from the tip of the vector v⃗A. Assuming
the agent B follows the same logic, a similar semi-plane is
defined for the velocity v⃗B , also shown in green on Figure 1. If
both agents select their velocities in their respective collision
avoidance domains, then ORCA guarantees that no collision
will occur between A and B within the next τ seconds.

When more than two agents are involved, the collision
avoidance domain of an agent A is simply the intersection
of all the semi-planes determined by all the pairwise velocity
obstacles in which A is involved. The intersection of these
half-planes is a convex set.

In summary, at each time step, the agent A calculates its
collision avoidance domain as explained above. Agent A then
selects the velocity that is within this convex set and closest
to its optimal velocity vector toward its destination. If all
agents follow the same logic and share the same view of the
environment, ORCA provides coordinated maneuvers to avoid
collisions, without requiring communication among the agents.

IV. THE A∗ ALGORITHM

A* is a BFS (Best First Search) algorithm applied to a
graph and guided by a heuristic which gives higher priorities
to the exploration of the most promising nodes. Starting from
an initial node in the graph and considering transition costs
associated to the edges of the graph, the cost associated to a
node is simply the sum of the transition costs that led to this
node, following the best path found so far.

These costs are updated during the search as follows.
The algorithm handles three sets of nodes: the expanded

nodes E, the terminal nodes T , and the frontier nodes F . Let
u0 denote the initial node. The goal is to reach one of the
nodes in T . The frontier corresponds to a set of nodes for
which the priority has been calculated, but which have not
yet been visited. At each step, A* considers the node in F
with the highest priority, which is the most promising direction
to search. The priority of a node v in F , denoted f(v), is
defined as the sum of the cost associated with the node v and
a heuristic h(v).

The cost associated with node v, denoted costv , is the best
cost found so far to reach v from u0. Let k(u, v) be the
transition cost from node u to node v. If u is the parent node
of v (i.e. u is the preceding node in the best path found so far
to v), then costv = costu + k(u, v). The parent of each node
is also memorized, together with the costs, and updated when
necessary. The heuristic, denoted h(v), provides an ”estimate”
of the cost to move from node v to the nearest terminal node.

Typically, for path-planning in 2D geographic environments,
the nodes represent geographic positions, the transition cost
k(u, v) is the distance between positions u and v, the cost
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costv is the length of the best path found so far from u0 to v,
and the heuristic h(v) is the distance as the crow flies from v
to the terminal node (the destination).

Finally, the priority is given by f(v) = −costv−h(v). This
corresponds to the estimated cost to go from the starting point
to the destination point via node v. The negative sign is used
because higher priority is given to lower costs; extracting the
node with the highest priority is equivalent to extracting the
node with the minimal cost.

The A* algorithm extracts the node u with the highest
priority from the frontier F , develops this node by considering
its neighbors. For each neighbor v, the cost of the path to v
passing by u is computed and compared with the previous cost
of v, if any. If the cost is improved, the new value is stored
and u is memorized as the parent of v. If the neighbor has
never been visited before, its priority is computed, and it is
inserted in the frontier. The algorithm stops when a terminal
node is visited. The cost of this terminal node is minimal,
and the best path is obtained, retrieving the parent node and
its predecessors. Optimality is guaranteed by the fact that the
heuristic is consistent (always shorter than the real distance).

V. THE HYBRID ORCA-A∗ ALGORITHM

Reactive methods are effective, notably because they do
not anticipate future actions. Anticipation allows for achieving
better global solutions. The optimal decision at time t depends
on decisions at subsequent times, and thus on the overall final
trajectory. Therefore, adding a planning layer can help guide
the reactive algorithm towards better quality solutions.

In particular, ORCA allows reaching a point while ensuring
avoidance of both static and dynamic obstacles. We propose
to relieve ORCA of the responsibility of avoiding static
obstacles, so that it only handles dynamic obstacles. In other
words, obstacles do not raise additional constraints inside
the ORCA logic. Planning then consists of providing a
set of intermediate points to reach the goal. Each of these
intermediate points is placed such that the drone can follow
a direct trajectory from one to another without worrying
about the presence of static obstacles. In other words, the
segments connecting successive intermediate points are in
the free space, away from obstacles. The long term planning
is computed by each drone only once, at t = 0. During the
simulation, ORCA might perform an avoiding maneuver to
ensure safety. This locally modified trajectory differs from the
originally planned trajectory, and thus may not be compatible
with the set of pre-computed waypoints. If the targeted
waypoint is out of sight, then the entire long-term planning
is actualized, starting from the current position.

The reactive ORCA algorithm is responsible for the control,
i.e., detecting and avoiding dynamic obstacles. Meanwhile,
planning is responsible for navigation; it only concerns the
route to follow and considers only static obstacles. This can
also be referred to as short-term and long-term planning. The
long-term planning algorithm we use is the A* shortest path
algorithm. We seek the shortest route in the space.

The A* algorithm operates on a representation of space in
the form of a graph. Thus, at each node, a finite number of
successors can be defined, and at each edge, a cost can be
defined. In our case, we use the visibility graph as shown in
figure 2. Each node corresponds to one of the vertices of the
polygonal obstacles, and the costs associated with the edges
are the Euclidean distances between nodes. In a visibility
graph, an edge exists between two nodes ui and uj if and
only if the segment (ui, uj) is in the free space. This property
of the visibility graph justifies its use in our context.

Figure 2. Example of a visibility graph

VI. EXPERIMENT SETUP

ORCA depends on several parameters. The time horizon τ
corresponds to the duration during which an agent assumes
that the behavior of other observable agents remains constant.
A long time horizon means considering separation losses
that would occur far into the future, provided that the
behavior of the involved drones does not change. This leads
to small-amplitude maneuvers that may prove unnecessary
or counterproductive. A short time horizon implies that the
behavior of other agents is unpredictable, leading to necessary
abrupt maneuvers. The ideal value for the time horizon might
depend on the number of agents, their dynamic and kinematic
characteristics, their positions and velocities, and the very
nature of the environment. It must be adjusted on scenarios
that are representative of the environment in which ORCA
will operate.

The simulation parameters were chosen in collaboration
with the ENAC UAS team, as we plan to validate our hybrid
algorithm on real UAS in a small scale environment. The
environment is a square with a side length of 100m. The
imposed separation distance between agents is 3m. The maxi-
mum speed of the agents is 8.33m/s, or 30km/h. Inertial effects
are not considered. Each simulation starts from a scenario that
specifies the position and shape of obstacles, the starting and
ending points of the agents, and the time at which they enter
the zone. Three types of scenarios are distinguished: empty
scenarios with no static obstacles; sparse scenarios with a few
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small-sized obstacles spaced apart; and urban scenarios with
large obstacles separated by roads. Each of these scenarios can
be simulated with varying numbers of agents. We considered
three levels of densities: 1) low density with one agent entering
the zone every two seconds; 2) medium density with one agent
every second; 3) high density with two agents every second.
In total, there are nine possible configurations.

di
R

αmax

−αmax

O

Figure 3. Choice of departure and destination points.

To ensure that each agent crosses the obstacle zone, agents
appear on a circle centered at O, the center of the environment,
with a radius of R = 45m. Obstacles are placed inside the
circle. For each agent, a starting point di on the circle is
chosen uniformly. The starting direction is drawn uniformly,
which is the vector oriented towards the center, deviated by
an angle drawn uniformly between −αmax and αmax. The
arrival point is the intersection of the ray directed by the vector
and the circle of radius R (see Figure 3). The mobiles appear
on the circle at random times. The probability of a mobile
appearing follows a Poisson distribution with parameter λ. The
expectation is λ, which is the number of mobiles appearing
per unit of time, known as the incoming flow.

We simulated, for each configuration, five values of τ
ranging from one to five seconds looking for a parameter
independent of the configuration. We found that for the
ORCA algorithm without planning, the best parameterization
was τ = 3s. For ORCA with planning using A* on the
visibility graph, the best parameterization was τ = 1s.

Figures 4a and 4b present examples of ORCA-A* simula-
tions made on both sparse and urban environments, respec-
tively, for an intermediate incoming flow.

VII. RESULTS

With the selected parameters for ORCA and ORCA-
A∗, we compared the two methods across nine different
random configurations, considering empty, sparse, and urban
environments with low, medium and high traffic densities.
The results of the empty, sparse and urban environments are
shown in Figure 5. Each figure shows the total time spent in
loss of separation (LoS) for low, medium, and high densities.

(a) ORCA-A* in ”sparse” environment

(b) ORCA-A* in ”urban” environment

Figure 4. Examples of environments

When there are no static obstacles, ORCA results in fewer
losses of separation compared to ORCA-A*. Indeed, ORCA
and ORCA-A* are then essentially the same algorithms,
differing only in the parameterization of the time horizon.
The losses of separation are lower with ORCA because it
anticipates and avoids potential collisions in advance.

When static obstacles are introduced, whether in sparse
or urban environments, the performance of ORCA-A* is
significantly better, the more so with dense traffic in complex
environments. Although ORCA can reach its goal point in
most cases by considering constraints imposed by static ob-
stacles, this approach is less effective than adding a long-term
planning layer.

5



0.5 1 1.5 2

0

5 · 10−2

0.1

incoming flow λ

m
ea

n
L

oS
(s

)
Empty environment

ORCA
ORCA-A*

0.5 1 1.5 2

0

0.2

0.4

0.6

0.8

incoming flow λ

m
ea

n
L

oS
(s

)

Sparse environment

ORCA
ORCA-A*

0.5 1 1.5 2

0

2

4

6

incoming flow λ

m
ea

n
L

oS
(s

)

Urban environment

ORCA
ORCA-A*

Figure 5. Simulation results

VIII. CONCLUSION

To summarize, we proposed to combine a short-term
collision avoidance method, ORCA, with a long-term path-
planning A∗ algorithm. This hybrid approach showed better
results in terms of separation losses than the standard ORCA
algorithm, on the nine scenarios on which it was tested. The
improvement was most significant on dense urban scenarios,
showing the interest of long-term planning in this context.
Our work shows that, at least under simple hypotheses,

adding a pre-flight strategical decision layer on top of ORCA
logic increases the original ORCA performance, and even on
a completely decentralized process without any information
shared between flying drones.

In future works, we plan to test our approach on a larger
number of random scenarios, and to confirm our first results
with some statistical evidence. We also plan to compare
our method with other reactive methods. Another interesting
question that we intend to investigate is: What would be the
potential benefits of sharing information among the agents,
and what information should be shared? Clearly, planning a
route without knowing the intentions of the other agents is
sub-optimal, and could be improved knowing the destinations
of the other agents, for example. In this study, we have
considered 2D lateral maneuvers only, assuming all UAS fly
at the same altitude. One could imagine organizing the UAS
traffic in urban areas in several horizontal layers. The ORCA
algorithm and its variants would then require some adaptation
to handle altitude changes in addition to lateral maneuvers.

Finally, other key issues must be addressed prior to any
operational deployment of collision avoidance methods such as
ORCA or any other Detect & Avoid (D&A) methods. Notably,
the robustness of D&A to an imperfect or partial perception of
the environment is crucial to ensure safe operations in urban
environments.
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