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Abstract—As urban ground transportation congestion in-
creases, there is growing interest in urban air transportation, such
as delivery drones and air taxis. However, managing air traffic
in densely populated urban areas poses significant challenges,
which require effective flight planning, separation management,
and airspace design. This paper investigates dynamic capacity
balancing methods to manage air traffic in constrained urban
airspace, where drones must fly above the existing road network.
Specifically, it compares the effectiveness of labelling high-
complexity zones using historical data versus real-time aggregate
flow data. The results indicate that while both approaches
reduce airspace intrusions and improve safety, the best approach
depends on traffic demand levels. At lower demand levels, using
historical data yields better safety outcomes, whereas using real-
time data is more effective at higher demand levels due to its
flexibility. At their best, both methods increase the travel distance
by less than 6% while reducing airspace intrusions by 30%
compared to a case without dynamic capacity balancing.
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I. INTRODUCTION

Ground transportation is becoming increasingly dense, par-
ticularly in cities like London, where people spend an average
of 148 additional hours per year in traffic congestion [1]. This
growing challenge has led to interest in employing delivery
drones and air taxis to alleviate ground congestion [2]–[5].
In addition to reducing the time spent in traffic, urban air
transportation could mitigate economic losses [6] and reduce
emissions [7], [8].

However, anticipated densities in urban airspace far exceed
those of traditional air traffic management [9]. At such high
densities, flight planning, separation management, capacity
management, and urban airspace design become interdepen-
dent. Therefore, an integrated approach is essential to enable
safe urban operations [10]. Moreover, in some cities, tall build-
ings and critical infrastructure may constrain aircraft above the
existing road network, further complicating flight operations
[11]. This constrained airspace limits aircraft manoeuvrability
and poses unique challenges for navigation.

In constrained airspace, aircraft cannot fly directly to their
destinations and must follow a network. Coupled with non-
uniform traffic demand, certain legs of the network may be
more preferred than others, which can create hot-spots (zones
of traffic convergence). Traffic convergence leads to increased
traffic complexity [12], [13], which can decrease airspace
safety. To address this, capacity balancing can be used to
reduce local traffic and complexity in urban airspace.

Capacity balancing can be achieved centrally, with a single
entity managing take-off delays [14] or dynamic airspace
modifications [15]. However, such systems rely on operators to
freely share operational data. Moreover, uncertainties such as
wind and operational delay can complicate central planning.
The ad hoc nature of urban missions further challenges ad-
vance planning [16]. As a result, we have previously developed
decentralized dynamic capacity balancing concepts, allowing
individual drones to adjust routes based on current airspace
congestion [17], [18].

Our previous work on dynamic capacity balancing has
utilized both real-time [17] and historical data [18] to aid in
the creation of dynamic high-complexity zones so that aircraft
may re-plan around them. The advantage of real-time data
is that it provides current insight into airspace conditions.
Conversely, historical traffic data offers a broader perspective
on traffic patterns, which helps identify persistent congestion
areas. This work aims to compare the performance of a
dynamic capacity balancing method when relying solely on
real-time data versus incorporating historical data to identify
high-complexity zones. The work simulates air traffic above
the city of Rotterdam under varying traffic demand levels.

Section II will explain the general capacity balancing system
and explain the differences in using historical or real-time data
for labelling high-complexity zones. Section III presents an
experiment to compare the two methods for labelling high-
complexity zones. Section IV will show the results of the
experiment. Finally, Sections V and VI contain the Discussion
and Conclusion, respectively.

II. DYNAMIC CAPACITY BALANCING

Capacity balancing can be used to improve safety by
reducing local traffic complexity and density in urban airspace.
In this work, we perform capacity balancing by spreading
traffic over the available airspace while attempting to limit
the extra distance travelled (safety and efficiency trade-off).
In this way, the local traffic density and complexity can be
lowered dynamically. The overall process in which dynamic
capacity balancing employed is as follows:

1) Observation: The safety events that have occurred in
the past ten minutes in the airspace are gathered in the
observation step. The safety events considered for the
observations are unique conflict events (see Sec. Fig 1).

2) High-complexity zone labelling: Using conflict obser-
vations, the airspace is labelled into areas with high and



low complexity. The areas of high-complexity airspace
have an additional cost of travel.

3) Replanning: Aircraft use the updated cost of travel to
decentrally create a new optimal route that considers the
additional costs.

In this work, we consider two different methods for labelling
high-complexity airspace. The first method additionally uses
historical data to help label the airspace, while the second
only uses the real-time data from the observation step. The
historical method will use static and stable zones, while
the real-time data will create dynamic zones that adapt to
traffic fluctuations. Note that both methods will use real-time
data to decide which airspace zones can be considered high-
complexity.

Figure 1. Conflict and intrusion diagram. An intrusion occurs when an
aircraft enters the protected area of another aircraft (dashed circle). A conflict
is counted when an aircraft is expected to become an intrusion within a
lookahead time. It is up to the conflict resolution algorithm to solve conflicts
before they become intrusions.

A. High-complexity labelling with historical data

Using historical traffic patterns for capacity balancing can
identify general trends and locations prone to high complexity.
By incorporating this historical perspective, we can remove
fluctuations arising solely from real-time data, leading to
more consistent labelling of high-complexity zones. Previous
research has demonstrated that using historical data for ca-
pacity balancing can improve airspace safety [18]. We define
historical data as the conflict locations derived from a scenario
without any capacity balancing applied (see Sec. III-B). It is
important to note that the historical data source in this work
was developed from the same traffic demand distribution as the
other scenarios within the experiment. However, in practical
applications, capacity balancing methods would likely need to
account for variable traffic demand patterns.

Once all conflict events from the historical scenario are
collected, they are clustered using Ward’s method [19]. Ward
clustering is a variance-minimizing approach, similar to K-
means, which takes a distance threshold for merging nearby
clusters (90 meters). After clustering, we use the centroid of
the clusters to create a Voronoi diagram. A Voronoi diagram
creates polygons in which all points in a particular polygon
are always closer to its centroid than any other centroid [20].

The resulting Voronoi diagram is illustrated in Fig. 2. Note
that the shape and location of these zones remain constant
throughout each scenario. During flight, every 10 seconds,
the conflict-density of each Voronoi polygon is calculated
by dividing the number of conflicts (within 10 minutes) by
the total length of streets within that polygon. Subsequently,
polygons with a conflict-density greater than zero are ranked
based on their relative conflict-density. The top 75 percent
of these polygons are then assigned an additional cost multi-
plier and are considered high-complexity zones. Any drone
whose planned path traverses these high-complexity zones
must recalculate a new path that takes this additional cost
into account. The cost of travelling through a high-complexity
zone is twice that of travelling through a low-complexity zone.
The reason to choose 75 percent of clusters to receive the
additional cost multiplier of two comes from the sensitivity
analysis performed in [17].

Figure 2. Static zones identified in Rotterdam airspace using historical conflict
data. The location of these zones do not change. However, the zones labelled
as high-complexity can change every 10 seconds.

B. High-complexity labelling with real-time data

Unlike labelling with historical data, using real-time conflict
data for capacity balancing allows the aircraft to respond to
the current condition of the airspace. This approach would
be useful in mitigating situations that are not visible in the
historical data timescale.

The method for high-complexity labelling with real-time
data is derived from [17]. In this method, potential zones are
not defined a priori: they are dynamic. Labelling the high-
complexity zones only depends on the current observations.
First, only the conflict events that have occurred within the
last ten minutes (observations) are clustered with the Ward
method. Then a convex hull polygon [21] is created which
contains all members of the clusters.

Similarly to the historical data method, the conflict-density
of the polygons is calculated and the top 75 percent of clusters
receive the additional cost multiplier of two. An example of
these dynamic high-complexity zones is seen in Fig. 3. Note
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that the size, location, shape, and label of the zones is changing
every 10 seconds. All aircraft with a path that intersects these
high-complexity zones must create a new optimal plan.

Figure 3. Dynamic zones identified in Rotterdam airspace using real-time
conflict data. Note that the image shows the high-complexity zones at one
specific moment in time. The amount, size, shape, and locations of these
zones can change every 10 seconds.

III. EXPERIMENT

The experiment will compare using historical versus real-
time data to label the high-complexity zones of a dynamic
capacity balancing system. It will also present a baseline case
that does not perform any dynamic capacity balancing.

A. Common Elements

1) Urban Airspace

The urban airspace used in this work is the city of Rot-
terdam (Fig. 4). The street network was downloaded from
OpenStreetMap using the OSMNX python package [22], [23].
After downloading, the street network is processed so that
roundabouts and parallel streets are simplified. Moreover,
virtual ’bridges’ were added to provide additional crossing
points over the waterways of Rotterdam.

Previous research has shown that a one-way network for ur-
ban airspace is safer than a two-way network [24]. Therefore,
a one-way network is designed to ensure that all intersections
are reachable. The first step is to group continuous streets into
groups using the COINS algorithm [25]. In the second step,
a genetic algorithm is used to determine the directionality of
the groups. More information about the urban airspace set-up
can be found in [11] and [17].

2) Aircraft missions

The MASS-GT [26], [27] project made an estimate of the
neighbourhood parcel demand in the city of Rotterdam. Fig.
5 shows the relative demand of the neighbourhoods in the
Rotterdam airspace seen from Fig. 4. This demand is used to
create the traffic distribution considering the take-off locations
and destinations.

Figure 4. The constrained airspace in Rotterdam (Area= 50 km2).

Figure 5. Take off locations and relative parcel demands by neighbourhood.
The relative parcel demand is from the MASS-GT project [26], [27].

The take-off locations for all potential missions are also
shown in Fig. 5. They are placed at least 300 metres from
each other and are ensured to be outside of water bodies. The
destinations are all other nodes in the street network that are
outside of water bodies. Each mission starts by randomly se-
lecting one of the take-off locations. The destination is chosen
by considering the weighted probabilities and by ensuring that
the mission is at least 1000 metres long. The plan is created by
finding the shortest path between the two nodes considering
the length with the Dijkstra algorithm [28]. All missions take
place at 30 feet above ground.

3) Replanning module

Aircraft that intersect any high-complexity zone in their
future path must search for a new optimal plan. Since a new
observation is made every ten seconds, aircraft continuously
check for lower cost plans. The new plans are created by
finding the shortest path between the current position and the

3



destination with the Dijkstra algorithm. The streets in high-
complexity zones receive a cost multiplier of 2.

4) Conflict detection and resolution

This work uses state-based conflict detection. This method
linearly extrapolates the current position of all aircraft with a
given look-ahead time and checks whether they will violate the
protected zone (Fig. ??). The drones use a tactical speed-based
conflict resolution algorithm from [29] to solve conflicts before
they become intrusions. The method relies on a horizontal
protected radius of 32 metres (Table 3.7.2.4-1) [30] and a
10 second look-ahead time. Note that a limitation of state-
based conflict detection in constrained airspace is that it detects
a large amount of false conflicts [11]. However, these false
conflicts provide information where aircraft are near each
other, so they are also taken into account for this work.

5) Aircraft model

All aircraft in this work are modelled after a Matrice 600
pro drone with performance parameters described in Table I.

TABLE I. DJI MATRICE 600 PRO DRONE PERFORMANCE PARAMETERS
[31].

Parameter Value

Max. horizontal speed 12.9m/s
Avg. horizontal speed 10.3m/s
Min. horizontal speed 0m/s
Max. take-off mass 15 kg
Acceleration/Deceleration 3.5m/s2

6) Simulation software

This work used the BlueSky air traffic simulator for the
experiments [32]. BlueSky is a fast-time simulator that can
be extended via plugins so that different methods of labelling
high-complexity zones can be compared.

B. Independent variables

The independent variables of the experiment are as follows
• Aggregate flow data labelling: Baseline (no capacity

balancing), Historical data, Real-time data.
• Imposed traffic demand level: 100, 200, 300, 400, 500

simultaneous aircraft in the air. These correspond to
densities of 2, 4, 6, 8, 10 drones/km2, respectively. The
low value is similar to what was estimated in [9], while
the high value is about 2 times the highest density in [9].

Each case is repeated 5 times with a different random seed
that generate different origin-destination pairs. This creates 3
(data methods + baseline) x 5 (traffic demand levels) x 5
(randomly selected random seeds) = 75 different scenarios.
Each scenario simulates aircraft missions for 2 simulation
hours.

The historical data scenario was created with 300 aircraft
with the demand distribution in Fig. 5. Capacity balancing
is not employed (baseline) in the historical scenario and
a different random seed is used to select the origins and
destinations. The conflict events of the historical scenario
created the zones shown in Fig. 2.

C. Dependent measures

This work will use three different dependent measure cate-
gories. These are Safety, Efficiency, and Airspace.

1) Safety

We consider conflicts and intrusions as the relevant safety
metrics. However, these are not presented in absolute terms.
First, the conflicts and intrusions are scaled by the total number
of flights. This gives the number of conflicts and intrusions per
flight.

We also present the safety metrics scaled with the distance
travelled as a percentage of the baseline case. The metrics are
conflicts and intrusions per distance percentage. For example,
assume the results show that using real-time or historical data
yields 105 intrusions per distance percentage. This means that
on average, aircraft encountered 5 percent more intrusions per
distance when compared to the baseline. Conflict/intrusions
per distance are useful metrics for this experiment because an
aircraft with an initial identical route may fly a different route
depending on the data labelling method.

2) Efficiency

Efficiency metrics are related to how much distance aircraft
fly. As the flight distance increases, the efficiency of the flight
decreases. For this category, two metrics are observed.

First, the horizontal distance travelled as a percentage of
the baseline case is shown. Assuming that one concept shows
a distance percentage of 105 percent, it would mean that, on
average, aircraft flew 5 percent more distance as compared to
the baseline case without dynamic traffic management.

Second, the number of replans per flight is shown. The
number of replans per flight will indicate how many times
aircraft are changing their original plan. A value equal to one
would show that all aircraft make on average one new plan
during flight. Note that this metric is not shown for the baseline
case because they do not perform any replans.

3) Airspace

There is an observation of the airspace made every 10
seconds to find the high-complexity zones. This means that the
amount and location of airspace labelled as high-complexity
can vary throughout the simulation. Therefore, two metrics
related to the airspace are presented.

The first metric measures on average the percentage of
airspace that is labelled as high-complexity. The second metric
measures the temporal stability of high-complexity airspace.
This represents the average percentage overlap of the clusters
from one observation to the next. A value of 100 percent
would indicate that the high-complexity airspace is completely
identical from one observation time step to the other.

IV. RESULTS

The following section presents the results of the simulations.
Unless otherwise noted, all figures show the imposed traffic
demand level on the horizontal axis and the dependent variable
in the vertical axis.
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A. Safety

Figs. 6a and 6b shows the number of conflicts and intrusions
per flight, respectively. Both plots show similar trends. All
three concepts, baseline, historical data, and real-time data,
show an upward trend in conflicts and intrusions per flight
as the traffic demand increases. However, it is clear that the
dynamic capacity management concepts perform better than
the baseline concept. Moreover, it is seen that using real-time
data for dynamic capacity management is better than historical
data, especially at the higher demand levels.

Figs.6c and 6d show the conflicts and intrusions per distance
as a percentage of the baseline, respectively. The dashed
horizontal line represents the baseline concept. Regarding the
conflicts, both the historical and real-time data concepts show
little improvement over the baseline at a traffic density of 100
simultaneous aircraft. However, they both decrease to about
85 percent of the baseline at the higher demand levels, with
the real-time data concept showing a slightly lower number
of conflicts per distance travelled. The intrusions per distance
percentage is similar but exhibits some important differences.
First, at 100 aircraft in the air, it is clear that using historical
data reduces the intrusions per distance to an average of
71 percent of the baseline. Meanwhile, at the same demand
level, using real-time data does not show an improvement.
As the demand level increases, using historical data keeps the
intrusions per distance percentage constant. However, at 300
and 400 aircraft in the air, using real-time data for dynamic
capacity management show a 10 percent improvement over
using historical data. At 500 aircraft in the air, using real-time
data for dynamic capacity management is not as efficient as
lowering the intrusions per distance percentage, as with 300
and 400 aircraft.

B. Efficiency

Fig. 7a shows the distance travelled as a percentage of the
baseline concept without any dynamic capacity management.
As expected, using historical and real-time data for dynamic
capacity management increases the overall distance travelled.
The figure also shows that as the demand level increases, the
additional distance travelled also decreases when using histor-
ical and real-time data. However, it is clear that considering
historical data does not increase the extra distance travelled as
much as when using real-time data.

Fig. 7b shows the number of re-plans per flight. This shows
a similar trend to Fig. 7a, which is that re-plans per flight
tend to decrease with increasing demand level. Moreover,
considering historical data for dynamic traffic management
tends to reduce the number of re-plans per flight as when
using real-time data.

C. Airspace

Fig. 8a shows the percentage of airspace that is considered
high density. Using historical data for dynamic capacity man-
agement tended to label more high density compared to using
real-time data. Both concepts increase the percent of high-
complexity airspace with increasing demand level. However,

the increase is faster at the lower demand levels and then tapers
at higher demand levels. With historical data, a maximum of
60 percent of the airspace is labelled as high-complexity, while
with real-time it is less than 50 percent.

Fig. 8b shows the high-complexity temporal stability. Note
that it measures how stable the locations of high-complexity
are, an average between observations steps. A value of 100 per-
cent indicates that high-complexity airspace does not change
between observation steps. The figure exhibits that using his-
torical data creates very stable high-complexity zones that are
on average 90 percent the same from one density observation
to the next step. Using real-time data for dynamic traffic
management tends to have lower high-complexity stability
than when using historical data. It increases from around 65
percent at lower demand levels to around 70 percent.

V. DISCUSSION

A. Safety

Interestingly, the results showed that the strategy used to
label high-complexity zones changes the effectiveness of the
dynamic capacity balancing method at different demand levels.
When the demand level is low (100 aircraft), using historical
data was able to reduce the conflicts per distance to about 70
percent of the baseline. Meanwhile, real-time data is not as
effective. This is because the historical data method is able
to identify the shape of the zones that are high-complexity.
This means that the stability provided by historical data is
beneficial when there is not enough real-time data to create
useful high-complexity zones.

However, as the airspace becomes increasingly dense, using
real-time data begins to yield better results. This means that
there is enough information so that the dynamic capacity bal-
ancing system can effectively reduce the number of intrusion
events. Using real-time data also starts to outperform using
historical data. This again shows that using historical data can
help increase safety when there is not enough information in
the airspace. However, with increasing density, the flexibility
allowed with real-time information becomes more important
in finding and avoiding high-complexity airspace.

Moreover, using real-time information tends to show con-
stant relative improvement over the baseline in terms of
intrusions. Using real-time information reaches its maximum
improvement over the baseline at around 400 aircraft, and
then starts to decrease in effectiveness at the highest demand
level. At very high densities, there is more of a chance
of encountering false conflicts. False conflicts are typically
encountered in constrained airspace, when using state-based
conflict detection. Due to the orientation of the street, a
detected conflict may never actually become an intrusion.

B. Efficiency

Both high-complexity labelling concepts increase the ex-
tra distance travelled as compared to the baseline by less
than 10 percent, and the difference between both is quite
small. However, it is clear that as the traffic demand level
increases, the aircraft travel less additional distance. Due to
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(a) Conflicts per flight. (b) Intrusions per flight.

(c) Conflicts per distance percentage, where the baseline represents 100 percent. (d) Intrusions per distance percentage, where the baseline represents 100 percent.

Figure 6. Safety: These plot show the conflicts and intrusions per flight in Fig. 6a and Fig. 6b, respectively. It also shows the conflicts and intrusions per
distance percentage in Fig. 6c and Fig. 6d, respectively.

(a) Distance as percentage of the baseline case. (b) Replans per flight.

Figure 7. Efficiency: These plots show the distance percentage and amount of replans per flight in Fig. 7a and Fig. 7b, respectively.
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(a) Percent of high-complexity airspace. (b) High-complexity temporal stability.

Figure 8. Airspace: These plots show the percent of high-complexity airspace and high-complexity temporal stability in Fig. 8a and Fig. 8b, respectively.

the increased conflicts observed in the airspace, the amount
of high-complexity zone airspace increases. This makes it
difficult to plan around, so there are fewer re-plans per flight.
Interestingly, it also means that not all aircraft need to replan
to see a beneficial effect in safety.

It can be seen that using historical data for dynamic capacity
balancing makes aircraft more predictable, since they tend to
perform fewer re-plans and travel less distance. However, this
predictability is more useful at low demand levels when the
airspace does not provide enough information to make real-
time data useful. At higher demand levels, more replans per
flight allow the real-time data zones to better distribute traffic.

C. Airspace

It is also seen that about 30 percent of the airspace should be
high-complexity in order to see the beneficial effects in terms
of intrusions. At the lowest demand level, using historical
data makes 30 percent of the airspace classified as high-
complexity. This is around 20 percent for when using real-
time data. However, when the real-time data is at 30 percent
at 200 aircraft, a relative improvement in the number of
intrusions matches that of historical data. Moreover, at the
higher demand levels, too much of the airspace is high-
complexity as compared to real-time data, which allows the
real-time data more flexibility in isolating the high-complexity
zones and therefore spreading traffic better.

The airspace results also illustrate the reason why the
distance travelled and number of replans per flight decrease
with increasing traffic demand level for both concepts. As
more of the airspace is labelled as high-complexity, more
aircraft are not able to find an alternative route that decreases
the overall cost of travel. Therefore, they perform less replans
which means the extra distance travelled tends to decrease with
density.

The predictability of using historical data is again seen
in the high-complexity temporal stability. On average, about
90 percent of the airspace labelled as high density is the

same from one observation time step to the next when using
historical data. The predictability of the real-time data high-
complexity zones only reaches a maximum of around 70
percent.

VI. CONCLUSION

The aim of the study was to study the differences between
using historical and real-time conflict data to create areas
high-complexity with dynamic capacity balancing. The results
show that a decentralised dynamic capacity balancing method
always shows improvement in terms of intrusion events at low
and high demand levels. However, at lower demand levels, the
dynamic capacity balancing method performs better in terms
of safety if it uses historical data to label high-complexity
zones because it used past information to generate the likely
problematic zones.

As the traffic demand level increases, it is better for
safety to use real-time data to identify high-complexity zones.
The increased flexibility with real-time data means the high-
complexity areas can be identified and aircraft can plan around
them. Nevertheless, both data labelling methods increase the
extra distance travelled by less than 6 percent while reducing
the observed intrusions to around 70 percent of a case without
dynamic capacity balancing. In practice, a dynamic capacity
balancing should make use of both real-time and historical
data. Therefore, future research should study how best to
combine the benefits of both data sources.

Moreover, the historical data in this work was derived from
a similar demand distribution than what was experienced in the
experimental scenarios. In reality, the demand distribution can
vary. Therefore, more research should be made that considers
the demand distribution variation between the historical data
and the actual missions, especially at low demand levels, since
depending on real-time data is least effective there.

Also, both data labelling methods have a reactive nature.
There need to be conflicts in the airspace so that zones can be
labelled as high-complexity. This is the decentralised nature of
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the dynamic capacity balancing method. Therefore, research
into combining this system with a more strategic approach
could be beneficial.

Additionally, there are a number of limitations in the general
dynamic capacity balancing method itself that require further
study. Although [17] studied the effect of modifying the
percentage of clusters with an additional cost-multiplier, it was
still one dimensional. A more granular approach that adapts
this percentage based on local density or complexity could
yield better results. Similarly, other factors of the method
(the 10-second update rate and the 10-minute data gathering)
should be studied further. Future research should focus on
how this balancing method fits within the broader U-Space
framework.

DATASET AND SOFTWARE AVAILABILITY

The source code and results of the concepts presented in
this work are openly available online [33].
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