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Abstract—Terminal Manoeuvring Area (TMA) is a key air
traffic subsystem that bridges en-route airspace and airport
control zone. One of the main tasks of Air Traffic Control Officers
(ATCOs) responsible for the TMA is to ensure that consecutive
landing aircraft have the required horizontal separation. To
achieve this goal, ATCOs need to make real-time decisions
regarding the sequencing and spacing of arrival aircraft during
daily operations, which is a primary source of their workload.
Relying solely on ATCOs to make these decisions has led to issues
such as delayed decision-making, excessive flight distances, and
frequent trajectory adjustments, particularly in the more com-
plex environment of multi-airport systems. To support ATCOs
in making real-time decisions regarding the safe sequencing of
arrival flights, this paper proposes a Reinforcement Learning
approach to suggest arrival direct-to routes while considering
the convergence of arrival flights destined for the same airport
and conflicts with arrival flights destined for adjacent airports.
A method for accelerating reinforcement learning training is also
explored. Experimentation on Tianjin TMA in China shows that
the proposed approach achieves conflict-free operations without
sacrificing operational efficiency, and reduces training time of the
RL model by 82% without compromising model performance.
The results of this work demonstrates the potentials of Artificial
Intelligence (AI) systems as decision-support tools in the field of
Air Traffic Management (ATM).

Keywords—Air traffic management, Terminal maneuvering
area, Multi-airport system, Arrival sequencing, Conflict resolu-
tion, Direct-to decision making, Reinforcement learning

I. INTRODUCTION

Terminal Manoeuvring Area (TMA) is a control area nor-
mally established in the vicinity of one or more major airports
[1]. In the TMA, arrival flights need to descend in altitude,
and flights coming from different directions must eventually
merge into one or more landing queues. Each pair of aircraft
in these queues must meet the specified horizontal separation

requirements. Standard Terminal Arrival Route (STAR) is a
designated Instrument Flight Rule (IFR) arrival route [1] by
which arrival flight should proceed from the en-route phase to
an Initial Approach Fix (IAF). So, the early research assumed
that arrival flights in TMA strictly follow STARs [2]. Since
there is no vertical separation between consecutive flights
landing on the runway, the following flight must maintain a
certain horizontal distance from the preceding flight to meet
wake turbulence separation requirements. In addition, a land-
ing aircraft will not normally be permitted to cross the runway
threshold on its final approach until all preceding landing
aircraft are clear of the runway-in-use [1]. Therefore, at the
convergence point on the final approach leg before landing,
the spacing between aircraft pairs must meet the required
horizontal separation for consecutive landings. Assuming all
flights strictly adhere to the STARs, it cannot be ensured that
each flight will meet the required horizontal separation upon
reaching the convergence point, as their estimated arrival times
at the convergence point have not been intervened.

The analysis of historical arrival trajectories within the
TMA indicates that arrival flights do not strictly adhere to
STARs. The authors conducted a clustering study of arrival
trajectories within the TMA at Nanjing Lukou Airport (ZSNJ),
in China [3]. The number of clusters obtained for arrival
trajectories exceeded the number of STARs, and the trajecto-
ries within each cluster also exhibited certain deviations from
the corresponding STAR. Similarly, at Congonhas Airport
in Brazil, there are trajectories within the same cluster that
deviate significantly from the cluster centroid as well [4].
Aside from factors where weather conditions render STARs
unavailable, Air Traffic Control (ATC) interventions for arrival
flight sequencing, merging and spacing within the TMA often



cause trajectory deviations from STARs [4]. For multi-airport
systems, the significant inter-airport operational dependency
further increases traffic complexity [5], leading to more diverse
arrival trajectory patterns.

The emergence of trajectories different from STARs is
entirely the result of Air Traffic Control Officers (ATCOs)
interventions during the tactical phase. The ATCOs have two
primary intentions for intervening in horizontal trajectories of
arrival flights: 1) applying route stretching to delay flights;
and 2) applying route shortening to facilitate early landings.
Vectoring is a flexible tactical strategy that can be used for both
route stretching and shortening. When executing vectoring,
ATCOs need to provide a series of heading instructions,
e.g. Fly heading 180, until the arrival flight intercepts the
Instrument Landing System (ILS) signal. In recent years,
researchers have started incorporating vectoring strategies into
the sequencing of arrival flights to absorb delays. Turning legs
and parallel legs were designed to achieve route stretching, but
they only offer a limited set of path options [6]. Imen et al.
[7] extended this research by providing turning legs with more
options for flexibility. The advantage of vectoring is that it
allows for flexible trajectory changes through the combination
of multiple heading instructions. However, the drawback is that
it significantly increases the task load for ATCOs. Another
strategy is to ask the flight to fly directly to a specified
point (usually a point on the STAR), e.g. Direct to IAF,
achieving a route shortening by bypassing certain segments
of the STAR. Allowing for direct routes from the intermediate
waypoints improves the overall arrival performance, including
fuel savings and reduction of gaseous and particle emissions
[8]. In addition, the ATCOs only need to issue a single
instruction, leading to a lower task load compared to the
continuous demands of issuing vectoring instructions.

It is important to note that these works focus on devel-
oping the optimal routes in the pre-tactical phase, rather than
making real-time trajectory intervention decisions. The crucial
decision here is to find the optimal timing for arrival flight to
deviate from the STAR while considering the stochastic na-
ture of flight operations. To handle real-time decision-making
problems with stochasticity, Reinforcement Learning (RL) is
a promising candidate, as it has already achieved impressive
results in areas such as Conflict Resolution, Departure Slotting
and Pushback Rate Control. The authors in [9] used RL to sug-
gest departure slots while considering operational constraints
and uncertainties. One research for conflict resolution is [10]
in which the RL is utilized to handle the flight uncertainty
and performance challenges. In order to manage taxi delay
under uncertainties, the authors in [11] proposed a RL-based
approach utilizing pushback rate as agent’s action. These
works indicate that RL has great potential in solving sequential
decision-making problems in Air Traffic Management (ATM).

To the best of our knowledge, this is the first attempt to
develop a Reinforcement Learning Model to make real-time
direct-to IAF decision. The contributions of this paper are as
follows:

• A framework for solving the real-time direct-to IAF

problem using Reinforcement Learning model is pro-
posed. The approach can be easily adopted to any other
TMAs with limited calibrations, offering flexibility and
scalability across different TMAs.

• A typical TMA environment for a multi-airport system
has been established, which includes arrival operations
for airports located within the TMA, as well as overfly-
ing operations for flights crossing the TMA to land at
neighboring airports.

• This approach can handle the challenge of reducing
arrival transit time considering the convergence of arrival
flights from different directions, as well as the potential
interactions between arrival flights and overflying flights.

II. OVERVIEW

In a multi-airport system, arrival operations within the TMA
need to simultaneously consider the convergence of flights
heading to the same airport and the crossing of flights heading
to different airports. This makes it more challenging compared
to single-airport scenarios. The target of this work focuses
on supporting Approach Controllers in real-time making de-
cisions for arrival flights to directly fly to IAF in a multi-
airport environment. The overview of the RL-based approach
proposed in this paper is illustrated by Figure 1.

Figure 1. The diagram of the proposed RL-based approach for direct-to
IAF decision making problem. There are two main modules: the Learning
Environment and the RL Agent. The Learning Environment is primarily
responsible for generating traffic scenarios, updating flight statuses, providing
the agent with the necessary observations, and calculating rewards based on
the agent’s actions. The RL Agent mainly consists of a policy, which makes
decisions based on observations from the Learning Environment and receives
rewards from the Learning Environment to update its policy.

In this initial exploratory phase, this work focuses on
making direct-to IAF decisions for arrival flights coming from
a single direction. The detailed problem will be discussed
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Figure 2. A TMA in a Multi-Airport System in Northern China, with Tianjin Binhai International Airport (ZBTJ) and Beijing Daxing International Airport
(ZBAD) nearby. To focus on the problem addressed in this work, only two STARs are depicted in the figure: one for ZBTJ (named AVBOX-4ZA) and
the other for ZBAD (named DUMAP-11A). The complete route for AVBOX-4ZA is: AVBOX-TJ927-TJ926-TJ925-TJ924-TJ923-TJ922-TJ921-TJ920-TJ919
(IAF), and the complete route for DUMAP-11A is: DUMAP-AD744-AD743-AD742-AD646-AD741-AD722-AD721 (IAF). There are also actual arrival flight
trajectories on May 1, 2024, for all three directions to ZBTJ during southbound operations (shown in green, orange, and blue) and the actual flight trajectories
for arrivals to ZBAD from DUMAP during southbound operations (shown in magenta).

in section III. The RL agent takes observation of the envi-
ronment as input, processes them through a neural network,
and outputs a decision on whether to execute a direct-to IAF
routing considering the uncertainty arising from delays in
decision execution. That decision is used to modify the current
flight state and its quality is also evaluated through a reward
mechanism. Action space and three main components of the
learning environment, i.e., traffic generation, observation space
and reward mechanism, will be described in details in section
IV. During the training phase, rewards are used to update the
parameters of the neural network. The RL algorithm, Proximal
Policy Optimization (PPO), is adopted to train the agent, which
is described in section V, followed by the detailed setting of
experiments in section VI.

III. PROBLEM DESCRIPTION

In TMA, direct-to is a commonly used control strategy
by ATCO for arrival flights. It can accelerate air traffic flow
and reduce transit time before landing, thereby lowering fuel
consumption and pollutant emissions, as well as alleviating
their own workload for monitoring the traffic. In existing
studies, whether it’s regarding route stretching [6], [7] or route
shortening [8], it is assumed that flights can only begin to
implement these strategies when passing through designated
waypoints on the STAR. However, in actual operations, ATCO

can issue instructions to change a flight’s trajectory at any
position. Figure 2 depicts a TMA in a multi-airport system,
containing part of the STARs and actual arrival flight tra-
jectories. It can be observed from Figure 2 that no flight
fully adhered to the STAR, i.e., AVBOX-4ZA, throughout the
day. Instead, all flights follow the direct-to TJ920/IAF routes.
Additionally, flights did not start executing direct-to instruction
only at intermediate waypoints of the STAR but could do so
from any position.

Although direct-to offers the advantages described above,
ATCOs must consider multiple factors when making decisions,
making this task challenging in terms of balancing safety and
efficiency. The two main factors are as follows:

• The convergence of arrival flights from different direc-
tions. ATCOs need to estimate the time at which a
flight executing a direct-to instruction will arrive at the
convergence point on final approach segment, ensuring it
meets the required horizontal separation with preceding
and following aircraft, which may be coming from other
directions. Figure 2 shows the flight trajectories approach-
ing ZBTJ from different directions during southbound
operations on May 1, 2024. All trajectories eventually
converge near the Intermediate Fix (IF) on the final
approach leg.

• The potential interactions of trajectories with flights head-
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ing to nearby airports. ATCOs need to estimate whether
the trajectory of a flight executing a direct-to instruction
maintains the required safety separation from crossing
flights at their closest point. Figure 2 also depicts the
flight trajectories from DUMAP to ZBAD. It is evident
that these trajectories inevitably intersect with those of
flights from AVBOX to ZBTJ. If direct routes are used,
the separation between flights must be entirely ensured
by the ATCO.

Based on the above analysis, this work aims to address the
real-time decision-making problem of directing arrival flights
to the IAF. This problem can be described as a Markov
Decision Process (MDP), where decisions on whether a flight
should fly directly to the IAF are made at each time step,
ultimately forming a discrete sequence of decisions. At the
initial stage of solving this complex problem, the study begins
by focusing on controlling arrival flights in a single direction.

IV. LEARNING ENVIRONMENT FOR DECISION MAKING

Traffic generation is to create diverse traffic scenarios,
allowing agent to fully explore and learn. Observation is the
only information that agent can obtain about the environment
it need to learn, and based on this, it make decision and receive
feedback from the environment, which is the reward.

A. Traffic generation

This work is based on the southbound operations of ZBTJ,
constructing a Tianjin TMA simulation environment. As
shown in Figure 2, there are three ZBTJ arrival traffic flows
and one ZBAD arrival traffic flow within this TMA. This work
requires generating three types of traffic:

• The arrival flight from AVBOX to ZBTJ, which is con-
trolled by the agent. As overtaking in TMA is typically
not allowed, this work assumes that at each timestep,
the ATCO only needs to decide whether the first arrival
flight in the queue can proceed directly. Thus, in each
scenario, only one controlled flight entering the TMA
from AVBOX needs to be generated. The TMA entry
time and Wake Turbulence Category (WTC) of the flight
are generated randomly.

• The arrival flights from other TMA entry points to
ZBTJ, which are not controlled by the agent. In each
scenario, the Estimated Time of Arrival (ETA) and WTC
of each flight are randomly generated, and the separation
requirements between flights are ensured. The number of
flights to be generated is equal to the maximum number
of flights recorded in these directions historically.

• The arrival flight from DUMAP to ZBAD, which is not
controlled by the agent as well. According to statistical
analysis of historical data, at most one arrival flight from
DUMAP to ZBAD exists within the Tianjin TMA at any
given time. Therefore, in this work, only one overflying
flight is generated with random WTC in each scenario,
and the flight enters the TMA at the first timestep.

B. Observation space

Observation is all the information that an agent can acquire
about the environment. Theoretically, the more complete the
observation, the more accurately it can describe the state of the
environment. However, this will result in a high-dimensional
observation space, making it more difficult for the agent to
learn. Therefore, most studies adopt local observations as a
substitute for global observations, which is also the approach
taken in this paper.

When executing a direct-to action, the agent needs to know
three types of information: 1) In the landing queue sorted in
ascending order of ETA, the difference in ETA between the
controlled arrival flight and the flight ahead of it (xa), as well
as the difference in ETA with the flight behind it (xb); 2) The
distance between its remaining trajectory and the overflying
flight’s trajectory at the closest point (d); 3) Considering the
delay in pilots executing a direct-to instruction, a forward-
looking time (u) needs to be factored in. As a result, the obser-
vation is a vector with fixed length of three: O = [Oa, Ob, Oo],
and each element is calculated as follows:

Oa = (
u∑

i=1

sign(xi
a − s))/u (1)

Ob = (
u∑

i=1

sign(xi
b − s))/u (2)

Oo = (
u∑

i=1

sign(di − sr))/u (3)

Equations (1) to (3) express the probability of conflicts
when executing a direct flight action with respect to the pre-
ceding aircraft, following aircraft, and crossing flights under
uncertainty. The values of these three equations range from
[−1, 1]. A value of 1 indicates that there are no conflicts
under any circumstances, while a value of −1 indicates that
there are conflicts under all circumstances. xi

a (xi
b) represents

the difference in ETA between the controlled flight and the
preceding (following) one when there is a delay in execution
of i ∈ [1, 2, ..., u]. s is the maximum of the wake turbulence
separation sw and the radar separation sr, and it is converted
into a time-based separation according to the aircraft’s ground
speed v, as shown in Equation (4). The sign function, denoted
as sign(x), is defined such that its value is 1 when x ≥ 0, and
−1 otherwise, as shown in Equation (5).

s = max(sw, sr)/v (4)

sign(x) =

{
1 if x ≥ 0

−1 if x < 0
(5)

The embedded information ensure the agent have a clear
understanding of the conflict probability between the con-
trolled arrival flight and other flights after executing a direct-to
maneuver.
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C. Action space

When the controlled arrival flight enters the TMA, it be-
comes an active flight. At each time step, the agent needs to
decide whether the active flight should continue to follow the
STAR (F) or proceed directly to the IAF (D). If the ’F’ action
is selected, the active flight will continue to follow the STAR
until the next time step. This procedure is continued until the
’D’ action is selected or reach the terminated state, i.e., the
flight arrives at TJ919. As shown in Figure 2, once the flight
reaches TJ919, selecting ’F’ or ’D’ has the same effect.

D. Reward Mechanism

Safety is the primary consideration in ATM decision-
making. Since the goal of ATM is to improve efficiency
while ensuring safety, the reward mechanism is based on
both safety and efficiency. As previously stated, separations
must be maintained between controlled arrival flight and other
arrival flights, as well as between controlled arrival flight and
overflying flight. As a consequence, the reward mechanism is
designed in such a manner that it guides the model to achieve
a shorter flight path while eliminating any possible dangers
associated with violating the safety separations. Every time
step, the agent will receive a penalty that encourages making
the direct-to IAF decision as early as possible. After the agent
makes a direct-to IAF decision or reaches the terminated
state, it will receive an additional reward based on whether
the separations are satisfied. If the active flight satisfies all
required separations, an additional reward of +1 will be given;
otherwise, a penalty of −1 will be imposed. The total reward
for one episode of the agent is the accumulation of all time
step’s reward, as shown in Equation (6):

R =
n∑

t=1

(pt) + r (6)

where n denotes time steps in one episode; pt is the time step
penalty; r represents whether the direct-to IAF action violates
separations.

V. REINFORCEMENT LEARNING APPROACH

Proximal Policy Optimization (PPO) [12] is a widely-
used reinforcement learning algorithm, primarily introduced to
address stability and efficiency challenges in policy gradient
methods. PPO belongs to the class of actor-critic algorithms,
where the actor updates the policy and the critic evaluates it
by estimating value functions.

One of the key innovations of PPO is the use of a clipped
objective function, which ensures that the new policy does
not deviate too much from the old policy. The core objective
function in PPO is given by:

LC(θ) = Et

[
min

(
rt(θ)Ât, clip(rt(θ), 1− ϵ, 1 + ϵ)Ât

)]
(7)

where rt(θ) =
πθ(at|st)

πθold
(at|st) is the probability ratio between the

current and previous policies, and Ât is the estimated advan-
tage function. The term ϵ controls the allowed deviation from

the old policy, and the clipping function prevents excessively
large policy updates.

PPO also uses a critic network to estimate the value
function, and the critic is updated by minimizing the squared
error between the predicted value and the actual return. This
is represented as:

LV (θ) =
1

2
Et

[
(Vθ(st)− V target

t )2
]

(8)

The final objective combines the clipped policy loss and the
value function loss, along with an entropy bonus to encourage
policy exploration:

L(θ) = LC(θ)− c1L
V (θ) + c2Et [H[πθ](st)] (9)

where c1 and c2 are coefficients balancing the losses, and
H[πθ](st) represents the entropy of the policy, which encour-
ages exploration by discouraging premature convergence to
suboptimal deterministic policies.

PPO strikes a balance between the simplicity of policy
gradient methods and the stability of trust-region methods,
making it a preferred choice in many deep reinforcement
learning applications. This work adopts the PPO algorithm to
train the agent’s policy model for the environment described
in section IV. The hyper-parameters will be listed in section
VI.

VI. EXPERIMENTAL SETTING

The environment in this study is constructed following the
OpenAI Gymnasium [13] framework, and the PPO algorithm
implementation is based on the Stable-Baselines3 [14] rein-
forcement learning library. The hyper-parameter settings for
PPO can be found in Table I. The policy network and value
network in PPO are designed with a similar architecture: two
hidden layers, each with 32 neurons, and the Rectified Linear
Unit (ReLU) activation function.

TABLE I. PPO PARAMETERS

Parameters Values

Training Iterations 1e+06
Number of Parallel Environments 1
Discount Factor 0.999
Learning rate 0.0003
Buffer size 1024
Batch size 64
c1 0.5
c2 0
ϵ 0.2
Optimizer Adam

Table II shows the set of parameters which are used in
the environment. In the actual operations of Tianjin TMA,
there are no light aircraft, so this work only considers medium
and heavy aircraft when randomly generating traffic scenarios.
When a heavy aircraft is in front and a medium aircraft is
behind, the required wake turbulence separation is 5 nautical
miles. In other situations, there is no wake turbulence sep-
aration requirement between consecutive landing flights, but
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when converging on the final approach, a 3-nautical-mile radar
separation must be maintained. This work generates 5 arrival
flights from other directions in each scenario, which is the
maximum number of flights recorded in these directions within
30 minutes historically. Based on historical data statistics, the
controlled arrival flight’s speed entering the TMA is set to 280
knots and its speed upon reaching the IF is set to 180 knots.
For the overflying flight, the speed entering the TMA is set to
340 knots, and the speed leaving the TMA is set to 270 knots.
This work assumes that the flights follow uniform deceleration
motion.

TABLE II. ENVIRONMENT PARAMETERS

Parameters Values

WTC Distribution {H:0.5, M:0.5}
sw 5 nm (M follows H) and 0 (otherwise)
sr 3 nm
v 180 kts
u 10 s
r 1 (no conflict) and −1 (otherwise)
pt −0.001

The larger the agent’s forward-looking time, the larger the
observation space, which increases the difficulty of learning
the policy. This paper considers a moderate forward-looking
time of 10 seconds. After the agent makes a direct-to decision
based on its observation, it will receive a random delay in
execution. During this period, the activated flight will continue
to follow the same acceleration along the STAR. Subsequently,
the flight will adopt a new acceleration to fly directly to the
IAF, calculated based on the current speed, the final speed, and
the remaining distance. This work does not consider the impact
of wind and ignores trajectory changes during the turning
process. This paper considers a maximum execution delay of 5
seconds and assumes that the delay follows a discrete uniform
distribution, with possible values of 0s, 1s, 2s, 3s, 4s, and 5s.

VII. RESULTS AND DISCUSSIONS

The model training in this work was conducted using a
standard Windows laptop with CPU i7-12700H. Figure 3
shows the convergence of the training process (the blue line).
After approximately 700,000 iterations (3.4 hours), the model
began to exhibit stable performance. The average episode
reward stabilized around 0.9, and the average episode length
remained stable between 60 s and 100 s. It is worth noting
that in the early stages of training, the model’s performance
remained at a relatively low level, with the average reward
fluctuating around 0.5. This work explores a method to ac-
celerate training process. First, the model is pre-trained in a
simple environment without uncertainties until convergence,
obtaining a baseline model. Then, using the baseline model as
a foundation, training continues in a more complex environ-
ment with uncertainties. The baseline model quickly converged
during training, reaching an average reward of around 0.93
within 80,000 iterations (0.3 hours), as shown in Figure 4.

The training process based on the baseline model in the
stochastic environment is represented by the orange line in

(a) Convergence of Episode Reward

(b) Convergence of Episode Length

Figure 3. Illustration for the convergence of the training process in a stochastic
environment. The blue line represents the training process of the agent’s policy
starting from randomly initialized neural network parameters, while the orange
line represents the training process starting from a model that has converged
in the deterministic environment (the model after 80,000 iterations in Figure
4).

Figure 3. It exhibits relatively high performance from the start,
with an average reward of around 0.4, which is already compa-
rable to the model’s performance after 200,000 iterations (1.4
hours) as shown by the blue line. Subsequently, within 100,000
iterations (0.3 hours), the average episode reward rapidly
increased to around 0.9, which is comparable to the model’s
performance after 700,000 iterations (3.4 hours) as shown by
the blue line. The episode length reflects the time from when
a flight enters the TMA to when the agent makes a direct-to
decision for it. In the environment described in this paper, the
minimum value of the episode length is 1 s, which indicates
that a direct-to decision is made for the flight at AVBOX. The
maximum value of the episode length is 436 s, which means
the flight follows the STAR all the way to TJ923. In both
training modes, the episode mean length eventually fluctuates
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around 80 seconds, indicating that, in this environment, the
average time a flight follows the STAR is 80 seconds, after
which it receives a direct-to-IAF instruction. Ultimately, the
new training method reduced the training time by 82% without
sacrificing model performance. These experimental results
can provide valuable insights for addressing reinforcement
learning problems in complex environments.

(a) Convergence of Episode Reward

(b) Convergence of Episode Length

Figure 4. Illustration for the convergence of the training process in the
deterministic environment.

To further evaluate the models, 10000 episodes were set
up to evaluate the two trained models, i.e., Without baseline
model (WO) and With baseline model (WB), and the ad-hoc
model in identical environments. For basic arrival operations,
if direct-to IAF instruction will not cause any conflicts, the
ATCO will allow the flight to proceed directly. When making
decisions, ATCOs typically add a buffer on top of the mini-
mum separation standards to account for various uncertainties.
However, real-world uncertainties are difficult to predict, so
this work assumes that the agent cannot foresee environmental
uncertainties. To ensure fairness in comparison, this work

assumes that in ad-hoc operations, the controller can only
obtain information about whether there is a conflict with other
flights based on the projected direct flight path.

The number of conflicts occurring within 10,000 episodes
and the average TMA transit time of arrival flights are shown
in Table III. With similar TMA transit times, the model trained
in this work achieves completely conflict-free operations,
while the Ad-hoc model experiences 70 conflicts. This demon-
strates that the trained models in this work possess a good
functionality in safety management. On the other hand, the
test results of WO and WB are completely consistent, which
demonstrates that the accelerated training method explored
in this study does not compromise model performance. This
method shows great potential for application in handling more
complex air traffic decision-making problems.

TABLE III. COMPARISON OF AVERAGE TRAINED MODELS’ PERFOR-
MANCE OVER THE AD-HOC MODEL

Conflict number TMA transit time (s)

Ad-hoc 70 449
WO 0 451
WB 0 451

Figure 5 shows the direct flight path decided by WB over
1000 randomly generated episodes. From Figure 5, it can be
observed that the decision timing of the RL model slightly
differs from the actual trajectory shown in Figure 2. The main
reasons for this discrepancy are likely twofold: 1) The actual
trajectory reflects two different types of direct routes, i.e.,
direct flight to IAF and direct flight to TJ920, whereas the
action space designed for the agent in this work does not
include the decision for direct flight to TJ920. 2) The traffic
scenarios in this work are randomly generated, which may
include scenarios that have not occurred in historical data.
Theoretically, any waypoint on the STAR can be regarded as
a direct-to target. However, the goal of this study is to propose
a generalizable RL-based direct-to decision model, so we do
not list all possible cases. Users only need to make minor
adjustments to the model proposed in this paper to apply it to
different TMAs and STARs.

Figure 5. Direct routes generated by RL model.
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VIII. CONCLUSION

This research proposes a Reinforcement Learning approach
for real-time arrival direct-to decision making in multi-airport
system. The approach takes into account the convergence
of arrival flights at the same airport, the crossing of arrival
flights from neighboring airports, and the uncertainty in pilots’
execution of ATCO’s decisions. A method for accelerating
reinforcement learning training is explored, using a model that
converges quickly in a simple environment as the foundation,
and further training it in a more complex environment. A
case study for Tianjin TMA is developed and investigated.
The results show that the accelerated training method can sig-
nificantly reduce training time without sacrificing the model’s
convergence performance. The trained model performs compa-
rably to the Ad-hoc model in terms of TMA transit time, but it
is able to achieve conflict-free operations, something the Ad-
hoc model cannot accomplish. The results demonstrated the
potentials of AI systems as decision support tools in the field
of ATM.

In the next step, flights from different directions need to be
considered in a coordinated manner. More ATCO intervention
methods, such as vectoring and speed control, should be added
to the agent’s action space to enhance flexibility. Additionally,
more types of uncertainties need to be taken into account to
increase the model’s potential for real-world application.
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