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Abstract—In uncertain environments, Demand and Capacity
Balancing (DCB) operations may benefit from shifting focus
towards the tactical phase. Currently, air traffic control (ATC)
and air traffic flow management (ATFM) operate on different
time scales—ATC is tactical, while ATFM is pre-tactical and
strategic. Despite these differences, both aim to improve safety
and efficiency. Integrating DCB into the tactical phase allows
for more responsive management of dynamic conditions. The
HYPERSOLVER project, part of the SESAR ER program, is
focused on developing and implementing integrated ATFM and
ATC methods to address these evolving challenges effectively. In
this context, this paper proposes a spatio-temporal graph-based
DCB approach to rapidly solve DCB problems in large-scale
high-density scenarios considering uncertainty (e.g., flight speed).
Simulation experiments based on real European airspace scenar-
ios demonstrate the proposed method can quickly and efficiently
solve large-scale DCB problems in high-density scenarios (solving
a DCB instance for 2,000 flights in 9.68 seconds, while the rate of
changed flights, the average delay time for delayed flights, and
the rate of additional flight time for rerouted flights are only
8.46%, 12.2 minutes, and 9.34%, respectively).

Keywords—demand and capacity balancing, air traffic flow
management, ground delay, rerouting, uncertainty, weighted
directed graph

I. INTRODUCTION

One of the main challenges currently facing the develop-
ment of global civil aviation is the widening gap between
the increasing air traffic demand and the saturated airspace
capacity, known as the demand-capacity imbalance. When
demand surpasses capacity in a given area of airspace (e.g.,
a sector) during a time window, it increases the workload on
controllers, causes airspace congestion, and results in flight
delays [1]. This area, during the time window, is referred
to as a hotspot [2]. Consequently, Demand and Capacity
Balancing (DCB) has become crucial for the aviation industry.
It is among the seven key operational concepts in Air Traffic
Management (ATM) [3]. As highlighted by Single European
Sky ATM Research (SESAR), DCB is expected to play a
significant role in the future ATM system as part of network
management, contributing to the reduction of flight delays [4].

DCB is to minimise the effects of ATM system constraints,
which will be capable of evaluating system-wide traffic flows
and capacities to implement necessary actions in a timely
manner [5]. Although adjusting capacity (typically through
dynamic sectorisation) is a feasible approach to DCB, ad-
justing demands (typically through trajectory modification) is

a more commonly studied approach. In strategies, trajectory
modification is normally achieved by methods such as ground
delay (e.g., ground delay programs in U.S. and ATFM reg-
ulations in Europe) [6], rerouting [7], and/or level capping.
Ground delay postpones the departure time of flights, along
with the controlled times of arrival (CTAs) at all waypoints
correspondingly, to effectively avoid hotspots. Rerouting in-
volves altering a flight’s path, allowing it to bypass hotspots
by flying through less congested sectors. Both methods aim to
balance demand and capacity by changing the spatio-temporal
distribution of flights within the airspace. Compared to rerout-
ing, Ground delay only adjusts the trajectory in the time
dimension, resulting in lower computation complexity and
easier implementation, but generally offers less optimisation.
In algorithms, both exact solution methods and approximate
solution methods are commonly considered. Exact solution
algorithms [8] have the advantage of yielding a globally
optimal solution. However, for large-scale problems, these
methods may not guarantee timely completion. As a result,
exact solution methods are hardly ever applied in practice.
Approximate solution algorithms [9], on the other hand, often
use heuristic frameworks to find locally optimal solutions
within a reasonable time frame. The computation time for
these methods is generally less sensitive to the problem scale
compared to exact solution methods. Nevertheless, locally
optimal solutions are often less desirable due to the potentially
significant gap between local and global optimality.

Considering computational speed and ease of use, approx-
imate algorithms based on ground delay are widely used in
current practice. An example is the Computer-Assisted Slot
Allocation (CASA) system employed in Europe [10]. CASA
assigns delays on a First-Come, First-Served (FCFS) basis to
maintain fairness by treating all flights equally, and it has
been highly effective in delivering safe operations for over
three decades. However, this method does not treat delay
assignments as a formal optimisation problem. Reinforcement
Learning (RL) is being studied for application to DCB prob-
lems to achieve a better balance between computational speed
and optimisation. Rerouting and considering uncertainty are
important ways to improve the optimisation and resilience
of DCB methods, respectively, while both CASA and RL
methods currently face challenges in these two aspects. There-
fore, this study aims to develop a DCB method that balances



computational speed and optimisation. This method needs to
integrate both ground delay and rerouting strategies while
being compatible with uncertainties in flight.

To achieve this vision, this paper proposes a spatio-temporal
graph-based DCB method that considers flight uncertainty. The
contributions of this work are summarised as follows:

1) The DCB problem is transformed into a hotspot-free
trajectory sequential planning problem based on FCFS
to reduce the complexity of the problem. The hotspot-
free trajectory planning problem is further converted into
a path search problem based on a spatio-temporal graph,
and the optimal solution is efficiently obtained using a
path search with an admissible heuristic function.

2) A demand count model is designed to be compatible
with flight speed uncertainty, aiming to identify hotspots
in a dynamic environment. A complex hotspot identifi-
cation model based on joint probabilities is derived into
an iterative expression to significantly improve the speed
of hotspot identification.

3) This method integrates rerouting and ground delay,
where an adaptive delay strategy ensures feasible so-
lutions.

The rest of the paper is organised as follows: section II
describes the DCB problem under study, section III provides a
detailed introduction to the proposed DCB method, section IV
presents the experimental methods and analyses the results and
section V summarises the main findings of the research.

II. PROBLEM DESCRIPTION

This study was performed as a part of a SESAR exploratory
research project, HYPERSOLVER: Artificial Intelligence con-
troller able to manage Air traffic Control (ATC) and Air
Traffic Flow Management (ATFM) within a single framework.
In the HYPERSOLVER framework (as shown in Figure 1),
ATFM and ATC are designed as a holistic closed-loop sys-
tem, serving as inputs and feedback to each other. ATFM
is used for density management, and due to the need to
dynamically respond to changes in the tactical phase of ATC,
its implementation time is set to one hour before departure.
ATC is used for bunching, proximity, and conflict management
(using a hierarchical strategy with decreasing granularity).
Their implementation times are set to 20, 40, and 60 minutes
before the Closest Point of Approach (CPA), respectively.
Among them, bunching management is a tactical density
management method that identifies and eliminates hotspots
based on grid airspace (e.g., 50 × 50 square nautical miles);
proximity management is used to eliminate potential conflicts
in advance; conflict management is implemented to ensure
safe separation when a conflict is imminent. AI component
includes a DCB solver and an ATC solver, which are used
for human-AI teaming with the Flow Manager (FM) and Air
Traffic Controller (ATCer) through Human-Machine Interfaces
(HMI) to support the holistic ATFM-ATC system operation.
This research focuses on developing the DCB solver to meet
HYPERSOLVER’s design requirements:

1) Dynamic Environment: The solver needs to consider
uncertainties to some extent in order to cope with
changes in the tactical operating environment.

2) High-Speed Computation: It should be capable of per-
forming rapid calculations close to the time of departure
to enable continuous and fast loop iterations with ATC.

3) Fairness and Transparency: The algorithmic strategies
should be fair and transparent to gain acceptance from
the community.

4) Human-AI teaming: It should allow for a high degree
of customisation in optimisation objectives, constraints,
and DCB strategy selection (e.g., ground delay and
rerouting), to ensure compatibility with the operational
performance preferences of FMs or airspace users.

Figure 1. HYPERSOLVER framework: holistic ATFM-ATC system based on
human-AI teaming. This paper focuses on the DCB solver.

In this study, the DCB problem is described as adjusting
the spatio-temporal distribution of traffic through rerouting and
ground delay to avoid hotspots in the airspace. A hotspot is
defined as a situation where the demand within an air traffic
service unit (ATSU) exceeds its capacity within a specific time
window (as illustrated in Figure 2). To clarify further, the DCB
problems are explained as follows:

• Assumptions
1) The flight’s scheduled speed is constant during the

en-route phase, while the actual speed is uncertain
(e.g., due to uncertain winds).

2) The change in aircraft motion state is instantaneous.
3) Only the 2D planar structure of ATSU is considered.
4) Changes in flight altitude are not considered.
5) Trajectory adjustment includes ground delay and

rerouting.
6) Demand counting uses the occupancy count [11],

that is, a flight is counted as a demand for an ATSU
within a specific time window as long as it is present
in that ATSU during the time window.

7) Each flight has a preset maximum flight distance in
the airspace considering fuel consumption.

8) The FCFS principle is applied, which fosters fair-
ness, as CASA does nowadays in an excellent way.

9) The planned trajectory has the shortest flight dis-
tance.
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• Constraints
1) DCB constraint: In any time window of any ATSU,

demand must be always less than or equal to capac-
ity.

2) Flight distance constraint: The flight distance within
the airspace must not exceed a preset value to avoid
excessive fuel consumption.

• Objectives
1) Minimise delay time.
2) Minimise additional flight distance.

Figure 2. Demand and capacity balancing problem. Hotspots are identified
based on time windows. Since this study uses occupancy count, some flights
that are about to enter the ATSU (in green) within the snapshot will also be
included in the demand. E.g., since the ATSU’s demand and capacity are 53
and 41, respectively, it is identified as a hotspot during time window k.

III. METHODOLOGY

The proposed method transforms the DCB problem into a
hotspot-free trajectory sequential planning problem. Figure 3
illustrates its technical scheme, which consists of five compo-
nents: (1) the demand count model considering flight speed
uncertainty (subsection III-A) is used to handle uncertainty in
demand counting, supporting (2) the DCB fast discriminant
based on probability (subsection III-B) for rapid hotspot
identification. For hotspot-free trajectory planning for each
flight, (3) an adaptive weighted directed spatio-temporal
graph generation (subsection III-C) is employed, followed
by (4) an optimal path search with an admissible heuristic
function (subsection III-D) for optimisation. Finally, (5) an
FCFS-based adaptive postponement iteration algorithm
(subsection III-E) is used to ensure trajectory generation and
sequential planning.

Figure 3. Technical scheme of the proposed DCB method.

A. Demand count model considering flight speed uncertainty

As shown in Figure 4, the planned trajectory of the flight
passes through several ATSUs. For ease of calculation, flight
speed uncertainty is represented by the uncertainty in the time
at which the flight enters the ATSU. Therefore, the probability
distribution of the time at which flight i enters ATSU j can
be represented by a probability density function f(t):

f(t) ∼ U(tEntry
i,j , σ2(tBefore

i,j )) (1)

where tEntry
i,j represents the planned times at which flight i

enters ATSU j. U can represent an arbitrary distribution with
a mean of tEntry

i,j and a variance of σ2(tBefore
i,j ). tBefore

i,j represents
the flight i’s flight time before entering ATSU j and σ2(tBefore

i,j )
is a function of it. σ2(tBefore

i,j ) increases with tBefore
i,j , since the

uncertainty of the time to the waypoint usually increases with
the duration of the flight.

Figure 4. Demand count diagram. The three curves in the upper right show the
probability distributions of a flight’s arrival times at three waypoints (the entry
points of the corresponding ATSU). As flight time progresses, uncertainty
(variance) increases, leading to a flattening trend in the curves. The planned
entry time for the ATSU is used as the distribution’s mean. The lower part
of the figure illustrates the flight’s occupancy of the ATSU at three possible
entry times for example.

The time window set is represented by k ∈ K. Time
window k is expressed as [tk, tk+1), with time window
duration ∆T . Therefore, tk = k∆T . Since this study uses
the occupancy count method for demand calculation, the
occupation of ATSUs varies depending on the time at which
a flight enters the ATSU. This is specifically defined as the
demand within the corresponding time window for the ATSU.

It can be derived that when flight i enters the ATSU j within
the time range

[
k∆T − tIn

i,j , (k + 1)∆T
)
, flight i occupies

time window k of ATSU j. tIn
i,j is flight i’s flight time in

ATSU j and it can be expressed as tIn
i,j =

sIn
i,j

vi
, where vi is

flight i’s planned flight speed. Consequently, the probability
pi,j,k that flight i occupies time window k of ATSU j can be
expressed as:

pi,j,k =

∫ (k+1)∆T

k∆T−tIn
i,j

f(t)dt (2)
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B. DCB fast discriminant based on probability

When calculating occupancy probability, the occupancy of
time window k of ATSU j by different flights are assumed as
independent events. Therefore, the probability pNH

j,k that time
window k of ATSU j is not a hotspot is expressed as:

pNH
j,k =

nC
j,k∑

q=0

pqj,k (3)

where nC
j,k is the capacity of ATSU j during time window k.

pqj,k is the probability that the demand of ATSU j during time
window k is q, which can be expressed as:

pqj,k =

(
q

nMD
j,k

) nMD
j,k∏

i=1

(pi,j,k)
λi(1− pi,j,k)

1−λi (4)

where
( q
nMD
j,k

)
represents a combinatorial number, indicating the

selection of q events occurring from a total of nMD
j,k events,

with the remaining events not occurring. nMD
j,k represents the

maximum number of flights that may occupy time window
k of ATSU j. λi is an event occurrence indicator, taking the
value 1 when the corresponding event occurs and 0 otherwise.
When pNH

j,k = 1 when nMD
j,k > nC

j,k, the following equation can
be derived by substituting Equation 4 into Equation 3:

pNH
j,k =

nC
j,k∑

q=0

( q

nMD
j,k

) nMD
j,k∏

i=1

(pi,j,k)
λi(1− pi,j,k)

1−λi

 (5)

It should be noted that pNH
j,k = 1 when nMD

j,k ≤ nC
j,k.

To more flexibly and efficiently utilise airspace resources,
an overload tolerance ζ ∈ [0, 1) for a time window of an
ATSU is defined. Specifically, it ensures the probability that
the demand within the ATSU is greater than its capacity during
the time window is less than or equal to ζ. Therefore, the DCB
constraint can be expressed as:

1− pNH
j,k ≤ ζ (6)

Assuming the probability of a newly added flight (e.g., flight
i) occupying ATSU j during time window k is pi,j,k, according
to the current values of pqj,k and pq−1

j,k , the iteration can be
carried out as follows:

pqj,k ← pqj,k(1− pi,j,k) + pq−1
j,k pi,j,k, q = 0, 1, ..., nMD

j,k (7)

where when no flight that may occupy ATSU j during time
window k, p1j,k = 0 and p0j,k = 1. To maintain iterative
consistency, we set p−1

j,k = 0, which is consistent with the
physical interpretation. Based on Equation 7, it can be derived:

Q∑
q=0

pqj,k ←
Q∑

q=0

[
pqj,k(1− pi,j,k) + pq−1

j,k pi,j,k

]
(8)

Considering p−1
j,k = 0, Equation 8 can be written as:

Q∑
q=0

pqj,k ←
Q∑

q=0

pqj,k − pQj,kpi,j,k (9)

It should be noted that when nMD
j,k < Q, pQj,k = 0.

By instantiating Equation 9, we obtain the iterative expres-
sion for the probability pNH

j,k:

pNH
j,k ← pNH

j,k − p
nMD
j,k

j,k pi,j,k (10)

Additionally, according to Equation 6, it can be obtained that,
when nMD

j,k ≥ nC
j,k (i.e., p

nC
j,k

j,k ̸= 0),

pi,j,k ≤
pNH
j,k + ζ − 1

p
nC
j,k

j,k

(11)

Therefore, we use pRM
j,k to represent the remaining maximum

occupancy probability of ATSU j during time window k by the
currently added flight, subject to satisfying the DCB constraint.
It can be expressed as:

pRM
j,k =


pNH
j,k+ζ−1

p
nC
j,k

j,k

nMD
j,k ≥ nC

j,k

1 otherwise
(12)

Ultimately, it can be conveniently determined whether the
newly added flight i satisfies the DCB constraint by the
following discriminative condition:

pi,j,k ≤ pRM
j,k (13)

C. Adaptive weighted directed spatio-temporal graph genera-
tion

The purpose of adaptive weighted directed spatio-temporal
graph generation is to enable the use of graph-based path
search algorithms to obtain the optimal trajectory. Constructing
a graph based on the spatio-temporal information of vehicle
movements is a common method in road traffic management
[12]. In this study, the primary method involves first establish-
ing a planar waypoint-based graph within the airspace where
DCB is to be implemented. Subsequently, a spatio-temporal
graph is generated based on flight and DCB requirements to
represent the feasible solution space, where any path from the
origin to the destination on this graph represents a feasible
solution. ‘Adaptive’ means that a unique spatio-temporal graph
is generated for each flight.

In this study, waypoints on the ATSU boundaries (i.e., entry
and exit points) and their connections within the ATSU are
used as vertices and edges, respectively, to generate the planar
graph GP for the DCB scenario (Figure 5 as an example).
Then, the specific steps for a flight’s adaptive weighted di-
rected spatio-temporal graph generation are as follows:

1) Start from the vertex where flight i enters the airspace
(origin vertex) as the current vertex.

2) Connect the current vertex with its neighbours as di-
rected edges if the edge meets the constraints (see
below); otherwise, the neighbour is marked as closed.

3) Sequentially take each open tree tip as the current vertex
and repeat Step 2 until all tree tips are closed.

The edge generation satisfies the following constraints:
1) DCB constraint: The flight must not cause the overload

probability of the ATSU to exceed the tolerance.
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Figure 5. Airspace with a generated planar graph, also used as the scenario
of this study’s simulation experiments, including 9 ATSUs.

2) Flight distance constraint: The potential minimum
flight distance of the flight must not exceed the preset
maximum flight distance within the airspace of interest.

3) ATSU continuity constraint: Two connected edges
must not lie within the same ATSU, in compliance with
ATM operating rules (flights must be handed over to the
next ATSU at waypoints on the ATSU boundary).

4) Approaching constraint: To improve the efficiency of
graph generation, the tail (target) of a directed edge is
always closer (straight-line distance) to the destination
than its head (source).

For the sake of clarity, we use v⊕ to represent vertex ⊕ and
v⊕ = (x⊕

i,j , y
⊕
i,j , t

⊕
i,j), the former two parameters are position

coordination and the third one is the corresponding CTA. ⊕
can be S, T, O and D representing directed edge e’s source
and target, flight i’s origin and destination of the airspace of
interest, respectively. S, T, O and D are for Source, Target,
Origin and Destination, respectively. Therefore, tT

i,j = tS
i,j +

sIn
i,j

vi
and sIn

i,j =
√
(xT

i,j − xS
i,j)

2 + (yT
i,j − yS

i,j)
2.

Then, the DCB constraint can be represented as:

pi,j,k ≤ pRM
j,k , k ∈ KS,T

i,j (14)

where KS,T
i,j represents the set of time windows during

which flight i occupies ATSU j, with (xS
i,j , y

S
i,j , t

S
i,j) and

(xT
i,j , y

T
i,j , t

T
i,j) as the source and target (including CTAs).

The flight distance constraint can be expressed as:

tT
i,j +

dG
P

min(v
T, vD)

vi
≤ tO

i +∆t(vi, fi) (15)

where dG
P

min(v
T, vD) represents the minimum flight distance

from vT to vD in planar graph GP and ∆t(vi, fi) represents
the maximum flight time for flight i, given a maximum fuel
amount of fi planned for this airspace and a speed of vi, where
factors affecting fuel consumption such as flight altitude,
aircraft weight are omitted for the sake of simplicity.

The ATSU continuity constraint can be expressed as:

sub(eS,T) ⊆
{
eS’,T’ | S’ = T,T’ /∈ jeS,T

}
(16)

where eS,T represents the edge with vS and vT respectively
as the source and target, sub(eS,T) represents the set of the
subsequent edges after eS,T, and jeS,T represents the ATSU
where eS,T is located.

The Approaching constraint can be expressed as:

dmin(v
T, vD) < dmin(v

S, vD) (17)

where dmin(v, v
′) represent the straight-line distance between

two vertices.

Figure 6. Generated spatio-temporal graph of a flight, where the label of
vertexes is in the form of [point ID, time].

Figure 6 shows a flight’s generated spatio-temporal graph
for an example. If the generated directed graph contains flight
i’s destination, it indicates a feasible solution. In this case,
the flight distance represented by the edges is used for edge
weighting. Since there may be several destination vertices
(representing different times) included in the graph, a virtual
destination is created, which connects with each destination
vertices with a weight of 0 so that general path search
algorithms can be used on the graph (refer to subsection III-D).
If there is no destination vertex in the generated directed graph,
an adaptive postponement strategy is employed to expand the
search space (refer to subsection III-E).

This graph generation method is highly customisable to
accommodate different performance preferences. For example,
some pRM

j,k can be set to 0 to prevent flights from entering
ATSUs that FMs and/or ATCers do not want them to enter.
Additionally, ∆t(vi, fi) can be adjusted to fit the additional
flight costs acceptable to airlines. Refer to subsection IV-B for
the customisation of ground delay and rerouting strategies.

D. Optimal path search with admissible heuristic function

After obtaining the directed weighted graph (represented by
Gi for flight i), we can theoretically apply any graph-based
path search algorithm, including the uninformed and informed,
such as Dijkstra [13] and A-star [14] algorithms, respectively.
For informed algorithms like A-star and its variants, to ensure
an optimal solution, an admissible heuristic function must be
set. A heuristic function is said to be admissible if it never
overestimates the cost of reaching the goal, i.e. the cost it
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estimates to achieve the goal is not higher than the lowest
possible cost from the current point in the path [15]. With
a standard A-star algorithm as an example, the evaluation
function consists of actual cost and estimated cost:

fE
Gi
(v) = fA

Gi
(v) + fH

Gi
(v) (18)

where fE
Gi
(v), fA

Gi
(v) and fH

Gi
(v) are the evaluation function

of vertex v, actual cost from the origin to vertex v, and
estimated cost from vertex v to the destination in weighted
directed graph Gi, respectively. Since directed graphs are
weighted by distance, fA

Gi
(v) is expressed by:

fA
Gi
(v) = dGi

min(v
O, v) (19)

where dGi

min(v
O, v) represents the minimum flight distance

from vO to v in graph Gi. fH
Gi
(v) can be expressed by:

fH
Gi
(v) = dG

P

min(v, v
D) (20)

where dG
P

min(v, v
D) represents the minimum flight distance

from v to vD in the planar graph GP.

E. FCFS-based sequential planning algorithm with adaptive
postponement

For greater fairness and transparency for community appli-
cation, the proposed DCB method employs an FCFS strategy.
To ensure that the proposed method always yields feasible
solutions, this study adopts an adaptive postponement itera-
tion approach [16]. If a directed weighted graph containing
the flight destination cannot be generated under the current
planned departure time, the planned departure time is post-
poned by a time ∆T , and the attempt to generate a compliant
directed weighted graph is retried. This process is repeated
until a directed weighted graph containing the flight destina-
tion is obtained. The value of ∆T can be set based on actual
requirements to balance optimality and computational speed.
Algorithm 1 presents the pseudocode for the proposed DCB
method with the FCFS-based sequential planning mechanism.

Algorithm 1 FCFS-based sequential planning algorithm with
adaptive postponement

Input: Planned trajectories of flights i ∈ I , airspace structure
(planar graph GP), current remaining maximum occu-
pancy probabilities pRM

j,k , j ∈ J, k ∈ K
1: for i ∈ I in chronological order entering airspace do
2: if flight i’s planned trajectory is hotspot-free then
3: Mark flight i’s planned trajectory as hotspot-free
4: else
5: while flight i’ has no hotspot-free trajectory do
6: if A weighted directed graph including flight i’s

destination can be generated then
7: Obtain flight i’s hotspot-free trajectory by the

optimal path search
8: else
9: Postpone flight i’s departure time by ∆T

10: end if
11: end while

12: end if
13: Update remaining max. occupancy probabilities pRM

j,k

14: end for
Output: Hotspot-free trajectories of flights i ∈ I

IV. SIMULATION EXPERIMENTS

The experimental environment for this study is Python 3.9,
running on macOS with an Apple M1 Pro chip and 16GB of
memory.

A. Scenario and parameter setup

The simulation experiments in this study use the validation
scenarios from the HYPERSOLVER project, as shown in
Figure 5. The nominal capacity of each ATSU is set according
to its area. It should be noted that, since this study does not
consider changes in flight levels, the capacity set is for a single
flight level only. The time window duration is 20 minutes.
To conduct pressure testing, 6 traffic density scenarios were
established, with 1,500, 1,600, 1,700, 1,800, 1,900, and 2,000
flights per 12 hours, respectively. Each traffic density scenario
is randomly generated for 100 instances, resulting in a total of
600 instances. Figure 7 shows examples of the traffic density
for each scenario. Overload tolerance ζ is set as 5%.

Figure 7. Load rates of experimental scenarios. This figure illustrates one of
the 100 random scenarios for each traffic density as an example.

The random generation method for trajectories is as follows:
1) first, it randomly selects two Origin-Destination (OD)

points (waypoints on the boundary of the airspace of
interest) and generates the shortest path between them,

2) then, randomly generates the departure time (0-12 hours)
and flight speed (400-500 knots), and

3) finally, calculates the time at each waypoint.
The model calculating approaching time uncertainty at each
waypoint is referred to relevant studies [17].

B. Comparative model and performance indicator

To verify the key features of the proposed method (rerouting
strategy, ground delay strategy, and consideration of uncer-
tainty), four comparative models were designed (GRU, GU,
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RU, and GR), while a conventional FCFS heuristic and an
Integer Linear Programming (ILP) [11] are also used for
reference. The features of these models are shown in Table I.
Model GRU is this study’s proposed method.

TABLE I. FEATURES OF COMPARATIVE MODELS

Model Feature
Reroute Ground delay Uncertainty

GRU ✓ ✓ ✓
GU - ✓ ✓
RU ✓ - ✓
GR ✓ ✓ -
FCFS - ✓ -
ILP - ✓ -

Table II shows the key performance metrics tested.

TABLE II. PERFORMANCE METRICS

Indicator Formula Indicator Formula
Number of unsolved flights nUS Rate of unsolved flights nUS/n
Number of changed flights nC Rate of changed flights nC/(n− nUS)

Total delay time tD
Average delay time
for delayed flights tD/nC

Total additional flight time tAF
R

Total flight time for
rerouted flights (original) tOTF

R

Number of flights
in the scenarios n

Rate of additional flight time
for rerouted flight tAF

R /tOTF
R

Total computation time tC Average computation time tC/n

C. Performance test

1) Effectiveness: Figure 8 shows the solvability, where the
colour area expresses the standard errors (the same way is
used in the following similar figures). Theoretically, as long
as the ground delay can be used, the proposed method can
always solve the DCB problem. For model RU, even in the
highest traffic density scenarios, the rate of unsolved flights is
only 2.49%, which indicates, to some extent, that the proposed
rerouting method is significant in solving the DCB problem.

Figure 8. The proportion of cases where the solver fails to generate a hotspot-
free trajectory.

2) Efficiency: Figure 9 and Figure 10 show the strategy
application of changed flights and additional cost, respectively.
Model RU, which cannot fully solve the DCB problem, is not
considered in the efficiency metrics. Among the other models,
the proposed model (GRU) can solve the DCB problem by
changing a smaller proportion of flights resulting in less
delay time and additional flight time. This demonstrates that
combining ground delay and rerouting strategies is more
efficient than using either strategy alone. In the highest traffic
density scenario, the rate of changed flights, the average delay
time for delayed flights, and the rate of additional flight
time for rerouted flights are only 8.46%, 12.2 minutes, and
9.34%, respectively. Additionally, in model GR, a greater

proportion of flights has to use both ground delay and rerouting
strategies, and both the delay time and additional flight time
are longer, indicating that considering uncertainty can improve
the efficiency of solving the DCB problem.

(a) Rate of changed flights (b) Strategy application (accumulation)

(c) GRU strategy application (proportion) (d) GR strategy application (proportion)

Figure 9. Strategy application of changed flights.

(a) Average delay time (b) Total delay time

(c) Rate of additional flight time (d) Total additional flight time

Figure 10. Hotspot-free trajectories’ additional cost compared to planned ones.

3) Timeliness: Figure 11 shows the total and average com-
putation time. Since the proposed method (GRU) contains all
the features, its computation time is slightly higher than that
of other methods. Nevertheless, the total computation time
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of GRU is only 9.68 seconds in the highest traffic density
scenario, which meets the performance needs of continuous
and fast loop iterations. Moreover, it still has the potential to
meet the demand for fast computation while further integrat-
ing additional functionalities, such as speed adjustments and
rerouting within ATSU.

(a) Total computation time (b) Average computation time

Figure 11. Computation time including data input, modelling and solving.

D. Baseline comparison
The proposed method is compared with the customised

FCFS heuristic and an ILP, as a reference. It should be noted
that this comparison is not entirely fair, as both the FCFS
heuristic and ILP methods can only use the ground delay
strategy (the ILP method that considers rerouting cannot solve
the large-scale DCB problem in this study within a limited
time). Nevertheless, we provide the comparison results for the
reader’s reference. Table III shows the results of a 1500-flight
scenario. The proposed method is significantly more efficient
than the other two methods, demonstrating the importance of
the rerouting strategy in DCB.

TABLE III. COMPARATIVE RESULTS IN A 1500-FLIGHT SCENARIO

GRU ILP FCFS
Rate of delayed flights 0.53% 20.53% 65.07%
Total delay time (min) 79 1501 12002
Average delay time for
delayed flights (min/flight) 9.88 4.87 12.30

Computation time (s) 2.06 249.6 0.05

V. CONCLUSION

This paper, through simulation experiments, demonstrates
that the proposed spatio-temporal graph-based DCB method
can quickly solve large-scale DCB problems considering un-
certainty at an acceptable additional cost. The main findings
of this study are as follows:

1) The ground delay is necessary for solving DCB prob-
lems, but rerouting is generally more efficient. Combin-
ing both strategies achieves the highest efficiency.

2) Considering uncertainty can improve the efficiency of
solving DCB problems.

3) The proposed method shows significant performance
advantages over the conventional FCFS heuristic and
ground delay-based ILP methods.

In future research, we will further expand its compatibility to
enhance its potential for practical application, such as allowing
adjustments to flight speed and selecting several intermediate
points within ATSUs to modify flight trajectories.
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