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Abstract—Air traffic control traditionally relies on Secondary
Surveillance Radar (SSR) and procedural methods in areas
without radar coverage. In recent years, ADS-B has gained
importance as a surveillance technique that transmits the identity
and position of aircraft. Space-based ADS-B (SB ADS-B) systems
extend this capability by enabling transmission to satellites,
particularly in remote and oceanic regions where ground stations
are not feasible. Not only does this contribute to the reduction
of separation between aircraft, but it also increases airspace
operational efficiency by enabling more direct routes and greater
availability of optimal altitudes, which in turn leads to lower
greenhouse gas emissions. However, the integrity of ADS-B
transmissions can be affected by either natural or intentional
perturbations. To address this issue, the SATERA project aims
to develop an integrity estimator for SB ADS-B systems using
position estimates provided by multilateration (MLAT) systems.
This work contributes to establishing the project’s baseline and
identifying specific challenges. A prediction tool has been devel-
oped to calculate the theoretical performance of an MLAT system
using receiver stations aboard a constellation of Low Earth Orbit
(LEO) satellites. The methodology involves adapting ground-
based MLAT localization algorithms to the space environment,
evaluating regularization techniques to mitigate potential ill-
conditioning, and using advanced Kalman filter-based tracking
algorithms combined with the Interacting Multiple Model (IMM)
filter.
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I. INTRODUCTION

Global air traffic is constantly increasing, and with the rapid
recovery to pre-COVID-19 pandemic travel levels [1], the
industry is facing serious congestion challenges. This situation
affects both passengers at airports and Air Navigation Service
Providers (ANSPs), who must manage the safe and efficient
movement of aircraft. Standards and precise coordination are
essential to prevent accidents and collisions in dense airspace.

Traditionally, providing air navigation services, such as
Air Traffic Control (ATC), has mainly relied on Secondary
Surveillance Radar (SSR) [2]. The latest SSR technology,
Mode S, allows aircraft to send data to ground radar stations.
While Mode S represents a significant improvement over
Mode A/C SSR technologies, it is not always viable in remote

or oceanic regions due to the high costs and infrastructure
requirements.

The Automatic Dependent Surveillance-Broadcast (ADS-B)
system was developed to provide surveillance where SSR is
not feasible, particularly in remote and oceanic areas, and
to complement SSR in regions where it is available. ADS-B
enables electronic equipment onboard aircraft to automatically
transmit their location (obtained from an airborne GNSS
receiver), along with identity, altitude, speed, and other data,
at 1090 MHz using a Mode S format known as ‘Extended
Squitter’ (ES1090). This system provides fast and accurate
data updates, significantly improving Air Traffic Controllers’
(ATCOs) situational awareness and helping them effectively
identify and resolve hazardous situations.

The implementation of ADS-B in modern ATC systems has
significantly increased airspace capacity and facilitated more
efficient Trajectory-Based Operations (TBO). However, long-
haul flights over oceanic areas or remote regions still do not
benefit from this technology, as current surveillance systems
are ground-based, making it unfeasible to install and maintain
surveillance infrastructure in these areas. As a result, aircraft
in these areas must fly along fixed, relatively rigid airspace
structures (also known as tracks) while maintaining greater
horizontal separations [3]. This limits route optimization de-
spite the high volume of air traffic.

This is where satellite-based air traffic surveillance, known
as space-based ADS-B (SB ADS-B), becomes relevant. These
systems are ideal for surveillance over oceanic and uninhabited
areas [4], using Low Earth Orbit (LEO) satellite constellations
to receive and relay ADS-B data to ground stations. SB ADS-B
provides surveillance in regions where traditional systems lack
coverage, with performance levels similar to those of ground-
based ADS-B.

Companies such as Startical [5], Aireon [6], and Spire
[7] have developed (or are in the process of developing)
SB ADS-B systems, which offer high update rates on flight
progress, improving route planning and optimizing fuel usage.
This results in safer, more economical, greener, and more
predictable flights.

However, both terrestrial and space-based ADS-B rely on
position data obtained from an onboard GNSS receiver, such



as GPS, which can be susceptible to jamming or spoofing,
potentially degrading the quality of the information provided
to ATCOs. In addition, ADS-B itself is vulnerable to spoofing,
where either the aircraft or an external transmitter could send
false positional information, or the ADS-B frequency could
be jammed. Therefore, a secondary independent surveillance
system is necessary.

A viable solution to address these limitations in space-
based surveillance systems is multilateration (MLAT), which
enables passive location of aircraft without relying on GNSS or
ground-based radars. MLAT systems have proven effective in
both airport surveillance and en-route areas. The combined use
of ADS-B and MLAT systems, known as composite surveil-
lance, offers an alternative to using ADS-B and SSR Mode
S alone. With the development of SB ADS-B systems, the
SATERA project aims to analyze the feasibility of implement-
ing composite surveillance in the space environment, seeking
to provide robust surveillance in areas where conventional
systems cannot operate.

The main objective of the SATERA project is to develop and
validate, through simulations and laboratory measurements, a
space-based ADS-B + MLAT composite system using small
satellites in low Earth orbit, complying with the requirements
outlined in EUROCAE ED-142A for en-route sectors, with
particular emphasis on the definition of MLAT-based integrity
estimators for ADS-B data. This work aims to contribute
to setting the baseline for the project and identify specific
challenges posed by the space environment that SATERA will
need to address.

This paper presents the outcomes of the initial steps toward
defining the baseline, including modeling a satellite constella-
tion designed to receive signals from aircraft in flight, adapting
MLAT localization algorithms for the space environment,
implementing regularization techniques to mitigate potential
ill-conditioning issues, and employing advanced tracking algo-
rithms based on the Kalman filter and the Interacting Multiple
Model (IMM) filter.

The rest of this paper is organised as follows: Section II
describes the methodology used, detailing the system design
and the implemented algorithms. Section III presents and
discusses the results, evaluating the performance of the various
proposed techniques. Finally, Section IV summarizes the main
conclusions of the work and identifies areas for future research.

II. METHODOLOGY

This section outlines the methodology for developing the
multilateration (MLAT) system proposed in this work. It
covers the principles of TDOA-based MLAT, the localization
algorithms employed, the regularization techniques and track-
ing filters implemented, and the simulation process conducted.

A. Multilateration (MLAT)

An MLAT system is a cooperative and independent method
for determining the position of a target. It involves a network
of receiver stations and a central processing station (CPS) that
runs algorithms to calculate the target’s location. The system

uses signals emitted by aircraft transponders to determine their
position.

MLAT systems can leverage various features of the signals
received from aircraft, including Time Difference of Arrival
(TDOA), values derived from Time of Arrival (TOA), Round-
Trip Delay (RTD), Angle of Arrival (AOA), and Frequency
Difference of Arrival (FDOA). However, the initial work in
the SATERA project has focused on TDOA-based solutions.
Other measurements or combinations of measurements will be
considered in the later stages of the project.

The principle of TDOA involves determining the unknown
position of the target (θ = [x, y, z]) based on the differences in
TOA between the i-th receiving station and a reference station
(typically designated as station 1). Geometrically, this results
in a hyperboloid, and the resulting function can be expressed
mathematically as:

T̂DOAi,1 =
1

c
∥θ − ϑ1∥ −

1

c
∥θ − ϑi∥+ ni,1 ,

i = 2, ..., Ns

(1)

where the superscript ̂ denotes an estimated value (used
throughout the paper to indicate estimated or measured values,
distinguishing them from exact values), ϑi = [xi, yi, zi] is
the position of the i-th station, ni,1 is a random noise term,
generally assumed to have a zero-mean Gaussian distribution,
c is the speed of light, and Ns is the total number of receiving
stations. When at least four stations detect the aircraft’s signal,
its three-dimensional position can be estimated by calculating
the intersection of the resulting hyperboloids.

The (estimated) TDOA measurement in (1) can also be
expressed as the range difference measurement, as follows:

m̂i,1(θ) = cT̂DOAi,1 = (ri − r1) + ni,1 (2)

where ri = ∥θ−ϑi∥. To obtain a numerical estimate of θ,
a localization algorithm processes the set of measurements in
the form of (2) to construct and solve a system of equations.
This system represents an inverse problem and can generally
be expressed as follows:

Gθ = m̂ (3)

where G is the coefficient matrix that represents the ge-
ometric behaviour of the system, θ is the unknown position
vector, and m̂ is the vector of known TDOA measurements,
including the additive noise term.

The accuracy of MLAT systems depends on several factors:
measurement errors, the spatial distribution of the receiver
stations, and the localization algorithm used to convert the
TOA/TDOA measurement space into Cartesian coordinates
(x, y, z). In particular, the geometry of the stations, described
by G, plays a crucial role.

Measurement errors can arise from various sources, leading
to inaccuracies in the target’s location. These errors can be
modeled as part of the error term ni,1 in equation (1) and
are typically represented by a zero-mean Gaussian distribution

2



with a specified standard deviation [8]. Once the standard
deviations of each error source affecting a particular station
have been identified, the total variance associated with that
station can be calculated as follows:

σ2
TOAi

=
∑
j

σ2
source j,i (4)

where σ2
TOAi

is the variance of the i-th station and
σ2
source j,i is the one corresponding to the j-th error source

affecting the i-th station.
Besides the error due to the signal-to-noise ratio, as de-

scribed in [8], this work also considers secondary contri-
butions such as instrumental errors, synchronization errors,
and errors in the measurement of the stations’ positions
(i.e., the satellites). Initially, a nominal standard deviation of
σTOAi = 10−8 s with zero mean is assumed. Additionally,
a standard deviation of 10 meters is added to each of the
satellites’ coordinates, assuming their positions can be de-
termined with accuracy comparable to that obtained using
onboard GNSS systems. In the Aireon system, for example,
timing and positional accuracy are achieved through Precision
Timing and Position (PTP) messages from Iridium satellites,
which provide satellite position accuracy within 240 meters
and timing accuracy within 200 nanoseconds [9].

To provide coverage for the aircraft, a satellite constellation
has been designed from scratch to meet the minimum require-
ments for applying the MLAT technique, ensuring that the
aircraft is visible from at least four satellites at all times for
3D positioning. This is crucial because current constellations
do not always fulfill this requirement globally [10]. In this
work, a constellation has been designed using MATLAB’s
Satellite Communications Toolbox, with characteristics similar
to the Iridium constellation but featuring a greater number of
satellites and orbital planes. The constellation consists of 160
satellites, distributed across 10 orbital planes at an inclination
angle of 86.4º (Figure 1).

Figure 1. Satellite scenario.

B. Localization algorithms
To solve the resulting inverse problem (3), the Taylor

series estimation (also known as Gauss or Gauss-Newton
interpolation) [11], [12] is a widely accepted strategy for
estimating the position of a target in MLAT systems. This
method enables the solution of the non-linear minimization
problem through an iterative approach based on Least Squares
(LS). Specifically, the problem is addressed iteratively to refine
the position estimate.

Let the unknown target position be denoted as
θ = [x, y, z]T . Given that the system’s measurements
from Ns stations are grouped into the vector
m̂ = [T̂DOAi,1, ..., T̂DOANs,1]

T , the iterative formulation
of the Taylor series expansion method can be expressed as:

θ̂
k
=

(
G(θ̂

k−1
)TG(θ̂

k−1
)
)−1

G(θ̂
k−1

)T m̂∆(θ̂
k−1

) + θ̂
k−1

k = 1, ...,K
(5)

where θ̂
0
= θ0, m̂∆(θ̂

k−1
) = m̂−m(θ̂

k−1
), and K is the

maximum number of Taylor iterations. This iterative process
approximates the target’s position θ using a starting point or
initial estimate θ0.

The convergence of the iterative algorithm critically depends
on the quality of the initial estimate. If θ0 is not sufficiently
close to the true solution, the method may not converge or
may do so too slowly. Additionally, ill-conditioning problems
in the matrix G can compromise the numerical stability of
the algorithm. Therefore, having an adequate starting point is
crucial.

To define such a starting point θ0, various closed-form
localization algorithms have been implemented and compared,
including those proposed by Smith and Abel [13], Friedlander
[14], Schau and Robinson [15], Chan and Ho [16], and Ban-
croft [17]. These algorithms provide initial estimates used as
input for the iterative process. They differ in their approaches
to linearizing the MLAT problem and vary in accuracy, robust-
ness to measurement errors, and computational complexity.
Among these, Bancroft’s method has demonstrated the best
results, offering a suitable initial estimate.

C. Regularization
In some scenarios, due to the system’s geometry, measure-

ment noise, or the quality of the initial estimate, the inverse
problem may become ill-conditioned. This can result in the
solution obtained through (5) being incorrect or diverging,
leading to large errors. Numerically, this issue arises because
the matrix product (GTG)−1GT , known as the pseudoinverse
matrix G†, may not satisfy the three Hadamard conditions [18]
for a well-conditioned problem.

When any of these conditions are not met, the problem
becomes ill-conditioned. To address these issues, it is es-
sential to apply strategies that transform the problem into
a well-conditioned one, making the solution more robust to
perturbations. These strategies are commonly referred to as
regularization methods.
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In this work, to address the iterative procedure based on
the Taylor series expansion method and to mitigate errors
caused by ill-conditioning, Tikhonov regularization has been
applied [19]. This technique introduces a penalty term, the
regularization parameter λ, which controls the influence of
perturbed data, thereby reducing the sensitivity of the final
solution to slight variations or errors in the data.

The resulting regularized Taylor series solution is expressed
as follows:

θ̂
k

λ = A−1
λ (θ̂

k−1

λ )m̂∆(θ̂
k−1

λ ) + θ̂
k−1

λ , k = 1, ...,K (6)

where A−1
λ is the Tikhonov-regularized inverse matrix [20]:

A−1
λ = (GTN(θ)−1G+ λ2LTL)−1GTN(θ)−1 (7)

where N(θ) is the measurement error covariance matrix,
L is the regularization matrix, and λ is the regularization
parameter. Since the covariance matrix N(θ) is often unknown
in practical applications because it depends on the true target
position θ, it is common in practice to approximate it by
assuming an identity matrix in (7).

The selection of the regularization parameter λ and the
regularization matrix L is a critical aspect of the regularization
process. The choice of the regularization matrix is closely
linked to the statistical properties of the target position vector
θ. When the components of θ are assumed to be non-random
and uncorrelated, a common choice for the regularization
matrix is L = I3×3, where I denotes the identity matrix [20].

In contrast, determining the value of the regularization
parameter λ is less straightforward. Numerous methods have
been proposed in the literature to estimate an appropriate
value for λ. In this work, the L-curve method is employed
to determine the optimal value of λ [21]. This graphical
technique helps in selecting the regularization parameter by
identifying the optimal balance between the accuracy of the
data fit and the stability of the solution.

D. Tracking filter

In addition to the previously mentioned methods for deter-
mining the target’s position, an aircraft tracking filter has been
implemented to estimate the position directly, thereby avoiding
the potential issues of ill-conditioning associated with solving
an inverse problem.

This tracking filter combines the Unscented Kalman Filter
(UKF) with the Interacting Multiple Model (IMM). The UKF
[22] utilizes the Unscented Transformation (UT) technique,
which accurately captures the propagation of state and covari-
ance without explicit linearization, thus effectively handling
non-linear systems with precision and robustness. A similar
approach, using the UKF alongside the Extended Kalman
Filter (EKF) in a ground-based MLAT system, is described
in [23].

On the other hand, the IMM [24] is an advanced filtering
technique that integrates multiple dynamic models within a
probabilistic framework, thereby reducing tracking errors. The

primary advantage of the IMM is its ability to rapidly adapt
to changes in system dynamics, enhancing accuracy without
requiring precise prior knowledge of the system model. This
combined approach to motion parameter estimation is often
more effective than using a single UKF, especially when
tracking targets that perform complex maneuvers.

Within the IMM, three models are used to accommodate
different types of motion: the constant velocity (CV) model,
suitable for situations where changes in the target’s speed
are small and random; the constant acceleration (CA) model,
appropriate for representing targets with smooth movements
and random acceleration changes; and the Singer model, which
captures the random and changing nature of target maneuvers
[25] [26].

Each model within the IMM represents a possible mode
of system operation, and the filter interacts among these
models to adapt to dynamic variations. Figure 2 illustrates
this algorithm, which consists of the interaction of three UKF
filters operating in parallel with the mentioned maneuvering
models.

Since this tracking filter is a recursive filter, it is necessary to
employ a method to obtain the initial step (starting the filter).
To do this, the localization algorithm explained previously is
used, and when three estimates of the target’s position are
available, the prediction of the filter can begin. With this
information, the state vector is constructed, consisting of the
position, velocity, and acceleration of the target at the time of
initializing the tracking filter.

This approach significantly enhances tracking performance
for maneuvering targets by combining the flexibility of the
IMM with the non-linear estimation capabilities of the UKF.
It is expected to yield improved tracking accuracy and reduced
error rates, particularly during complex maneuvers. However,
it is essential to note that the performance of this tracking
filter may be affected by extreme environmental conditions or
sensor inaccuracies, which can introduce significant challenges
in the estimation process.

Figure 2. IMM estimator with UKF filter using CA, CV, and Singer maneuver
models.

E. Simulations

Various validation scenarios have been conducted and eval-
uated for the SATERA project. The selected flight paths to
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assess the viability of the MLAT system include the North At-
lantic (NAT) region, the Europe/South America (EUR/SAM)
corridor, and the Amazon region. This article presents only the
results for the North Atlantic corridor, which represents the
oceanic airspace with the highest traffic density in the world
(e.g., more than 1,700 operations per day over the NAT region
in 2019 [27]).

The simulated route comprises a total of 100 waypoints
from New York (JFK Airport) to Madrid (Adolfo Suárez
Airport), Figure 3, with an ADS-B transponder transmission
power of 125 W, consistent with the class A1 transmitters
commonly installed in passenger-carrying aircraft to meet ATC
requirements [28].

To assess system performance, the 2D RMS error and
estimator bias are analyzed and discussed. Both metrics are
obtained through Monte Carlo simulations with 100 trials.
Additionally, the results are compared with the Cramér-Rao
Lower Bound (CRLB) analysis described in [29], which
establishes the theoretical minimum variance for unbiased esti-
mators, calculated using the inverse of the Fisher Information
Matrix (FIM). An efficient estimator is one that meets the
CRLB, signifying that all the available information has been
effectively extracted, thereby optimizing localization accuracy.

Figure 3. North Atlantic trajectory.

III. RESULTS

This section presents the results from various simulation
scenarios used to evaluate the performance of the MLAT sys-
tem and the proposed localization algorithms. Several methods
are compared, including the iterative Taylor series expansion
approach, its regularized version using Tikhonov regulariza-
tion, and the IMM+UKF tracking filter. These methods are
assessed based on horizontal position error (RMS) and bias.
Simulated trajectories from the NAT corridor are analyzed un-
der different measurement error conditions, satellites position
accuracy, and system geometry variations due to the satellites’
movement along their orbits. The results of these simulations
are discussed below.

Figure 4 displays the results for the NAT corridor, con-
sidering a nominal standard deviation of 10−8s in the TOA

(a) RMS error 2D

(b) Bias 2D

Figure 4. Comparison of the CRLB, the Taylor series method, its Tikhonov-
regularized version, and the IMM+UKF filter with a σTOAi

= 10−8 s,
σSAT = 10 m and a take-off time of 12:00h.

measurements and a standard deviation of 10 meters in each
of the satellites’ coordinates, as mentioned above, with an
aircraft take-off time of 12:00h. It can be observed that the
Taylor method and its Tikhonov-regularized version produce
similar error and bias results, both positioned slightly above
the Cramer-Rao bound by a few meters. Notice that Tikhonov
regularization achieves lower RMS error values at specific
points along the trajectory, which suggests that some ill-
conditioning may still affect the solution at those points.

However, Tikhonov regularization does not entirely elim-
inate the error peaks, a feat achieved by the IMM+UKF
filter. The IMM+UKF filter demonstrates superior performance
compared to the other methods, showing the lowest bias
and RMS error values at most points along the trajectory.
Furthermore, this method is not affected by ill-conditioning,
as it does not involve directly solving an inverse problem, but
instead uses a filtering approach that adapts well to the varying
geometry and measurement noise.

On the other hand, Figure 5 illustrates the results for a
scenario where the measurement error at the stations was
increased from σTOAi

= 10−8 s to σTOAi
= 10−6 s,

while still assuming unbiased measurements. This adjustment
allows for the assessment of each method’s sensitivity to
random time measurement errors. It is apparent that both
error and bias increased significantly across all evaluated
methods, highlighting their sensitivity to noise in the time
measurements.
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(a) RMS error 2D

(b) Bias 2D

Figure 5. Comparison of the CRLB, the Taylor series method, its Tikhonov-
regularized version, and the IMM+UKF filter with a σTOAi

= 10−6 s,
σSAT = 10 m and a take-off time of 12:00h.

(a) RMS error 2D

(b) Bias 2D

Figure 6. Comparison of the CRLB, the Taylor series method, its Tikhonov-
regularized version, and the IMM+UKF filter with a σTOAi

= 10−8 s,
σSAT = 240 m and a take-off time of 12:00h.

Despite the increased noise level, the IMM+UKF filter
continues to demonstrate stable performance, achieving the
best error and bias values among the evaluated methods. This
underscores the robustness of the IMM+UKF filter against
degraded measurement quality. In contrast, the Taylor and
Tikhonov methods yield similar results in terms of error and
bias, suggesting that the measurement error is sufficiently high
as to prevent any significant reduction in the ill-conditioning
of the solution.

Additionally, Figure 6 represents the results for a scenario
where the error in the satellites’ coordinates is increased
from 10 meters to 240 meters, similar to the case of Aireon
previously mentioned [9]. This scenario allows for assessing
the sensitivity of the different methods to inaccuracies in
satellite positions. Consistent with the prior scenario, both
error and bias increase significantly.

In this scenario, the IMM+UKF filter continues to exhibit
superior performance, with an RMS error of approximately
150 meters and an average bias of 11.6 meters. For the Taylor
and Tikhonov solutions, very similar values are observed;
however, Tikhonov achieves a reduction in RMS error at
certain points along the trajectory, suggesting a greater ability
to handle inaccuracies in satellite positioning rather than in
TOA measurements.

Moreover, it is noted that, especially towards the end of
the trajectory, these two methods occasionally produce error
values below the CRLB, suggesting that this limit may not
be entirely reliable when errors are due to satellite position
inaccuracies rather than TOA (or pseudorange) measurements.
This behaviour can be explained by the fact that the error in
the satellite position is added to the coefficient matrix resulting
in a sort of regularization effect.

Finally, Figure 7 presents the results obtained by delaying
the flight departure time by 2 hours (from 12:00h to 14:00h),
allowing us to evaluate the impact of departure time changes
on system performance, considering that the satellite constel-
lation is constantly in motion and, thus, the system geometry
varies dynamically.

Despite this variation in geometry, there is no significant
change in the performance of the positioning methods; the
results remain very similar to those from Figure 4, with nearly
identical values of RMS error and bias. Peak errors occur at
different points along the trajectory, attributed to changes in
satellite geometry at the adjusted departure time.

In light of these results, it can be concluded that advanced
tracking filters, such as the IMM+UKF, are significantly more
effective in estimating position with greater accuracy and
lower bias, aligning more closely with the standards set by reg-
ulations [30]. These advancements contribute to establishing
the baseline for the SATERA project, laying the groundwork
for enhancing the precision and accuracy of MLAT-based
positioning systems in space environments. Additionally, they
help identify several areas for future work and development
within the project.
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(a) RMS error 2D

(b) Bias 2D

Figure 7. Comparison of the CRLB, the Taylor series method, its Tikhonov-
regularized version, and the IMM+UKF filter with a σTOAi

= 10−8 s,
σSAT = 10 m and a take-off time of 14:00h.

IV. CONCLUSION

This paper has evaluated various localization methods
within the context of a space-based MLAT system for air-
craft position estimation. The methods compared include the
Taylor series expansion approach, its regularized version us-
ing Tikhonov regularization, and an advanced tracking filter
that combines the Unscented Kalman Filter (UKF) with the
Interacting Multiple Model (IMM). The results highlight the
superior performance of advanced tracking filters, such as
the IMM+UKF, especially in highly dynamic environments
with noisy or ill-conditioned measurements. While Tikhonov
regularization is effective in addressing ill-conditioning in
certain scenarios, it does not consistently achieve the accuracy
provided by the IMM+UKF filter.

Despite the promising results, factors such as satellite po-
sition errors and clock bias from synchronization could affect
accuracy. Further research is needed to assess their impact.
Additionally, exploring alternative localization methods that
utilize measurements like Angle of Arrival (AoA) or Fre-
quency Difference of Arrival (FDOA) could enhance space-
based MLAT systems, as these methods have proven effective
in ground-based systems.

This work has established a solid foundation for the SAT-
ERA project by identifying key challenges in implementing
space-based MLAT positioning systems. It also highlights
specific areas for further exploration, which will aid in ad-
vancing the accuracy and reliability of these systems in future

developments.

ACKNOWLEDGEMENT

This research was conducted within the framework of
the SATERA project, which has received funding from the
SESAR 3 Joint Undertaking (JU) under grant agreement No
101164313. The JU is supported by the European Union’s
Horizon Europe research and innovation programme, as well
as by the SESAR 3 JU members other than the Union.

REFERENCES

[1] Eurocontrol, “EUROCONTROL Forecast 2024-2030,” https://www.
eurocontrol.int/publication/eurocontrol-forecast-2024-2030, published:
26-02-2024.

[2] ICAO, Annex 10 Aeronautical Telecommunications - Volume IV- Surveil-
lance Radar and Collision Avoidance Systems. 5th Edition, July, 2014.

[3] NAT Doc 008, Application of separation minima North Atlantic Region.
1st edition Amendment 10. ICAO, 2020.

[4] ICAO, Summary of discussions and conclusions of the fifty-fourth
meeting of the North Atlantic systems planning group. Paris, 25 to
28 June, 2018.

[5] Enaire - Startical, https://www.enaire.es/about enaire/know enaire/
who we are/subsidiaries of enaire/startical, 2021.

[6] Aireon, https://aireon.com/.
[7] Spire, “Spire’s groundbreaking space-based solution will elevate avia-

tion tracking,” https://ir.spire.com/news-events/press-releases/detail/193/
spires-groundbreaking-space-based-solution-will-elevate.

[8] M. T. G. Galati, M. Leonardi and I. Mantilla, “Lower bounds of accuracy
for enhanced mode-S distributed sensor networks,” IET Radar, Sonar
and Navigation, no. 6, pp. 190–201, 3 2012.

[9] John Dolan and Dr. Michael A. Garcia, AIREON INDEPENDENT
VALIDATION OF AIRCRAFT POSITION VIA SPACE-BASED ADS-B.
October, 2018.

[10] J. Dolan, M. A. Garcia, and G. Sirigu, “Aireon space based aircraft
position validation and multilateration solution,” in 2023 IEEE/AIAA
42nd Digital Avionics Systems Conference (DASC), 2023, pp. 1–10.

[11] W. H. FOY, “Position-location solutions by taylor-series estimation,”
IEEE Transactions on Aerospace and Electronic Systems, vol. AES-12,
no. 2, pp. 187–194, 1976.

[12] D. J. Torrieri, “Statistical theory of passive location systems,” IEEE
Transactions on Aerospace and Electronic Systems, vol. AES-20, no. 2,
pp. 183–198, 1984.

[13] J. Smith and J. Abel, “The spherical interpolation method of source
localization,” IEEE Journal of Oceanic Engineering, vol. 12, no. 1, pp.
246–252, 1987.

[14] B. Friedlander, “A passive localization algorithm and its accuracy
analysis,” IEEE Journal of Oceanic Engineering, vol. 12, no. 1, pp.
234–245, 1987.

[15] H. Schau and A. Robinson, “Passive source localization employing
intersecting spherical surfaces from time-of-arrival differences,” IEEE
Transactions on Acoustics, Speech, and Signal Processing, vol. 35, no. 8,
pp. 1223–1225, 1987.

[16] Y. Chan and K. Ho, “An efficient closed-form localization solution from
time difference of arrival measurements,” in Proceedings of ICASSP
’94. IEEE International Conference on Acoustics, Speech and Signal
Processing, vol. ii, 1994, pp. II/393–II/396 vol.2.

[17] M. Geyer and A. Daskalakis, “Solving passive multilateration equations
using bancroft’s algorithm,” in 17th DASC. AIAA/IEEE/SAE. Digital
Avionics Systems Conference. Proceedings (Cat. No.98CH36267), vol. 2,
1998, pp. F41/1–F41/8 vol.2.

[18] J. Hadamard, Lectures on Cauchy’s problem in linear partial differential
equations. Yale University Press, New Haven, CT, 1923.

[19] A. Tikhonov, Solution of Incorrectly Formulated Problems and the
Regularization Method. Soviet Mathematics Doklady, 4, 1035-1038.,
1963.

[20] P. C. Hansen, Rank-Deficient and Discrete Ill-Posed Problems. Society
for Industrial and Applied Mathematics, 1998.

[21] ——, The L-Curve and Its Use in the Numerical Treatment of Inverse
Problems, 01 2001, vol. 4, pp. 119–142.

7

https://www.eurocontrol.int/publication/eurocontrol-forecast-2024-2030
https://www.eurocontrol.int/publication/eurocontrol-forecast-2024-2030
https://www.enaire.es/about_enaire/know_enaire/who_we_are/subsidiaries_of_enaire/startical
https://www.enaire.es/about_enaire/know_enaire/who_we_are/subsidiaries_of_enaire/startical
https://aireon.com/
https://ir.spire.com/news-events/press-releases/detail/193/spires-groundbreaking-space-based-solution-will-elevate
https://ir.spire.com/news-events/press-releases/detail/193/spires-groundbreaking-space-based-solution-will-elevate


[22] E. Wan and R. Van Der Merwe, “The unscented kalman filter for non-
linear estimation,” in Proceedings of the IEEE 2000 Adaptive Systems
for Signal Processing, Communications, and Control Symposium (Cat.
No.00EX373), 2000, pp. 153–158.

[23] J. J. A. Momma, “Localización y seguimiento de aeronaves mediante
sistemas de multilateración de área extensa,” https://oa.upm.es/35037/1/
JORGE JOSE ABBUD MOMMA.pdf.

[24] E. Mazor, A. Averbuch, Y. Bar-Shalom, and J. Dayan, “Interacting
multiple model methods in target tracking: a survey,” IEEE Transactions
on Aerospace and Electronic Systems, vol. 34, no. 1, pp. 103–123, 1998.

[25] T. K. Bar-Shalom, X.-Rong Li, Estimation with Applications to Tracking
and Navigation: Theory, Algorithms and Software. John Wiley & Sons,
Inc., 2002.

[26] R. A. Singer, “Estimating optimal tracking filter performance for manned
maneuvering targets,” IEEE Transactions on Aerospace and Electronic
Systems, vol. AES-6, no. 4, pp. 473–483, 1970.

[27] J. Young, “North atlantic tracks at flight level 330 and
below to be abolished,” https://nats.aero/blog/2022/02/
north-atlantic-tracks-at-flight-level-330-and-below-to-be-abolished/.

[28] EUROCAE, ED-102B MOPS for 1090 MHz Extended Squitter ADS-B
and TIS-B. December, 2020.

[29] G. Galati, M. Leonardi, and M. Tosti, “Multilateration (local and wide
area) as a distributed sensor system: Lower bounds of accuracy,” in 2008
European Radar Conference, 2008, pp. 196–199.

[30] EUROCONTROL, EUROCONTROL Specification for ATM Surveillance
System Performance (Volume 1). Edition 1.3, 21/03/2024.

8

https://oa.upm.es/35037/1/JORGE_JOSE_ABBUD_MOMMA.pdf
https://oa.upm.es/35037/1/JORGE_JOSE_ABBUD_MOMMA.pdf
https://nats.aero/blog/2022/02/north-atlantic-tracks-at-flight-level-330-and-below-to-be-abolished/
https://nats.aero/blog/2022/02/north-atlantic-tracks-at-flight-level-330-and-below-to-be-abolished/

	Introduction
	Methodology
	Multilateration (MLAT)
	Localization algorithms
	Regularization
	Tracking filter
	Simulations

	Results
	Conclusion
	References



