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Abstract—Reducing fuel consumption is one of the issues that
airlines are tackling these days. One solution is to apply the
Single Engine Taxi (SET) operations that shut down one of
the engines during taxiing after landing. In order to predict
and evaluate the effect of this operation on fuel consumption
reduction with high accuracy, we first developed a machine
learning model to estimate the fuel flow during taxiing, using
actual flight data from departed and arrived aircraft at Narita
International Airport (RJAA). Unlike physically based models,
our fuel flow model was designed to incorporate the surface
traffic conditions as predictors. This enables evaluation of the
SET effectiveness before taxiing, relevant to airlines tactical
operations. This fuel flow prediction model suggests that the
proportion of taxiing with the SET operations and the aircraft’s
total weight are main factors that influence the value of fuel
flow during taxiing. We additionally discuss how the generated
fuel flow model can be incorporated into a Fast-Time Simulation
environment, which can assist airlines in real-time fixing of the
SET operations starting position. The results show that this
predictive model and simulation environment could assist airlines
in not only estimating the effects of fuel consumption reduction
more accurately, but also determining the starting position of the
SET operations and the benefits of this operation in advance.

Keywords—Air traffic control, Fuel consumption, Single engine
taxi, Machine learning

I. INTRODUCTION

Recently, airlines have been compelled to focus on reducing
aircraft fuel consumption from financial and environmental
perspectives, and there is a need for supporting technology or
operational techniques that reduce fuel consumption. Aviation
demand is projected to recover from the recent pandemic,
with RPKs (Revenue Passenger Kilometers) reaching 94.1%
of 2019 levels by the end of 2023 [1], and continue to increase
into 2024 [2]. In addition to that, expenses for the jet fuel ac-
count for 31% of airlines’ total expenses, and the preliminary
2024 fuel price per barrel is about 1.4 times higher than in
2019 [3]. Such projected increase in fuel costs associated with
increased air traffic demand might pose financial burden on
airlines. As for the environmental perspective, the 77th IATA
Annual General Meeting in 2021 adopted a joint resolution to
achieve net zero carbon emissions by 2050 [4]. The increase

in fuel consumption due to rising aviation demand leads to
higher carbon emissions, which contradicts this resolution.

In response to this background, one of the measures airlines
are adopting to reduce fuel consumption is the Single Engine
Taxiing (SET) operations during taxiing. The SET operation
is allowing aircraft to taxi on the ground with one engine
off and expected to reduce fuel consumption during taxiing.
The operation protocol of the SET operations varies by airline,
airport, and aircraft type. A study at London Heathrow Airport
(LHR) showed that implementing the SET operation during
taxiing after landing can reduce fuel consumption by up to
two-thirds compared to not doing so [5]. Additionally, Kumar
et al [6] suggested that the SET operation could reduce air
pollutant emissions by 27% at Orlando (MCO) and 45% at
New York LaGuardia (LGA).

To estimate the fuel consumption reduction potential of
the SET operation, it is essential to accurately estimate the
aircraft’s fuel flow or fuel consumption during taxiing because
the fuel flow model provided by ICAO, such as the “Aircraft
Engine Emission Databank (AEED)”, and the “BADA” de-
veloped by EUROCONTROL are not designed for estimating
fuel consumption during ground operations.

In multiple studies, efforts have been made to develop a
fuel flow model that offers greater accuracy than these existing
estimation model and database. Khadilkar et al [7] modeled
the fuel consumption during ground operations as a multiple
regression model based on actual flight data. This model
exhibits greater predictive accuracy for fuel consumption com-
pared to both the ideal physical models of engines and ICAO
models. Furthermore, they suggested that using actual flight
data enables the construction of a highly accurate predictive
model.

Recently, there has been an increase in research aimed at
developing more advanced fuel flow and fuel consumption
prediction models by combining actual flight data with various
machine learning techniques.

Jarry et al [8] developed a fuel flow regression model
corresponding to various flight phases using Quick Access



Recorder (QAR) data obtained from a range of aircraft.
They also conducted a comparative accuracy analysis against
existing models.

Metlek et al. [9] applied deep learning techniques to the
development of a fuel flow prediction model. They integrated
actual flight data with a novel deep learning architecture
known as the CNN-BiLSTM model, demonstrating superior
performance compared to conventional deep learning models.

Baklacioglu et al. [10] attempted to predict fuel flow using
various types of neural network models. They also utilized
actual flight data from the cruising, ascent, and descent phases
of flight, revealing which neural network model exhibited the
highest performance in each flight phase.

These studies have successfully achieved more accurate
predictions of fuel flow and fuel consumption compared to
traditional models across various flight phases of the aircraft.
However, it can be said that there has not been sufficient
research on models and prediction methods for fuel flow dur-
ing aircraft taxiing that take into account interactions between
aircraft and the characteristics of taxiing routes. Furthermore,
these previous studies utilize information obtained in real
time or after taxiing has concluded as explanatory variables
in their models, which prevents them from estimating fuel
flow and fuel consumption before the taxiing begins. In order
for airlines to predict the fuel consumption reduction effects
of SET operations in advance, it would necessary to devise
prediction methods that utilize only the information available
beforehand and reflect the characteristics of airport ground
congestion and other factors.

With this background, we first tried to combine actual flight
data from Narita International Airport with machine learning
techniques to develop a fuel flow prediction model during taxi-
ing. This approach aims to predict fuel consumption reductions
associated with activation the SET operations. Furthermore,
we will explore the possibility of constructing a simulation
environment that combines a simulator modeling the airport
surface traffic conditions with this prediction model. This
environment could potentially allow airlines to make decisions
about the SET operations activation in advance.

In Section II, based on on-board flight data, we calculate the
amount of fuel consumed by aircraft taking off and landing
at Narita International Airport (NRT) during taxiing and the
taxiing distance. In Section III, we discuss the factors that
determine the implementation of the SET operations to reduce
fuel consumption, in terms of aircraft taxiing paths. In Section
IV, we build a prediction model based on the result of Section
II and III. In Section V, we conduct experiments to predict fuel
consumption during taxiing by combining an airport-surface
modeling fast-time simulator with the prediction model con-
structed in Section IV, and discuss the potential applications
of this simulator environment. Lastly, we conclude the study.

II. DATA DESCRIPTION AND PREPROCESSING

In this Section, we first provide a brief overview of Narita
International Airport. Then, we extract and describe the por-
tions of flight data related to taxiing on the ground at Narita

International Airport from on-board flight data and calculate
necessary values for this study, such as the average fuel flow
and taxiing time.

Narita International Airport (RJAA/NRT) is the second
largest major airport in Japan after Tokyo International Airport
(RJTT/HND) in terms of the number of passengers handled
and the number of landings. In addition, the airport handles
the largest number of international and cargo aircraft in Japan,
and its amounts of fuel supply to aircraft is also the largest
in Japan in FY2022 [11]. This airport has two runways:
A runway (16R/34L) and B (16L/34R), and it changes the
runway used depending on the wind direction. As shown in
Fig. 1, for northerly wind configurations, runway 34R/L is
used for landing and takeoff. Conversely, during southerly
wind configurations, runway 16R/L is used for landing and
takeoff. There are two features in runway configurations at
Narita International Airport: one is that southerly wind opera-
tions are common, and the other is that the B runway is used
for arrivals and the A runway is used primarily for departures
because the A runway is longer than the B runway. As per
this features, in the flight data we used in this study, 65% of
the arrival aircraft landed runway 34R or 34L (northerly wind
operations), and 75% of arrivals used the B runway.

Figure 1. Runway operations depend on the wind direction

In this study, we used flight data acquired from Boeing
787-8 aircraft operated by Japan Airlines (JAL) that have
taken off or landed at Narita International Airport between
September 2019 and January 2020. There were total 727
flights comprising 356 arrivals and 371 departures.

The flight data contains information such as fuel flow rate
and thrust recorded every second during the flight. Since this
study focuses on the movement of aircraft on the airport sur-
face, the flight data during taxiing was extracted from the flight
data by using the algorithm shown in Fig. 2 and Fig. 3 below.
In this algorithm, We monitor the recorded values of fuel flow,
GPS coordinates, and Ground Speed to detect the start and
end points of taxiing, the locations of parking spots, and the
positions where the SET operations are activated. Based on
the extracted flight data, the values required for the analysis
are calculated according to the following Eq. (1), (2), (3) and
(4).
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Figure 2. Preprocessing flow for departure aircraft.

Figure 3. Preprocessing flow for arrival aircraft.

ttotal = Te − Ts (1)
tSET = Te − TSET (2)

FCtotal =

Te∑
t=Ts

(ff1 + ff2) (3)

FCSET =

Te∑
t=TSET

(ff1 + ff2) (4)

These data are described and cross-checked, as documented
below. We first compared the average fuel flow values cal-
culated from the flight data with those estimated by ICAO
and BADA used in previous studies. The ICAO model is
the predicted fuel flow of a GEnx-1B70 engine at idle thrust

from ICAO Aircraft Engine Emissions Databank [12]. The
last is the predicted value derived according to Eq. (5) in
BADA. BADA is an aircraft performance model developed by
EUROCONTROL and used in various air traffic management
studies [13].

ffmin = Cf3

(
1− Hp

Cf4

)
(5)

where ffmin represents minimum fuel flow during idle de-
scent, and Hp is the geopotential pressure altitude. Cf3 and
Cf4 are constant coefficients determined for each type of
aircraft. As shown in Fig. 4 below, if we hypothetically use
“Fuel Flow Idle” by ICAO and “minium fuel flow” by BADA
as taxing fuel flow and compare these values with the average
fuel flow from the flight data, the values from ICAO and
BADA model have errors. The ICAO value is in excess of
both takeoff and landing aircraft fuel flow, while the BADA
value is less than it of takeoff aircraft. In addition, the average
fuel flow of arrival aircraft is more varied than that of departure
aircraft.

Figure 4. Comparison of average fuel flow

This extracted flight data provides an overview of the
current SET operation at Narita Airport. First, Table. I presents
the count of arriving flights that activated the SET operations,
categorized by each arrival runway.

TABLE I. THE COUNT OF ARRIVING FLIGHTS THAT ACTIVATED THE SET
OPERATIONS

34R (B) 34L (A) 16R (A) 16L (B) total

Activate SET 210 12 9 31 262
NOT activate SET 40 6 3 45 94
Activation rate 84.0% 66.7% 75.0% 40.8% 73.6%

It is clear that there are differences in the proportion of
activating the SET operation across each runway. While over
80% of aircraft landing on Runway 34R (B runway, north
winds) activated the SET operation, more than half of the
aircraft landing on Runway 16L (B runway, south winds)
taxied to the spots without the SET operation. Focusing on
the positions where the SET operation was activated during
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taxiing, although there is some variation in the positions
depending on the runway on which they landed, there is a
skewed distribution, especially for the aircraft that landed 34R
represented by the green dots in Fig. 5.

The observed bias in the locations where one engine is
shut down after landing can be attributed to performance-
related constraints of the aircraft. The study by Kamenı́ková
et al. [14] summarized the constraints encountered when
implementing the SET operation on A320 aircraft, highlighting
engine operating time as a key factor in deciding whether to
start the SET operation. Specifically, it is noted that there are
time constraints on the duration for which the SET operation
can be continued to avoid weight imbalance between the left
and right fuel tanks, as well as the necessity for a certain
engine cooling period prior to shutting down one engine after
landing. As mentioned in previous research, the flight data
used in this study may have indicated that a minimum of 109
seconds is required from the start of taxiing to activation of
the SET operation in order to follow such constraints(Fig. 6).

Thus, such constraints associated with activating the SET
operation may contribute to the relatively low activation rate
of the SET operation for aircraft landing on Runway 16L,
as shown in the Table. I. Specifically, aircraft landing on
Runway 16L are typically flights arriving at the B runway
toward the terminal, which suggests that they may enter
the apron area relatively quickly after leaving the runway.
Consequently, pilots may determine that they cannot secure
the necessary engine cooling time required by operational
constraints, leading to the decision made before landing to
taxi to the gate without the SET operation.

III. ESTIMATED FUEL CONSUMPTION REDUCTIONS OF THE
SET OPERATIONS

In this Section, we attempt to estimate the fuel consumption
reduction of the SET operations by focusing on the taxiing
distance during the activation of this operation, based on the
flight data obtained in Section II. The fuel consumption for
Case2 (FCtotal) represent the total amount of actual fuel
consumption during taxiing. The fuel consumption for Case1
(FCest T ) and Case3 (FCest S) are estimated values, and as
shown in Eq. (6) and Eq. (7), they are calculated by linearly
extending the value of FCtotal based on the total taxiing
length (ltotal) and the taxiing length with the SET operations
activation (lSET ). Fig. 7 shows an example of calculation
result for one flight.

·Case1 Running both engines during taxiing. (FCest T )
·Case2 Stopping one engine during taxiing. (FCtotal)
·Case3 Running only one engine during taxiing. (FCest S)

FCest T = (FCtotal − FCSET ) ·
ltotal

ltotal − lSET
(6)

FCest S = FCSET ·
ltotal

lSET
(7)

For a finer look into the data, we first filtered the available
data for arrivals via Runway 36R. This is because the arrivals
exhibit greater variability in fuel flow data, and because
arrivals via 36R are the majority traffic, as discussed in Section
II. We further dissect the data according to the arrival spot.

By classifying arrival aircraft by arrival spot, it would be
possible to consider the impact of the geographical charac-
teristics of the taxiing path from the runway to the spot and
the location of the spot on fuel consumption. Table. II shows
the average fuel consumption for aircraft landing on runway
34R and arriving at the top six most frequently used spots,
assuming the above three cases of operation. Focusing on fuel
consumption reduction, the difference between the estimated
values in Case 1 and Case 2 corresponds to the estimated fuel
consumption reduction due to activation the SET operations,
which is inferred based on the fuel consumption and the taxi
length in the flight data. The aircraft arriving at Spot 84 have

TABLE II. ESTIMATED AVERAGE FUEL CONSUMPTION FOR EACH
CASES[KG]

SpotNo. Count Case1 Case2 case3 Case1-Case2

68 27 189.3 173.8 156.1 15.5
94 16 193.6 182.0 171.7 11.6
66 16 180.9 169.1 156.3 11.8
84 10 144.6 145.4 149.6 -0.83
91 9 159.9 156.5 153.2 3.32
95 9 166.3 160.6 151.7 5.66

total 87 178.0 168.0 157.5 9.92

TABLE III. MAX AND MINIMAM FUEL REDUCTION [KG]

Spot No. Max reduction Minimum reduction

68 36.0 -6.71
94 30.9 -4.74
66 21.3 -0.44
84 3.08 -6.51
91 14.6 -6.40
95 9.09 1.11

significantly lower fuel consumption reductions compared to
the average value by adopting the SET operations, and we
discuss the reasons for this result in this Section.

The estimated reduction value is calculated as following
Eq. (8) using Eq. (6).

FCest T − FCtotal =
FCtotal · lSET − FCSET · ltotal

ltotal − lSET

=
ρl − ρFC

1− ρl
· FCtotal

= k · FCtotal (8)

where ρl represents lSET

ltotal
, and ρFC represent FCSET

FCtotal
.

The k value in Eq. (8) is an indicator of the fuel consumption
reduction effect of the SET operations during taxiing. In other
words, a larger value of k can be interpreted as indicating that
the SET operations is more effective, while a negative value
of k can be interpreted as the SET operations increases fuel
consumption instead.
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Figure 5. Positions where arrival aircraft started the SET operations.
The green dots represent aircraft that performed the SET operations and landed on 34R, the yellow dots represent aircraft that landed on 16L, the blue dots
represent aircraft that landed on 34L and the red dots represent aircraft that landed on 16R.

Figure 6. Time to start the SET operation after landing

Figure 7. Example values of each cases

Therefore, the estimated reduction value is determined by
the product of a scalar k and the total fuel consumption
FCtotal according to the Eq. (8). Furthermore, by dividing
both sides of Eq. (8) by FCtotal, the fuel consumption
reduction for each spot can be evaluated regardless of the
magnitude of the value of FCtotal. In other words, it can
be argued that the value of k defined in Eq. (8) allows for
a quantitative evaluation of the fuel consumption reduction
effect of each spot. As shown in Fig. 8, the value of k in Spot
84, where the fuel savings from the SET operations are lower
as shown in Table. II and III, show a smaller distribution than
in the other spots.

It seems possible that this phenomenon may be due to the

Figure 8. The k values for each spots.
The orange lines represent median values, and green dots represent mean
values.

spot’s geographic location at the airport. Fig. 9 shows the
location on the airport of each of the spots listed in Table II
and III and the direction in which aircraft landing at 34R are
taxiing on the airport. As represented in Fig. 9, Spot84 has a
shorter taxi distance from the runway than the other spots.

Figure 9. Spot positions at Narita Int’l Airport

As shown in Fig. 5, since the locations where 34R arrivals
begin the SET operations are somewhat coherent, we can
expect that the longer the total taxi length, the larger the value
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of ρl, and consequently the larger the value of k. In fact,
as shown in Fig. 10, which illustrates the distribution of ρl
values by spot, the value of ρl at spot84 is considered to be
smaller than that of other spots. It can therefore be assumed
that we can not only quantitatively estimate the effect of the
SET operations at a spot by determining the value of ρl for
each spot based on real data, but also but also answer how
much difference in fuel consumption a hypothetical the SET
operations might make, irrespective of the arrival spot.

The results of the ρl and the k values plotted for arrivals
landing on all runways, not just runway 34R, are shown in
Fig. 11. As suggested in the previous discussion, when ρl is
less than a certain value, the value of k becomes negative.
It therefore follows there would be no fuel consumption
reduction effect. The ρl value is determined by four conditions:
landing runway, the SET operations start position, taxiing
trajectory, and arrival spot. Therefore, if the SET operations
start position and taxiing trajectory are determined prior to
landing, the value of ρ is also decided, and it is possible to
estimate how much fuel consumption will be reduced by the
SET operations.

Figure 10. The ρl values for each spots

Figure 11. Relationship between the value of ρl and k.
The red line represents a linear approximation.:y = 0.351x− 0.092
The green line represents the x coordinate where the linear approximation
and y = 0 intersect.: x = 0.263

IV. FUEL FLOW PREDICTION MODELING

According to previous studies [15] [7], using actual flight
data may enable to build a model that can estimate fuel flow
rates more accurately than existing databases. In this Section,
we build a machine learning model to predict average fuel
flow during taxiing at NRT based on the extracted flight data
in Section II.

A. Feature selection

TABLE IV. PREDICTION FEATURES

Feature name Main purpose Data type

Date Expression of congestion Categorical
Taxi start time Numerical

Departure or arrival Expression of taxi length Categorical
Runway Categorical
Spot number Categorical
ρl Numerical

SET activation Expression of engine perfor-
mance

Boolean

Gross weight Numerical
Temperature Numerical
Rainfall Numerical
Wind-speed Numerical

Table. (IV) shows the features we used in this study. “Date”
and “Taxi start time” are considered to reflect changes in
airport surface congestion over time. “Departure or Arrival”,
“Runway”, “ρl” and “Spot number” are thought to provide
information related to taxiing distance. Additionally, features
related to weather and “Gross weight”, which have been used
in previous study by Atasoy [16], and the SET operations
activation are potential factors that could influence engine
performance. The previous study by Zhang, M et al. [17] have
identified acceleration/deceleration and pauses on taxiways as
factors that increase fuel consumption during taxiing, and the
number of these events is used to estimate fuel consumption,
but we did not use such factors as prediction model features in
this study because they are known consequently only after the
taxiing. On the other hand, as mentioned in Section III, since
ρl is a factor in determining fuel consumption reduction during
taxiing, ρl is also considered to be an important feature when
predicting fuel flow. At Narita Airport, as long as the runway
and spot to be used by the aircraft are determined in advance,
the taxiing route is almost uniquely determined according to
the AIP instructions. Therefore, if the position where the SET
operations starts is determined in advance, the value of ρl can
also be obtained as an explanatory variable known in advance.

B. Learning methods

We employed 2 learning methods: CatBoost Regressor and
Statistic method. CatBoost Regressor is a machine learn-
ing model included in the CatBoost library and based on
gradient-boosting algorithm like Gradient Boosting Regressor.
CatBoost Regressor introduces a novel algorithm known as
“Ordered boosting” to mitigate the issue of target leakage
present in existing gradient boosting algorithms. Additionally,
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it enables the numerical encoding of categorical variables.
These advantages collectively confer a significantly greater
performance compared to conventional gradient boosting mod-
els [18].

In the statistical model, the average fuel flow during taxiing
of the departure or arrival aircraft is calculated from actual
data and used as the predicted value.

In each method, 80% of the total data was allocated to the
training dataset, with the remaining 20% designated as the
test dataset. CatBoost was implemented using the CatBoost
library, which operates in Python3. The three hyperparam-
eters considered to affect model accuracy were “iterations”,
“learning rate”, and “depth”. Optimal parameter selection was
performed using five-fold cross-validation.

C. Model evaluation

In this study, we used following four metrics to evaluate
the prediction accuracy of each model, similar to the study by
Kato et al [19].

RMSE =

√√√√ 1

n

n∑
i=1

(yi − ŷi)2 (9)

MAE =
1

n

n∑
i=1

∥yi − ŷi∥ (10)

Accuracy =
1

n

n∑
i=1

(
1− ∥yi − ŷi∥

yi

)
× 100 (11)

R2 = 1−
∑n

i=1 (yi − ŷi)
2∑n

i=1 (yi − ȳ)
2 (12)

where yi is an actual value, and ŷi is a predicted value, and ȳ
is the mean of actual values. RMSE and MAE signify the
magnitude of the error. In particular, RMSE is an evaluation
item that is sensitive to outliers. Accuracy is a dimensionless
quantity that represents the accuracy of the predictions, and R2

value are used to quantify the goodness of fit of the model,
with a value of 1 indicating a perfect fit and a value of 0
indicating no fit at all.

D. Prediction results

Table. (V) shows the prediction accuracy for each model.
The prediction model made by CatBoost shows high accuracy
across all evaluation metrics. In particular, the high R2 value
indicates strong adaptability to unknown data, suggesting that
this model holds potential for future use. Additionally, Ta-
ble. (VI) shows the accuracy of cumulative fuel consumption
during taxiing based on these models. Even when the fuel flow
is converted to fuel consumption using the actual taxiing time,
it can be argued that the predictions made by Catboost have
smaller errors than those made by other models.
The five features with the highest feature importance in the
Catboost model we constructed in this study are listed in the
Table. (VII). The feature importance was computed as the gain
difference that a feature contributes. The results of the fuel
flow prediction modeling in this study suggest that while date

TABLE V. COMPARISON OF PREDICTION ACCURACY[KG/SEC]

Model RMSE MAE Accuracy(%) R2

CatBoost 0.033 0.02 97.2 0.92
Statistic 0.041 0.03 95.7 0.87

TABLE VI. CONVERTED TO FUEL CONSUMPTION[KG]

Model RMSE MAE

CatBoost 29.5 18.9
Statistic 39.5 27.6

TABLE VII. FEATURE IMPORTANCE IN CATBOOST[%]

ρl SET implemen-
tation

Gross Weight Runway Temperature

43.1 21.1 10.5 10.3 5.7

and time information, which was assumed to reflect airport
congestion, was not considered a highly important feature. On
the other hand, information on whether the SET operations
had been activated (if so, its starting position) and the gross
weight of the aircraft were highly important.

V. PRELIMINARY SIMULATION WORK

In this Section, we will discuss the construction of a fast-
time simulation that recreate the structural layout of taxiways
and parking spots. We will also discuss prediction capability of
fuel consumption during taxiing by combining this simulation
environment with the fuel flow prediction model constructed
in Section IV. Additionally, we will compare the predicted fuel
consumption from this simulation with actual fuel consump-
tion to evaluate the reliability of the simulation environment
and discuss potential future applications.

A. Simulation environment

The taxiing trajectories on the surface of RJAA are mod-
eled in the AirTOp simulator [20]. We modeled the airport
surface structures such as taxiways, runways and parking
spots according to the information supplied by Japan Aero-
nautical Information Service Center (AIS Japan) published
by Ministry of Land, Infrastructure, Transport and Tourism
(MLIT). [21](Fig. 12) This simulator automatically calculates
the taxiing paths, taxiing time, taxiing length, and fuel con-
sumption by inputting the departure and arrival spots, the
runways used, and the departure and arrival times for each
flight. Additionally, since the simulation includes calculations
to avoid collisions between aircraft, it is considered capable
of simulating ground air traffic that closely resembles real-
world conditions. In this simulator, aircraft maneuvering per-
formance is calculated according to the BADA model, but
the value of fuel flow can be set arbitrarily for each flight.
Therefore, in this simulation environment, we set the fuel flow
predicted in Section IV for each flight and attempted to achieve
accurate fuel consumption predictions.

7



Figure 12. The AirTop model of RJAA

B. Simulation scenarios

In the simulation experiment, we focused on arriving aircraft
from the flight data used in this study. In this simulator, we
prepared simulation scenarios for arrival aircraft by referring
to actual flight data. For arrival aircraft, the time of entry into
the terminal airspace, the STAR used, the landing runway, and
the arrival spot follow the actual data. Furthermore, for each of
the flights, we assigned the aircraft performance data with the
average fuel flow [kg/min] predicted in Section IV to each of
the flights and calculated the fuel consumption during taxiing.
When focusing on the amount of fuel consumption during
taxiing, the choice of taxiing route between the runway and
the spot is an important factor. In this simulator, each taxiway
has its own transit cost index, and each aircraft chooses the
trajectory that minimizes the sum of its costs for taxiing in
the simulation. Therefore, when modeling the airport, we set
those cost values so that the simulated taxiing trajectories are
close to the actual ones.

C. Simulation capability

Fig. 13 and Fig. 14 show a comparison of fuel consumption
during taxiing obtained from the simulation results and fuel
consumption obtained from actual flight data.

As shown in these figures, simulated fuel consumption was
close to that of actual data, as 92.1% of all flights achieved an
accuracy within 25% of the prediction error. In some flights,
the prediction values were either under-estimations or over-
estimations compared to the actual values. One possible reason
for the prediction error observed in some flights is that the
actual flight took an irregular taxiing route. For example,
Fig. 15, which shows the taxiing routes of the flight with the
largest prediction error, indicates that the actual taxiing route
involved passing through longer, more circuitous taxiways.

In this simulation, non-nominal taxiing routes caused by
aircraft routing conflicts was not yet fully replicated. The
accuracy of fuel consumption prediction is limited if the
aircraft is routed in an irregular manner during the taxiing. On
the other hand, for aircraft following standard taxiing routes,

Figure 13. The comparison of Actual and Simulated fuel consumption

Figure 14. Simulation error

this simulation was considered to accurately represent real
ground air traffic.

Figure 15. Actual taxiing route (Orange) and simulated taxiing route (Blue)

As a future application of this simulation environment, it
might be possible to estimate the fuel consumption reduction
of activating the SET operations or the value of ρl with high
accuracy before landing. This could assist airlines in deter-
mining the optimal activating position for the SET operations
or estimating the economic benefits of such operations before
landing.
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VI. CONCLUSION

In this study, we estimated fuel consumption during taxiing
by combining machine learning techniques with a fast-time
simulation environment. We applied a machine learning model
to predict average fuel flow during taxiing before takeoff and
landing at Narita International Airport using only informa-
tion available before starting taxiing. The fuel consumption
reduction effect of the SET operations, in which one engine
is shut down while taxiing, was quantitatively evaluated using
the actual flight data. It was confirmed that the percentage of
the distance in which the SET operations activation among the
total taxiing distance is a feature that has a significant impact
on fuel flow prediction model. Furthermore, this study also
confirmed that the estimated fuel consumption obtained from
the simulation results is close to the actual value when ground
air traffic at the airport was simulated.

We suggest that this prediction model and simulation en-
vironment enable an efficient prediction of fuel consumption
during arrival taxiing in advance with its relatively fast calcu-
lation time while maintaining accuracy.

It is also important to acknowledge certain limitations of this
study include the following. The fuel flow prediction model
which we developed in this study requires prior calculation of
ρl. This means that not only pilots or operation managers must
determine where they start the SET operation in advance, but
also that they must follow the AIP-recommended taxiing route
to the greatest extent possible. In addition to that, not all the
factors affecting fuel consumption in reality might not have
been fully considered. For example, the slope of the airport’s
ground surface was not considered in this study.

From the perspective of improving the simulation environ-
ment, we can achieve more realistic simulations of actual
operations, such as irregular taxiing routes and intermittent
stops on the taxiway, by adding departing aircraft and flights
from other airlines to the simulation scenarios.

As for ground operations specific to Narita International
Airport, the results at this point suggest that activating the
SET operation for arrival aircraft at the most frequently used
Spot68, as shown in SectionIII, is the most effective way
to reduce fuel consumption. Therefore, we can recommend
the active implementation of the SET operation for arriving
aircraft utilizing this spot. Conversely, at Spot84, the activation
of the SET operation is not expected to yield significant fuel
savings.

The ultimate goal of this research would be devising a
framework that assists airlines in deciding how to implement
the SET operation. This framework should receives input from
pilots or operation managers regarding the aircraft’s states, the
takeoff or landing runways and spots, and the planned location
to activate the SET operation. It then outputs the estimated fuel
consumption reduction and more suitable starting locations
for the SET operation. This system would assist airlines in
estimating specific fuel consumption reduction effects and in
implementing fuel-saving measures in the operations.
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