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Abstract—This paper presents a Mixed Integer Programming
model for optimal airspace sector design based on basic volume
aggregation, focusing on workload balance and air traffic flow
convexity. To overcome potential computational limitations, we
develop a simple two-stage heuristic approach. The heuristic
approach are evaluated using real-world traffic data from the
Madrid Area Control Center, with the MIP as a benchmark.
Our key contributions include: (1) the first rigorous mathematical
formulation for this problem, (2) a fast heuristic achieving near-
optimal solutions in under one second, and (3) a comprehensive
assessment across various traffic scenarios. Results show that our
MIP model generates operationally relevant sector designs, and
the heuristic could provide good-quality solutions with excep-
tional efficiency. This research advances airspace management
techniques, offering both theoretical insights and practical tools
for optimizing air traffic control.

Keywords—Airspace sector design; mixed-integer program-
ming (MIP); heuristic approach

I. INTRODUCTION

Air traffic controllers (ATCOs) face mounting challenges as
they navigate the increasing complexity of airspace, further
exacerbated by adverse weather conditions [1] and the integra-
tion of emerging airspace users [2]. To enhance the flexibility
and capacity of airspace, the concept of Dynamic Airspace
Configuration (DAC) has been proposed. The SESAR Concept
of Operations recommends DAC as the first means to resolve
demand capacity imbalances, and it is also envisioned as a
major cornerstone for the future architecture of the Euro-
pean airspace described in the Airspace Architecture Study.
Based on the predicted traffic demand and weather conditions,
airspace sectors are dynamically configured (i.e., are open
for certain period of time during the day) to avoid workload
imbalance and maximize the airspace capacity.

In line with the strategic vision provided by the European
ATM Master Plan, we aim to make the airspace design and
configuration process more efficient taking full advantage of
the airspace potential. Our ambition is to develop sector design
capabilities that allow the definition of a catalogue of sectors
that serves as the “ground set” for configurable sectors thus
enabling DAC operations. The catalogue should include all the
sectors to handle all the traffic scenarios that can occur.

Traditionally, sector design process has been based on Air
Traffic Services (ATS) fixed routes structure and it is manually
performed by a group of experts. Considerations on main flows

have been progressively introduced, but automation of sector
creation is not widespread. Modern approaches favor grouping
“basic volumes” (i.e., portions of the airspace) over conven-
tional direct partitioning approaches [3, 4], in the attempt of
ensuring a higher degree of operational flexibility.

In this paper, we present a methodology for the sector
design, which is based on grouping basic volumes. At each
execution of the proposed approach, we design multiple sec-
tors simultaneously. The motivation stems from the challenges
that may arise in a single sector design approach. Indeed, it
may create an extremely large number of sectors, which might
fail to account for system-wide implications and inter-sector
relationships. There is no guarantee that feasible configurations
can be retrieved from the corresponding sector catalog.

Our proposed approach primarily focuses on two critical
operational requirements for sector design: workload balance
and air traffic flow convexity. Workload balance refers to
the equitable distribution of aircraft occupancy counts within
designated sectors, ensuring a fair allocation of air traffic
management responsibilities. Air traffic flow convexity - which
can be envisioned as an approximation of the sector convexity
property - focuses on aligning sector boundaries parallel to the
main traffic flows within each sector. This alignment offers
several advantages:

1) It reduces the frequency of aircraft crossing sector
boundaries, allowing flights to remain within a single
sector for extended periods. This minimizes the num-
ber of handoffs between controllers, thereby reducing
workload and communication complexity.

2) It minimizes short crossings and re-entries, lowering
the inter-sector traffic flow. This reduction decreases the
likelihood of aircraft briefly entering a sector only to
quickly exit or re-enter shortly after, improving overall
airspace efficiency and safety.

Although these aspects have been considered in previous
research efforts, they have been often used for evaluation rather
than in the design/sectorization process [5]. In this work, our
contribution is three-fold. First, we present a Mixed Integer
Programming (MIP) model for airspace sector design based
on basic volumes aggregation, introducing the first rigorous
mathematical formulation for this problem to the best of our
knowledge. Second, to address the potential computational



challenges, we develop a simple two-stage heuristic approach
that achieves near-optimal solutions with significantly reduced
processing time. Lastly, using the MIP solution as a bench-
mark, our comprehensive assessment evaluates the heuristic’s
performance focusing on critical operational metrics such as
workload balance and air traffic flow convexity.

This paper is structured as followed: Section II provides a
literature review on airspace sector design. The model imple-
mentation is presented in Section III. Section IV describes the
case study while Section V presents the results and discussion.
Section VI concludes this work and discusses the future
extension.

II. LITERATURE REVIEW

The problem of airspace sector design has been considered
as an airspace sectorization problem. Flener and Pearson
provided a comprehensive survey to classify the automatic
airspace sectorization methods, based on criteria like modeling
approach, constraints, and solution techniques [5]. Conven-
tional airspace sectorization is a network partitioning problem.
That is, the air traffic transportation network - modeled as
a weighted planar graph - is partitioned into K sub graphs
(each representing a sector), all with similar values of the
total weight (workload). The computational complexity of
such discrete graph partitioning problem is NP-hard. Indeed,
the difficulty to solve the problem is further exacerbated by
the presence of topological constraints, e.g., convex sectors
(partitions).

Delahaye et al. [3] pioneered the use of genetic algorithms
for airspace sectorization. The application of Voronoi diagram
guarantees that the designed sectors have a convex shape. In
a subsequent study [4], they refined this method by applying
route convexity instead of shape convexity and generating the
Voronoi diagram on the underlying air route network directly
rather than on the airspace’s boundaries.

To consider a series of more specific operational constraints
such as minimum sector crossing time, Trandac et al. [6]
proposed a constraint programming approach. Their two-phase
method first finds an initial solution for the constraint program-
ming using a Restricted Kernighan-Lin heuristic, then applies
random local re-optimization to address the fragmentation of
the sectors.

In 2007, R.Ehrmanntraut and S.McMillan [7] studied the
airspace design process for dynamic configurations, highlight-
ing the importance of mathematical optimization and fast
capacity-simulation for dynamic traffic demand. J.Mitchell et
al. [8] used a recursive partitioning algorithm including three
local graph partitioning cuts to divide airspace into sectors on
the National Aviation System (NAS) air route structure.

Brinton et al. [9] developed an airspace sectorization
algorithm using Dynamic Density as the objective function
to minimize sectors while maintaining dynamic density below
a threshold. Dynamic Density refers to the complexity or
difficulty of an air traffic situation, which includes the number
of aircraft occupancy and other complexity metrics such as
separation criticality index in a weighted combination [10].

Kulkarni et al. [11] explores the potential of Approximate
Dynamic Programming in static airspace sectorization, to
create a benchmark for potential dynamic re-sectorization in
DAC. J. Tang et al. [12] proposed a multi-objective optimiza-
tion for Dynamic Airspace Sectorization, which demonstrated
the challenge in balancing workload fairness, sector shape
convexity, and average flight time inside individual sector.
Zou et al. [13] proposed an approach for airspace sectorization
using constrained evolutionary algorithms on an undirected
graph model, which propose a concave hull-based method to
automatically depict sector boundaries.

III. METHODOLOGIES

In this section, we formulate a MIP model for sector design
problem. We assume the designed sectors span all the upper
airspace. This approach allows for efficient sector design
in airspaces with consistent vertical traffic distribution. In
the real-world air traffic network, airways are composed of
multiple routes that share the same ground projection but differ
in altitude based on their direction (following the semicircular
rule) [3]. Thus, the assumption of 2D projection is appropriate.

The airspace topology is modeled as an undirected graph
G = (V,E), where V represents airspace volumes and E
denotes shared borders between volumes. Each vertex vi ∈ V
corresponds to a basic volume’s geographic center. The set
V comprises three classes: Elementary Sectors (ES), Airspace
Blocks (AB), and Shareable Airspace Blocks (SAB), such that
V = ES ∪ AB ∪ SAB. ES are independently controllable
sectors, which can be used as controllable sectors if needed.
AB must be attached to another AB or ES to form a control-
lable sector, while SAB are non-workable volumes that need
dynamic attachment to any ES or AB to create an operational
sector.

To formulate the model, we introduce the following nota-
tion:

- W : maximum capacity (workload) of a sector;
- cij : inter-block flow between adjacent volumes i & j;
- wi: workload/occupancy counts in volume i;

The decision variables are

xij =

{
1, if volume i is grouped with volume j ,
0, otherwise.

and

W = the minimum workload across sectors.

For the sake of clarity, the index j of variable xij identifies
the sector. Sector j is defined as the set of all volumes i for
which xij = 1.

A. The MIP formulation

In this section, we present the sector design model. The
objective function of the proposed model consists of two
components with a balancing parameter α:

- Workload Balancing: The first term maximizes the min-
imum workload across all sectors, which is captured by
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the decision variable W . This approach, coupled with a
predefined upper bound on workload, ensures a balanced
distribution of air traffic management responsibilities.

- Internal Sector Traffic Flow: The second term maxi-
mizes the sum of flow cij between basic volume i and j
within the same sector. This is equivalent to minimizing
the inter-sector traffic flow, as the total exchanged traffic
flow is constant for each historical traffic scenario.

The model formulation is listed as follows:

max αW + (1− α)
∑

(i,j)∈E,k∈V

cij(xik · xjk) (1)

st. ∑
j∈V

xij = 1, ∀i ∈ V (2)

∑
i∈V

wi · xij ≤W, ∀j ∈ V. (3)

W · xjj ≤
∑
i∈V

wi · xij , ∀j ∈ V. (4)

∑
i∈ES

⋃
AB\{j}

xij ≥ xjj , ∀j ∈ AB. (5)

xjj = 0, ∀j ∈ SAB (6)

xij ≤ xjj , ∀ij ∈ V (7)

xij ∈ {01}, ∀ij ∈ V (8)

Constraint (2) requires each basic volume i to be uniquely
allocated to one sector. Constraint (3) imposes that the work-
load of each sector does not exceed the maximum value.
Constraint (4) is used to fix the value of variable W to the
minimum workload. We aim to maximize the minimum value
W in our objective function to ensure equitable workload
distribution. This approach correspond to a maxmin approach
that is quite common in the equity (or fairness) literature, e.g.,
Young [14]. Constraint (5) imposes that if AB is the anchor
of a sector it is attached to at least one other AB and/or ES,
while constraint (6) implies that SAB cannot be the root of a
sector. Finally, the coupling constraint designates volume j as
the root of a sector if any other block i is assigned membership
to the sector j.

To maintain contiguity between basic volumes, we imple-
mented connectivity constraints using a flow-based formula-
tion which has been applied in other application domains, e.g.,
political districting [15–17]. To formulate these constraints, we
introduce the variable:

fv
ij = the amount of flow from v, passed edgeij (9)

Using f j(S) for S ⊆ A as the shorthand for
∑

(u,v)∈S f j
uv ,

we will have the following constraints:

f j
(
δ−(i)

)
− f j

(
δ+(i)

)
= xij , ∀i ∈ V \{j}, ∀j ∈ V (10)

f j
(
δ−(i)

)
≤ (n− 1)xij , ∀i ∈ V \{j},∀j ∈ V (11)

f j
(
δ−(j)

)
= 0, ∀j ∈ V (12)

fv
ij ≥ 0,∀(i, j) ∈ A, ∀v ∈ V (13)

Vertex i will only use one unit of flow of type j if it
is allocated to the root of sector j, as per constraint (9);
otherwise, it will use no flow. Vertex i can only receive the
flow of type j if it is assigned as the root of sector j, according
to constraint (10). Constraint (11) prevents the circulation of
flow.

B. Formulation enhancements

To improve the formulation and its computational perfor-
mance, we here present three optimization “tricks”.
1) Lower bound of sectors: It is easy to obtain a lower bound
on the number of sectors K, where K =

∑
wi

W
. If we provide

the additional information of the constraint to K:∑
j∈V

xjj ≥ K, (14)

the optimization solver will take advantage of this additional
constraint (14), which allows computing the optimum solution
in a shorter computational time.
2) Re-index adjustment: The formulation (1)-(13) has “sym-
metries”, i.e., it has multiple equivalent solutions that make
the search space redundant. This is due to the fact that one
sector can be represented in the formulation by two or more
different sets of variables, e.g., one grouped with j (i.e., all
xij = 1), and the other grouped with j′ (i.e., all xij′ = 1).
To overcome this issue - which deteriorates the efficiency of
solution algorithms -, we implement a re-indexing method
of the basic volumes based on geographic coordinates. This
allows us to identify the sector with the volume with the largest
index and impose the following set of constraints:

xij = 0,∀i > j ∈ V (15)

By eliminating the need to consider lower-indexed volumes
as potential sector identifier, the constraint significantly re-
duces the solution space, leading to faster convergence times
in optimization algorithms. Moreover, it allows us to halve the
number of decision variables.
3) Variable fixing strategy: To reduce the computational time
of the MIP model, we also implement a pre-processing strategy
which fixes the variables to zero if the summation of basic
volumes’ workload exceed the allowed maximum value of
workload W .

The “Variable Fixing Strategy” (Algorithm 1) operates on
the graph G, with binary variable, and the upper bound
workload W . For each pair of nodes (i, j) in the graph, the
algorithm calculates the shortest path s between them using
Dijkstra’s algorithm [18], which utilizes the average node
weight of edge (i, j). The algorithm then computes the total
weight Ω by summing up the weights of all nodes in s. If this
total weight is greater than or equal to the threshold W , the
binary variable xij is set to 0. This process is repeated for all
pairs of nodes in the graph.

3



Algorithm 1 Variable fixing strategy

1: procedure VFS(G, x,W ) ▷ graph G(V,E), binary
variable xij for (i, j) ∈ E, threshold W

2: for each node i in graph G do
3: for each node j in graph G do
4: Compute the shortest path (s) between node i

and j using Dijkstra’s algorithm using the average node
weight

5: Sum up the node weight Ω =
∑

n∈s wn

6: If Ω ≥W : xij = 0
7: end for
8: end for
9: end procedure

C. The heuristic approach

The MIP model provides exact solutions to the sector design
problem, however it can be computationally intensive for
large-scale instances. As the number of basic volumes and
potential sectors increases, the computational cost for the MIP
model grows exponentially. To address this limitation, we
propose a two-stage heuristic (Algorithm 2), which is a more
scalable approach.

The first stage aims to quickly identify high traffic regions
within the airspace, which generate a initial sector list that
is convex to air traffic flow and connected. The heuristic
approach leverages the graph representation of the airspace
used in the MIP model. It focuses on the inter-block traffic
flow cij , to prioritize the most significant traffic patterns, and
balances the workloads for the unassigned basic volumes.
This aligns with the MIP model’s objective of optimizing
sector design based on traffic flow patterns. Worth mentioning,
the input parameter K is not necessary for the model, the
implementation is here just for constructing a comparable
assessment with the MIP model results as a benchmark.

The first stage of the heuristic approach consists of the
following key steps:

- Sort the edges of the graph in descending order based
on inter-block traffic flow cij .

- Iterate through the sorted edges if |S| < K:
• If both vertices u, v of the edge are unassigned,

create a new sector containing these vertices and
mark them as assigned;

• If one vertex is assigned and the other is unassigned,
add the unassigned vertex to the existing sector;

• If both vertices are already assigned, skip the edge.
- After processing all the edges, assign any remaining

unassigned individual vertices to sectors have most
connections with them (best sector B). If there are more
than one best sector for the unvisited node, we use the
average distance from v to all nodes in each sector as a
tiebreaker, to maintain connectivity.

- Return the set of identified sectors.
Following the initial sector design produced by the heuristic,

a local search algorithm (Algorithm 3) is applied to further

Algorithm 2 Two-Stage Airspace Sector Design Heuristic

Require: Graph G(V,E), edge weights cij , node weights wi,
number of sector K, balance parameter α

Ensure: Set of sectors S = {S1, S2, ..., Sk}
1: Esorted ← Sort(E, key = cij , order = descending)
2: S ← {} ▷ Initialize empty set of sectors
3: A← {} ▷ Initialize set of assigned nodes
4: for et = (u, v) ∈ Esorted do
5: if |S| ≥ K then
6: Stop iteration
7: end if
8: if u /∈ A and v /∈ A then
9: Create new sector with u and v

10: else if exactly one of u or v is in A then
11: Add unassigned node to sector of assigned node
12: end if
13: Update A
14: end for
15: U ← V \A ▷ Set of unassigned nodes
16: for v ∈ U do
17: B ← argmaxj |{(v, u) ∈ E : u ∈ Sj}| ▷ Best sectors
18: if |B| > 1 then
19: i← argminj∈B

1
|Sj |

∑
u∈Sj

dist(v, u) ▷
Tiebreaker

20: else
21: i← the single element in B
22: end if
23: Si ← Si ∪ {v} ▷ Assign v to chosen sector
24: end for

return Sinit

25: LOCALSEARCH(Sinit)
26: return S
27: where:
28: W ▷ The list of total workload ∀Sk ∈ S
29: C(Si) = 1 ⇐⇒ ∀u, v ∈ Si,∃ a path suv ⊆ Si

30: Pc =
∑k

i=1 |Si| · [1− C(Si)] ▷ The disconnection
penalty

31: Overall score =
32: αmin(W) + (1− α)

∑
k

∑
i,j∈Sk

cij −max(W)− Pc

refine the solution. This local search focuses on three primary
objectives: maximizing the internal traffic flow within sectors,
balancing the workload across sectors, and maintaining con-
nectivity.

The algorithm iteratively considers moving nodes between
adjacent sectors, accepting moves that improve a composite
score function based on the MIP’s objective:

αmin(W) + (1− α)
∑
k

∑
i,j∈Sk

cij −max(W)− Pc

where: W is the list of workload for each sector, α ∈ [0, 1]
is a balancing parameter, C(Si) is the discriminator for sector
connection, and Pc is a penalty for disconnection.
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Algorithm 3 LocalSearch(S)

1: for i← 1 to max iterations do
2: for all Si ∈ S, v ∈ Si, S

′
i ∈ NG(v) ∩ (S \ {Si}) do

3: S′ ← (S \ {Si, S
′
i}) ∪ {Si \ {v}, S′

i ∪ {v}}
4: if C(Si) = 1 ∧ Score(S′) > Score(S) then
5: return LOCALSEARCH(S′)
6: end if
7: end for
8: end for
9: return S

The first two terms for the score function align with the
objective function of MIP, which it seeks to maximize. The
third term represents maximum value of W , and the last term
is the disconnection penalty. The local search proceeds until
no improving moves are found or a maximum number of
iterations is reached. This approach allows for fine-tuning of
the sector boundaries, potentially improving upon the initial
heuristic solution by finding a better balance between strong
internal traffic flows and equitable workload distribution.

IV. CASE STUDY

To test the viability of the proposed approach, we use the
observed traffic data of Madrid Area Control Center (ACC)
upper airspace (above 37,500 feet) as a case study. The
underlying assumption is that sectors span all the flight level at
upper airspace. Data analysis from Eurocontrol [19] indicates
requested cruise levels have risen over the past 25 years; by
September 2021, 40% of flights requested to fly above FL350
compared to just 6% in September 1995. The Madrid ACC
above FL375 is structured into 50 basic volumes (Fig. 1),
representing a planar projection of three-dimensional basic
volumes at this uniform high altitude. In this study, we
analyzed one month (July 31 - August 31, 2020) of 52,325
ADS-B flight data from FlightRadar24 [20], over the Madrid
ACC.
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Figure 1. Madrid ACC above FL375, with the names and the geographical
centers of basic volumes.
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Figure 2. Hourly distribution of one month flight data (52,325 flights) over
Madrid ACC.

Fig. 2 illustrates the hourly distribution of flights during this
month. The data exhibits a distinct pattern with significantly
higher flight volumes between 07:00 and 22:00 as expected.

During this peak period, the mean number of flights per hour
is approximately 99. Notably, this peak period also exhibits
higher variance, as evidenced by significant fluctuations in
flight numbers from hour to hour, ranging from fewer than 70
to more than 140 flights. In contrast, the off-peak hours (23:00-
06:00) show a markedly lower mean of about 10 flights per
hour, with lower absolute variance, although the relative vari-
ance may be higher due to occasional small spikes in activity.
The mean aircraft count during peak hours is approximately
10 times that of off-peak hours. In this study, we utilize the
accumulated hourly flight data for one month during the peak
period (7:00-22:00) as our experimental instances.

In this paper, because the value of W is not applicable, we
use a predefined range of K as an alternative approach. The
input parameters are set as follows: α = 0.5, and K ∈ [5, 15].
For this preliminary analysis we assume SAB = ∅. All exper-
iments are conducted on an AMD Ryzen Threadripper 3990X
64-Core Processor. The implementation utilizes Gurobi Opti-
mizer [21] for solving the MIP problem, and NetworkX [22]
for graph modeling. The mixed-integer programming (MIP)
optimality gap tolerance is set to zero, and a maximum time
limit of 3,600 seconds is imposed.

V. RESULTS AND DISCUSSION

In this section, we present our results and discussion. First,
we evaluate the capability of the proposed heuristic approach
by comparing it with the MIP optimal solution, alongside
with a discussion on MIP’s computational efficiency. Secondly,
we examine the overall workload balance and air traffic flow
convexity across traffic scenarios for both MIP and heuristic.
The last part discusses the quality of generated shape of the
sectors.

A. Computational performance

Fig. 3 presents the results of optimal solutions and compu-
tational times. Notably, our improved formulations for MIP
(detailed in Sections III-B1, III-B2, III-B3) enable the solving
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Figure 3. The comparison of optimal MIP solution and heuristic performance
(left y-axis), with the computational time of MIP (right y-axis).

of all instances within reasonable computational times, rep-
resenting a significant advancement in problem tractability.
Using the MIP model as a benchmark, we evaluate our
heuristic approach’s performance for airspace sector design.
Results show that the heuristic achieves solutions within an
average 11% gap of the optimal MIP values (Fig. 3). Given that
the proposed heuristic solves problems nearly instantaneously,
it provides a high-quality approximation of the exact solution
while requiring minimal computational resources.

B. Workload balance and air traffic convexity

This section examines two key components of our objective
function: workload balance and air traffic flow convexity. We
assess workload balance by analyzing the standard deviation of
workload distribution across sectors; a lower standard devia-
tion indicates a more equitable distribution among controllers.
Air traffic flow convexity is evaluated by measuring inter-
sector flow; lower inter-sector flow values suggest improved
flow-convex conditions for all sectors. These metrics allow us
to quantitatively compare the effectiveness of different sector
designs in achieving balanced workloads and optimizing traffic
flow patterns.
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Figure 4. The comparison of sector workload standard deviation (left y-
axis, bars) and inter-sector traffic flow (right y-axis, lines) between MIP and
heuristic.

The results reveal that the heuristic approach sometimes
outperforms the MIP model in terms of workload standard
deviation (Fig. 4). The performance of both approaches varies
throughout the traffic scenarios, with the heuristic showing
lower standard deviations in several instances (8, 13− 15). In
contrast, the MIP approach consistently achieves lower inter-

sector air traffic flow compared to the heuristic approach, with
a average difference of 907.12 flows.

A potential reason influencing the counter-intuitive results
of workload balance is the weighting of components in the
objective function. With weights α set to 0.5, the flows and
workload components are theoretically balanced. However, the
bi-directional nature of flows tends to inflate their compo-
nent’s value relative to the workload component. This inherent
characteristic of the problem formulation may lead the MIP
model to the maximization of internal sector flow in its pursuit
of global optimality, potentially at the expense of workload
balance in some scenarios. The heuristic, less constrained by
this global optimization approach, may inadvertently achieve
better workload distribution in certain cases.
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Figure 5. Sensitivity analysis of α between standard deviation (left y-axis)
and inter-sector traffic flow (right y-axis), with H = 15 & MIP case study.

With H = 15 and MIP as a case study, we also perform
the sensitivity analysis of α. Fig. 5 demonstrates the trade-off
between workload balance (measured by standard deviation)
and inter-sector traffic flows as α varies from 0 to 1. When
α approaches 0, the objective function prioritizes minimizing
inter-sector flows, resulting in lower inter-sector traffic flow
values but higher workload standard deviation, indicating less
balanced workload distribution across sectors. Conversely, as
α increases toward 1, the focus shifts to workload balancing,
leading to lower standard deviation but higher inter-sector
flows. There appears to be a notable inflection point around
α = 0.1 to 0.6, where both metrics show reasonable perfor-
mance, suggesting this range might offer a good compromise
between workload balance and traffic flow optimization. This
analysis explains why the study chose α = 0.5 as the default
parameter value, as it provides a balanced consideration of
both objectives.

C. Sector shape evaluation

To provide a comprehensive analysis of sector generation, we
present two evaluation cases. First, we compare the sectors
generated by MIP and heuristic for a single traffic scenario
(H = 9), chosen for its computational intensity in the MIP
approach. Fig. 6a illustrates the MIP-generated sector design,
while Fig. 6b shows the heuristic result. Second, we examine
how sector designs change across different traffic scenarios

6



using the MIP results. Fig. 7 depicts the MIP results for H =
7, H = 17, and H = 22 respectively, allowing us to analyze
the adaptability of sector designs to varying traffic patterns.
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(a) Six sectors generated by the MIP model.
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(b) Five sectors generated by the heuristic.

Figure 6. MIP & heuristic sector design based on H = 9 traffic scenario.

It is important to note that the range of possible sectors, K,
is constrained to [5, 15] for MIP. The objective function of our
MIP inherently favors a lower number of sectors, as it aims
to maximize internal traffic flow and minimize workload. In
an non-peak case that has a very low total workload across
the airspace, this would lead to a single sector (K = 1). The
extended computational time observed for the MIP method in
this scenario can be attributed to its inability to find an optimal
solution when K = 5 for H = 9.

Despite the differences in approach and computational char-
acteristics, it’s important to note the significant similarities in
the outcomes of both MIP and heuristic. Remarkably, there is
a substantial overlap in the sector boundaries produced by the
two methods. A notable example is the sector located in the
west and the middle region of the airspace.

It is also reflected in Fig. 7 how flows are aligned with
sector borders, maximizing flights time inside the same sector
and, consequently, reducing the coordination among sectors.
Even though main traffic patterns are similar in the hours
explored, some small adjustments are done to accommodate
the little differences. The sector design adapts to specific traffic
patterns, as evidenced at H = 7. During this hour, there is a
notable increase in west-to-east traffic flow through the north
of Spain. In response, the western sector is designed with a
wider boundary. This expanded shape allows aircraft following
this traffic pattern to remain within a single sector for a
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(a) Sector design at H = 7.
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(b) Sector design at H = 17.
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(c) Sector design at H = 22.

Figure 7. MIP sector design comparison for H = 7, H = 17, H = 22 traffic
scenarios, with the corresponding flight traffic projection.

longer duration, potentially reducing the number of handoffs
and improving overall efficiency. Similarly, we evaluated the
heuristic approach under the same varying traffic conditions,
which also shows a certain level of adaptability.

VI. CONCLUDING REMARKS

This study introduces a Mixed Integer Programming (MIP)
model for airspace sector design, use the Madrid Area Control
Center as a case study. Key findings include:

1) The MIP model and the heuristic generate operationally
relevant sector designs that effectively align with major
traffic flows and adapt to temporal variations in traffic
patterns.

2) Our proposed heuristic approach achieves good solutions
with exceptional computational efficiency, requiring less
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than one second of processing time.
3) Interestingly, the heuristic sometimes suggests solutions

with improved workload balance, attributed to the nature
of bi-directional traffic flows in the problem.

These results open several promising avenues for future re-
search. First, development of a hybrid approach, utilizing
the heuristic to provide initial feasible solutions for the MIP
model, potentially enhancing overall efficiency for the model.
Second, extension of the model to address multi-layer sector
design, increasing its applicability to more complex airspace
and traffic structures. Lastly, investigation of sector design
robustness under various operational conditions, ensuring
adaptability to real-world scenarios such as adverse weather
condition.
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