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Abstract—The way airlines plan flights is crucial, needing to
consider route charges, fuel consumption, and expected delay
on the route. However, their decisions also have important
consequences for the climate, since choosing different routes can
have very different impacts in terms of emissions of CO2 and
other types of pollutants, such as NOx. Whilst, in general, low fuel
consumption and low environmental impact go hand-in-hand,
the different route charges set by the ECAC countries mean that
cheaper routes have sometimes worse environmental impact. The
Green-GEAR project is developing incentivisation frameworks
to help re-align airlines’ decisions with low(er) environmental
impacts. In this article, we present this issue in more detail,
the methodology of the project, the modelling aspects, a stated-
preference survey, and the determination of climate hotspots.
Further, we present the preliminary survey results obtained from
test data from the consortium team, and a sample of climate
hotspots. We use these test data to discuss the principles of the
modelling of utility functions, and the integration of utilities and
climate hotspots in a new route-charging scheme.

Keywords—Green route charging; stated-preference survey;
climate hotspots; meteorological data; airline decision-making

I. INTRODUCTION

The European Green Deal [1] calls for achieving net-zero
emissions by 2050, urging a shift towards sustainable mobility.
Aviation needs to reduce emissions, and while development of
electric or hydrogen-powered planes and sustainable aviation
fuel will make a considerable difference, they will take time
to have a full impact. To address a more immediate future, the
Green-GEAR project [2] is exploring ‘green’ route-charging
mechanisms to incentivise environmentally friendly flight path
choices.

Route charges are paid by airspace users (AUs) to cover the
provision of air navigation services. The route charges need
to be non-discriminatory, transparent and cost-related [3], [4].
The current mechanism can result in unintended consequences
[5], when a longer route through cheaper airspace is used to
avoid more expensive airspace along a direct route, which
results in cost savings for the AU, despite an increase in fuel
consumption and higher CO2 emissions, for example1.

1The analysis of possible application of common unit rate found that having
the same unit rate could reduce up to 4400 tons of CO2 emissions on a busy
day [6], but the scheme would not necessarily be equitable.

The ‘green’ route-charging (GRC) Solution proposes to
address the emissions reduction in two steps: an ‘initial’ and
‘full’ Solution. The initial one proposes a novel route-charging
mechanism aimed at reducing the horizontal inefficiency due
to differences in unit rates as cited above (i.e., avoiding
extension of route to save costs). In this paper we are focusing
on the full GRC Solution that aims to incentivise the use
of climate-friendly trajectories, when considering both CO2

and non-CO2 emissions. The idea is to explore a mechanism
that ‘rewards’ the avoidance of climate sensitive areas (i.e.,
climate hotspots), while still leaving the flexibility of using
the said areas, against a higher charge. A ’climate hotspot’
is a volume of airspace where the atmospheric conditions are
such that flying through it creates much higher climate impact
than flying through other areas (e.g., a region where persistent
warming contrails are very likely to get formed). Of course,
the operational environment of such a solution is complex, as
it involves stakeholders with very different operational goals
(AUs, and air navigation service providers (ANSPs)), ATM
infrastructure, and the state of the atmosphere. It is important
for AUs not to be constrained to a single option, but to retain
flexibility, as operational reasons such as avoidance of, or
recovery from delays, may require different trajectories, which
have differing environmental costs.

The design and assessment of a full GRC Solution requires a
methodology including careful consideration of several factors
(see Section II), but we will discuss only two factors in
detail in this paper: AU behaviour in light of new charging
mechanisms, and full inclusion of the impact of non-CO2

emissions on route choice.
Historically, ATM has faced the challenge of predicting AU

behaviour as a function of route charge changes, in particular,
such as when one state changes its charges to such an extent
as to cause unexpected overloads in neighbouring airspace, as
was the case in 2015 when German ANSP raised their unit
rate [7]. In this paper, we present a novel methodology for
evaluating AU preferences when presented with a set of real-
istic, options set in a future context of route charges designed
to discourage behaviour with strongly negative environmental
impacts. To the best of our knowledge, this is the first time that
a ‘stated preference’ (SP) survey will be deployed with AUs



specifically to gauge their sensitivity to environmental impact
when faced with difficult choices in operations. We explain
the particular value of the SP approach, over other direct
interview methods (e.g., directly inferring values from actual
choices in ‘revealed preference’ surveys) and indirect inference
(e.g., the relative common practice of deducing future choice
probabilities from machine learning models). The design and
validation of such a method are vital to its success, and are
presented in this paper.

The climate impact of aviation’s non-CO2 emissions is
rather difficult to assess and/or monitor. Aviation’s radiative
forcing2 is composed, roughly, of one-third CO2 impacts and
two-thirds non-CO2 impacts. The most significant contribution
comes from contrails and contrail cirrus, albeit with consid-
erable uncertainty, alongside effects from NOx emissions [8].
Unlike CO2 impacts, non-CO2 effects are highly influenced
by atmospheric conditions, thus they depend on the location,
time and altitude of emissions. The FL4ATM and ALARM
projects [9] developed a CLIMaCCF tool [10] that can give the
location of volumes of airspace that are particularly sensitive
to aviation non-CO2 emissions, termed climate hotspots. Here,
we analyse the usage of information on climate hotspots for
the new route-charging mechanism.

A. Current route-charging scheme

EUROCONTROL’s Central Route Charges Office (CRCO)
implements the Multilateral Route Charging System and is
responsible for the calculation, collection, and redistribution
of route charges, and the charging system in the European
Union is regulated by Implementing Regulation IR 2019/317,
the Single European Sky Performance and Charging Scheme
[4]. A route charge “is a levy that is designed and applied
specifically to recover the costs of providing facilities and
services for civil aviation.” [3]. Each State needs to establish
one or more ‘en-route charging zones’ – volumes of airspace
that extend from the ground up, where en-route air navigation
services are provided and for which a single cost base and a
single unit rate are established. The unit rate is a unique tariff
per service unit. The number of service units for a flight is
determined by the product of the distance and weight factors.

The route charge for a flight is the sum of charges accrued
over all crossed charging zones i.

R =
∑
i

ri, ri = ui × ni,

where R is a route charge, ri is the charge accrued in zone i,
ui is the unit rate for zone i, and ni is the number of service
units in zone i, which are the product of the distance (di) and
weight (wi) factors:

ni = di × wi, di =
GCD
100

, wi =

√
MTOW

50
,

The distance factor is proportional to the great-circle dis-
tance between entry and exit points to each of the charging

2Quantification of a change to the balance of energy flowing through the
atmosphere.

zones, minus 20 km if the origin or destination airport is
within a charging zone. The weight factor takes into account
the productive capacity of an aircraft, where heavier ones are
expected to pay more for air navigation services.

The Performance and Charging Scheme, IR 2019/317 [4]
fosters long-term improvements in air traffic management
(ATM) (as described in the European ATM Master Plan [11]),
reduction of greenhouse gas emissions and optimum use of
airspace. The regulation defines the following:

• Reference period, that is the period of validity and
application of the Union-wide performance targets;

• Performance plans, which are taking into account future
costs based on planned investments and forecast traffic,
and also set the performance targets;

• route and terminal charging scheme (describing the charg-
ing zones and unit rates, obtained by dividing determined
costs3 by the traffic forecast);

• incentives that could be introduced in performance and
charging schemes aiming to encourage better ATM per-
formance. One form of incentives is the modulation of
charges that can be used to reduce the environmental
impact of flying or the level of congestion of the network
in a specific area [4]); and

• the Network Manager performance plan.

Thus, the current route-charging scheme takes into account
investments planned to improve ATM performance and the
traffic forecast. The charging is based on the actual route
flown (previously it was based on the last-filed flight-plan),
and the charges are calculated and collected by the CRCO.
The environmental impact is not taken into account; nor is the
potential cost of delay or AU planning priorities.

B. Literature review

The work presented here builds on prior research activities
both within and outside SESAR, and the research of behaviour
forecasting (SP versus revealed-preference, etc.).

The optimisation of the individual trajectory under any
objective is relatively easy. The optimisation of any factor
(e.g., delay, capacity usage, environmental impact) involving
the traffic in the network becomes harder, as it is subject to
myriad constraints. It is even harder when flexibility needs to
be an important ingredient of the system’s operation. The eco-
nomic incentives for traffic redistribution in the European ATM
network have been studied in SATURN, ADAPT, COCTA, and
CADENZA, all SESAR projects. SATURN studied the impact
of peak-load pricing modulation of route charges [12] on the
traffic redistribution, to avoid sector capacity overloads, while
ADAPT [13] explored advanced prediction models aimed at
enhancing flexible, trajectory-based operations, providing a ba-
sis for adaptive decision-making in air traffic management. The
developed model offered a measure of flight flexibility [14],
which is an important attribute for the AUs. The dynamically
priced trajectory products, where the price and delay are taken

3The costs that are to be financed by charges imposed on airspace users.
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into account, and their application in the EU ATM network
was analysed by [15].

The environmental impact of aviation is composed of CO2

and non-CO2 emissions. The CO2 emissions are generally
proportional to the distance flown [16], meaning that to
decrease the impact of CO2 one should strive to decrease miles
flown. The longer routes can be caused by pure economic
factors, such as the cost of the trajectory, but also by the
airspace capacity overload. When a demand over a portion
of airspace exceeds its capacity, air traffic flow management
regulations are invoked that result either in flight delay (to
smooth the demand) or flight re-routing, which is often longer
than originally planned trajectory [17].

The emissions from aviation increase the overall radiative
forcing from the atmosphere on the planet, more commonly
known as the greenhouse effect. CO2 is responsible for
roughly one-third of this radiative forcing from aviation, while
two-thirds come from non-CO2 effects. The most significant
contributor to aviation’s radiative forcing arises from contrails
and contrail cirrus, alongside effects from NOx emissions
[8]. As already mentioned, the non-CO2 effects are highly
influenced by atmospheric conditions, meaning they depend on
the location, time and altitude of emissions. Climate hotspots
can be determined through the use of the CLIMaCCF python
library [10]. The hotspots are determined from the computa-
tion of individual and merged non-CO2 algorithmic climate
change functions (aCCFs) [9]. By leveraging these models,
the Green-GEAR project aims to enhance the accuracy and
effectiveness of its environmental impact assessments. Here,
we will present the climate hotspot determination, and discuss
the requirements for their operational use in the route-charging
mechanism.

Finally, the GRC mechanism would involve a new way of
charging that takes into account the complete climate impact
of emissions in the pricing. The efficient tool for prediction
of future choices can be found in SP surveys [18]. A rare
application of SP surveys in aviation can also be found earlier
in the CADENZA project, with a novel assessment of potential
future scenarios for trajectory pricing [19].

II. METHODOLOGY

The goal of the full GRC Solution lies in finding the
airlines’ willingness to pay in the hypothetical situation where
the full GRC Solution would be implemented, where the
crossing of a climate hotspot would entail an increase of
route charges (e.g. a penalty) and avoidance would entail
some form of compensation (‘award’) in terms of lower route
charges for avoiding the hotspot (which also might bring
higher fuel costs and delays). Figure 1 gives an example of the
environmental impact of two trajectories. The blue one mostly
avoids climate hotspots (depicted in green), and thus creates
a ‘low’ environmental impact. The red trajectory crosses a
climate hotspot and thus has a ‘high’ environmental impact.

In order to design the full GRC Solution, and to assess
it, we will apply the methodology depicted in Figure 2. Two
components of the methodology are of the utmost importance:

Figure 1. Example of climate hotspot and trajectories with different environ-
mental impact.

Figure 2. Full GRC Solution methodology.

the SP survey, and climate hotspots, that are described in the
following subsections. The results of the survey, the AUs’
utilities in the case of green route charging, and the climate
hotspots will then be included in the optimisation framework
to model the GRC scheme. The optimisation framework will
take into account the route charges, flight operational costs,
AUs’ willingness to pay, subject to ANSPs’ revenue neutrality
and airspace and airport capacities. As with any optimisation
model, we need to test the feasibility of the proposed formula-
tion, taking into account the size of the problem, which needs
to be sufficient for the required assessment. Another element
will need to be added to the optimisation framework that is still
under development, and that is the penalty/award scheme to be
applied for crossing/avoidance of the climate hotspots, which
will be discussed with the ANSP and AUs representatives in
a planned workshop. The results of the optimisation model
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runs will be used to assess the Solution from the feasibility
and performance points of view. As the Solution is still under
development, here we focus on the SP survey and the climate
hotspots, which are described next.

A. Stated preference (SP) survey and design

The method deployed is known as ‘stated preference’ be-
cause respondents state their values / preferences, rather than
the researcher inferring values from actual choices (‘revealed
preference’). The survey will be used to assess airlines’ will-
ingness to pay (WTP) for the avoidance of climate hotspots,
and/or their sensitivity to arrival delay and costs, and the
associated uncertainty. SP is much stronger than the practice of
solely inferring preferences from post hoc (machine learning)
models, which have the combined disadvantages of being:

• typically based on executed trajectories (e.g. in response
to extant delays);

• weakly capable of evaluating future choice sets;
• based on weaker inference.
The SP survey is composed of a set of choice-based ques-

tions representing a series of hypothetical choices between tra-
jectories with different characteristics. We use the Lighthouse
Studio platform for survey design and on-line implementation.
The survey adapts to participants’ preferences as they provide
feedback, enabling us to gather detailed insights into what
participants value most in their choices. We are interested in
assessing the preferences over four trajectory characteristics,
or ‘attributes’. Each attribute has several values to be included
in the variation of choices. Below are the key attributes along
with the number of levels they encompass:

• Cost sensitivity: fuel and route charges (with 7 levels);
• Short arrival delay aversion: 50th percentile delay time,

i.e., there is a 50% chance that the flight will be delayed
by less than X minutes on arrival (with 3 levels);

• Long arrival delay tolerance: 90th percentile delay time,
i.e., there is a 10% chance that the flight will be delayed
by more than Y minutes on arrival, (with 4 levels);

• Environmental consideration: environmental impact (with
3 levels).

For example, the attribute environmental impact, with levels
of ‘high’, ‘medium’, and ‘low’, refers to the climate impact
a flight can cause by flying through, or avoiding, a climate
hotspot.

The survey presents the following sets of questions, where
sets 2-3 are adaptive (‘adaptive’ because the choices offered in
each subsequent question are based on respondent’s previous
choices):

1) Introduction and demographics: participants are intro-
duced to the survey’s purpose and provide basic demo-
graphic information.

2) Screen (10 tasks) and attribute identification tasks: these
tasks involve screening questions designed to filter out
irrelevant choices and ensure that only the most relevant
options are considered. The participants should assess
the offered choices as ‘I would consider’ or ‘I would

consider in the most extreme case’. The selected choices
are transferred to the ‘choice tasks’. The choices are
further filtered with ‘unacceptable tasks’, where the par-
ticipants need to identify unacceptable choices. There-
fore, unacceptable, and screen tasks are iterative and
interconnected, used to down-select from all possible
combinations ((7x3x4x3).

3) Choice tasks (up to 15 tasks): participants face the
choices filtered down via the previous set of questions.
The offered choices are characterised by varying levels
of key attributes.

Based on the description above and as a part of the design
concept, it was important to formulate choices presented to
AUs with as realistic choices as possible. For example, to
use accurate estimates of fuel and route charges. The design
also includes appropriate contextual description in the survey
introductory material, underlining that the offered, sometimes
challenging (realistic) choices reflect ‘the types of trade-offs
required in our congested European airspace’. Underpinning
the adaptive approach, it was also important to clearly explain
what is meant by ‘unacceptable’ attributes. Choices of attribute
levels, indicated by respondents as only acceptable ‘in the most
extreme case’ were thus checked downstream in the survey
logic against whether a flight would actually be cancelled in
such an ‘extreme’ case, before inclusion or exclusion from
subsequent choices.

It should be noted here that our SP approach was not trying
to find some optimal solution (which would be trivial: cheap
trajectories without delays or environmental impacts!), but
to determine realistic operational constraints in which future
regulatory measures are more likely to be workable.

The first version of the SP survey is currently being tested
for coherency and proper interpretation of the questions with
the project’s Advisory Board volunteers. After this initial
feedback, the survey will be circulated to more than sixty
European airlines, with the help of Advisory Board members.

The obtained data will be analysed to determine the utility
of the four attributes, when faced with the choice of avoiding
climate hotspots, inter alia. The analyses will be performed
using an algorithm incorporated in the Lighthouse Studio
platform, and the Biogeme Python library [20]. Biogeme is
a library dedicated to estimating discrete choice models and
analysing the preferences and decision-making processes of
participants.

As already mentioned, the design and validation of the
survey are vital to its success. In order to validate the method,
here we use test data collected via the first version (currently
under review by AU representatives) of the SP survey, where
the respondents were recruited from the consortium team.
There were four respondents that completed the survey playing
roles of network, regional and low-cost carriers. For some runs,
the role included high environmental concern sensitivity. The
test data used has 20 responses.
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B. Climate hotspots

The CLIMaCCF Python library [10] is easy to install and
use. It provides different options for the quantification of
the climate impact of aviation. The library can be used to
calculate the individual and merged non-CO2 aCCFs4, taking
the actual meteorological situation into account, and using that
information to determine the spatial and temporal resolution
of climate hotspots.

In order to determine hotspots, the user needs to specify the
threshold values of interest. It is important as “if the merged
aCCF exceeds a certain threshold value of the merged aCCF
the region is defined as a climate hotspot” [9]. The authors
advise using a dynamic determination of the threshold “for
every time step and flight altitude over a certain geographical
region.” For example, if the 95th percentile is chosen, the
library calculates this percentile over all grid points spanning
the chosen geographical region, and if the merged aCCF is
above the chosen percentile, that region is defined as a climate
hotspot, for that percentile.

In order to determine the climate hotspots, meteorological
data are needed as input. The ERA5 high resolution re-
analysis data, available from the Copernicus Climate Data
Store (https://cds.climate.copernicus.eu/) is used for input. The
library requires two input datasets, one containing data at
each pressure level, and another one the data provided on a
single pressure level (e.g., surface layer). The data needed for
calculation and their physical units is presented in Figure 3,
which lists the input parameters and their physical units5.

Figure 3. Meteorological input parameters needed to calculate aCCFs within
CLIMaCCF, taken from [9] .

Our intention is to assess the climate hotspots obtained from
the library in terms of the area coverage (both geographical
area and altitude levels), and the rate of change during the
day, to try to determine the impact on stakeholders’ operations.
Here, we show the climate hotspots obtained from one week
from March, June, September and December of 2019, for 95th

and 99th thresholds.

III. PRELIMINARY RESULTS

A. SP runs

1) Survey results, value of time, risk aversion: We present
here the method by which the project will build the utility
functions used in the model, using the SP survey results. We

4aCCFs “provide spatially and temporally resolved information on avia-
tion’s climate effect in terms of future near surface temperature change.” [9]

5The step by step guide is available in the CLIMaCCF library Manual.

illustrate the methodology by applying it to the test data, as
described, and highlight the assumptions and next steps.

The raw output of the survey is composed of different
options presented to the respondent and the choices they made.
Note that because of the adaptability of the survey, respondents
in general have different options presented to them, and even
a different number of questions. The goal is to regress their
behaviour by assuming that they make their decision based
on a utility function taking into account the dimensions of
the survey presented to them. As described in II-A, there are
four variables (i.e., attributes) on which respondents will base
their answers: cost sensitivity, short arrival delay aversion, long
arrival delay aversion, and environmental impact.

The two delay thresholds test the adversity of airlines to
short, relatively certain delays and long, quite uncertain ones.
However, we are also interested in reporting their value of
time. The concept of value of time is in general applied to
passengers, to capture the fact that they might prefer shorter
journeys (in time) by paying a certain price. For airlines, it
is assumed that this parameter is somehow explicit in their
decision, since they are able in principle to compute the actual
cost that a given arrival delay has implied in the past. Here,
we can capture it by checking decisions made by the airlines,
and compare it to the ‘real’ cost of delay, as determined by
[21], [22].

In order to do this, we have to assume a certain shape for the
distribution of delay. The concept of the value of time assumes
a comparison of an expected arrival delay compared to a
certain value of cost. The two variables present in the survey
are the median and the 90th percentile, and do not prescribe
the average of the distribution, which would be the delay
expected by perfectly informed agents. For the purpose of this
article, we assume an ad hoc exponential delay distribution,
as justified below.

Once we have chosen the distribution of delay, we can
compute not only the average but also other characteristics,
such as the variance of the distribution, and test if the
respondents are sensitive to them. Thus, in the following, we
perform a regression using the standard deviation of the delay
as one of the variables (on top of the mean) and compute
the corresponding coefficient that we call ‘risk aversion’, with
reference to the fact that even with the same expected arrival
delays, airlines might be averse to the uncertainty of the
distribution6.

This risk aversion links closely with previous work we
have conducted in this area, highlighting the importance of
uncertainty in day-to-day operations, and the need to take it
into account to properly assess the cost of delay for AUs [23].
This work reviewed the limited state of the art on assessing
the disutility of uncertainty, and defined a cost of uncertainty
using estimates also based on [21]. The article showed that

6As they should, given that in general, the cost of delay is highly non-linear
with delay duration. Note also that risk aversion is in general defined very
precisely as a coefficient that drives the behaviour as a function of the variance
of the utility, not the delay itself. Hence we use this term more generically
here.
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Figure 4. Evolution of mean of log-normal distribution with its median, for
different values of the 90th percentile.

uncertainty is also important in the formulation of buffers for
airlines (and provided a simple model to estimate the optimal
assignment, using real data, to compute the optimal value at
different airports). The link with the current work, set in the
route-charging context, is clear, in that the risk aversion we
calculate is essentially the disutility of consuming notional
buffers that AUs associate with route planning, which are
a hidden function of generic factors such as the route and
airline type, and specific factors, such as passenger load and
connectivities.

2) Ad hoc distribution of delays: The ad hoc distribution
we use for the arrival delays had to be prescribed by two
parameters, since the survey fixes two of them: the median
and the 90th percentile. Hence, once we fix the form of the
distribution, we back-compute the mean and standard deviation
thereof, based on the options presented to the respondents.

The distribution itself can have many different forms (albeit
with only two free parameters), however some distributions
may raise issues, especially in how the respondents intuitively
picture the underlying distribution. An example of such an
issue can be seen in Figure 4. To produce this figure, we
assumed a log-normal distribution of delay, and computed the
parameters of the distributions based on the different values
of the median and the 90th percentile. We then plot the mean
of the distribution (in the figure as a function of the median,
for different values of the 90th percentile).

Interestingly, for some values of the 90th percentile, the
mean decreases with the median. Hence, if a respondent was
presented with these two options (median, 90th percentile):

• (5, 60) and (10, 60).

then choosing the first option would mean that they opt
for the option with the higher arrival delay on average.
This is particularly counter-intuitive and we do not think that
respondents would choose that option if they knew about the
average.

Other distributions display the same kind of behaviours,
at least for some values of their parameters. For example, a
normal distribution with a cut-off, while others may raise other

issues (for instance, normal distributions are not bounded in
the low values). For the purpose of this article, we thus used a
simple but well-behaved distribution: the shifted exponential.
This distribution has two parameters, λ and l, and it is easy
to show that the mean of the distribution always increases
with the median and any percentile. The standard deviation of
the distribution also increases with the 90th percentile when
the median is fixed, and decreases with the median when the
other percentile is fixed, which is the behaviour respondents
will look for intuitively.

Hence, whilst using the shifted exponential for the purpose
of this article, the work continues to formulate a fully ‘appro-
priate’ distribution to use to infer the mean and the standard
deviation, in order to compute the value of time and the risk
aversion of participants. It is interesting to note that, while
historical distributions do matter in this case, in the sense
that participants may have an implicit knowledge of them, we
would ideally like to have access to the distributions intuitively
used by participants, or, more specifically, to the rule by which
they convert the two initial percentiles to average delay and
width of distribution (triggering risk aversion). It might also
be that the entire concept of value of time is not valid in the
context of this survey and respondents’ choices are triggered
directly by the initial percentiles (e.g. the median and 90th

percentile).
3) Estimation: For the purpose of this article, we have

used test data, generated by the members of the consortium,
as described above. We illustrate the survey, the knowledge
that we can gain from it, and how the results will be used in
the model. First, we compute the expected arrival delay and
the risk aversion. We then use different models with a logit
regression:

• I: cost + expected delay;
• II: cost + expected delay + uncertainty;
• III: cost + expected delay + uncertainty + environmental

impact;

The results of the estimation of these models can be found 
in Table I. All models seem to capture the same trends, 
with all variables – delays, costs, and environmental impact 
being negative for respondents. All coefficients are statistically 
significant at least to a 1% threshold.

TABLE I. RESULTS OF THE ESTIMATION OF DIFFERENT MODELS.

Model Coefficients Value Std err p-value
I αcost -1.1e-3 1.6e-4 4.9e-12

αexp -3.3e-1 3.7e-2 ≤ 1.0e-13
II αcost -1.1e-3 1.7e-4 2.4e-11

αexp -2.9e-1 4.1e-2 4.7e-12
αstd -8.5e-2 2.5e-2 5.6e-4

III αcost -9.8e-4 1.7e-4 1.5e-8
αexp -3.0e-1 4.2e-2 2.0e-12
αstd -8.6e-2 2.5e-2 4.9e-4
αenv -5.7e-1 1.9e-1 3.4e-3

Table II shows the resulting estimation of the value of time 
and risk aversion, which are computed as the ratio between the 
cost coefficient a nd t he e xpected a rrival d elay c oefficient on
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one hand, and the ratio between the expected delay coefficient 
and the uncertainty coefficient on t he o ther hand.

The values for the value of time seem to fall roughly 
between C200 and C400 per minute, taking into account 
the errors on the values. These values, interestingly, are of 
the same order of magnitude as the actual cost per minute 
computed by [21], even though the latter is closer to C100 
per minute on average7. It is interesting to recall that these 
values emerge from the respondents that are not computing 
the cost of delay explicitly, or even being given any kind of a 
scale (apart from the questions themselves). The respondents, 
although they were not from airlines, were exposed to these 
kinds of values in the past and have thus an intuitive idea of 
the orders of magnitude of costs implied by delays. Of course, 
this will be compared afterwards with the results from the real 
respondents (AUs), and once again compared to the expected 
value of time for the respective types of airline.

TABLE II. RESULTS OF THE ESTIMATION OF DIFFERENT MODELS. 
ERRORS ARE COMPUTED BY PROPAGATING STANDARD ERRORS.

Model Value of time (euros per minute) Risk aversion
I 308 ± 79 N/A
II 253 ± 75 0.29 ± 0.13
III 302 ± 96 0.29 ± 0.13

The computation of the risk aversion is also interesting, 
because it indicates that respondents roughly consider the 
width of the distribution three times less important than the 
expected delay. The fact that this coefficient is not null is a 
good indication that respondents somehow take into account 
that large arrival delays are proportionally more harmful than 
small ones for airlines, a fact that is very well known by the 
respondents: all members of the team are exposed to the inner 
logic of decisions based on cost of delay over many years.

One can also run the model on a specific subset of answers. 
In Table III we show a comparison of three type of answers: 
those that were emulating expensive network carriers, those 
that were playing regional carriers, and one that was playing 
a regional carrier with a strong environmental concern. In 
order to measure the latter, we also defined the ‘environmental 
concern’ indicator, as the coefficient for the environment 
variable divided by the sum of all coefficients8.

TABLE III. COMPARISON OF PARAMETER VALUES FOR DIFFERENT 
TYPES OF PLAYERS.

Type of players VoT Risk aversion Environmental
concern

Expensive network
carrier 1743 ± 1332 0.11 ± 0.16 0.58 ± 0.43

Cheap regional
carrier 158 ± 98 0.61 ± 0.49 0.58 ± 62

Environmental friendly
regional carrier 73 ± 65 0.74 ± 0.82 0.82 ± 0.81

The comparison of the values of time shows that, as
expected, it is very high for the players emulating an expensive

7European-wide average, including all types of airlines.
8Note: the data have not been standardised in input, so the absolute value of 
this metric is meaningless.

(highly cost-sensitive) network carrier, and much smaller for
regional airlines. The risk aversion seems also quite different,
even though the error bars are too high to have a definitive
answer. If the fact that regional airlines have higher risk aver-
sion but smaller values of time is confirmed in the results of
the survey, it would be interesting to look for the behavioural
reasons behind this. Finally, the environmental concerns are
hard to assess because of the error bars, but it looks that they
tend in the right direction, with the environmental friendly
carrier having the highest value.

B. Climate hotspots

In this preliminary analysis, we run the CLIMaCCF library
on ERA5 data for four chosen weeks, to have a better picture
of how much and how fast the climate hotspots change. Figure
5 shows, as an example, the evolution of the hotspots along
two days, one in September 2019 (Figure 5a), and another in
December 2019 (Figure 5b). Different colours denote different
times in the day – yellow shows hotspots at midnight, orange
at 06:00, red at 12:00, and magenta at 18:00, so we can see
how the hotspots move around with the atmosphere. Only
two flight levels – FL340 (250 hPa) and FL360 (225 hPa)
[24] are presented, the hotspots on the latter level being more
transparent. The hotspots are calculated for all flight levels,
but we show only two flight levels to ease the visualisation.

(a) Hotspots for 3rd September 2019, 99th percentile

(b) Hotspots for 3rd December 2019, 99th percentile

Figure 5. Daily evolution of hotspots, for FLs 340 and 360, 99th percentile.

It can be seen that the hotspot areas are not the same
on different levels, meaning that sometimes the avoidance of
high climate impact could be obtained by the FL change.
Further, as can be seen in Figure 6, the hotspot areas are much
larger at the 95th percentile, which points to the need to agree
on the appropriate threshold, i.e. percentile, to be used in a
route-charging scheme. The intention is to discuss with the
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(a) Hotspots for 3rd September 2019, 99th percentile

(b) Hotspots for 3rd December 2019, 95th percentile

Figure 6. Daily evolution of hotspots, for FLs 340 and 360, 95th percentile.

scientists, AUs and ANSPs, during the planned workshop, to
be able to find a potential compromise, based on the trade-
offs between climate impact and operational needs (flight and
capacity planning).

Figure 7 shows the speed of the hotspot movements across
the days (locations taken at every 6 hours) of a week in March,
June, September and December of 2019. Speeds of hotspot
movements range from tens to hundreds of knots (measured at
6 hour intervals), pointing to a rather dynamic, and not easily
predictable situation. By means of visual inspection, the four
graphs seem to indicate different speed patterns, with lowest
speeds in March, and highest in September. The speeds also
differ across the chosen FLs. More in depth analysis of larger
time period is needed to be able to determine if the hotspots
demonstrate patterns that can be of operational use in ATM.

Furthermore, the requirements for any route-charging mech-
anism are that the charges are non-discriminatory, transparent
and cost-related. The determination of climate hotspots de-
pends on the weather forecast data (i.e., its resolution) and the
choice of other parameters (as described in the corresponding
manual). As the charges need to be transparent, there is a need
for all stakeholders to use the same information. This new
source of information would not only imply changes in the
route-charging mechanism, but also a need for a new service
that would source, calculate and share the information with all
stakeholders.

IV. CONCLUSION

The quest for an environmentally friendly air transportation
system passes through the optimisation of the existing pro-
cesses under the prism of any potential climate impact. One
of these processes is to make sure that flights are planned in

(a) March 2019

(b) June 2019

(c) September 2019

(d) December 2019

Figure 7. Speed of climate hotspot movement across 4 weeks in March, June,
September and December 2019

such a way that they minimise their environmental impact. The
full GRC Solution is addressing the total climate impact (both
CO2 and non-CO2 emissions), which introduces complexities
when compared to the current route-charging system as the
non-CO2 emissions depend on the location, time and altitude
of emissions.

The full GRC Solution needs to capture not only changes in
the charging scheme but also the reactions of airlines to these
changes. The first step thus lies in setting up an SP survey to
collect responses from AUs. The survey is designed to capture

8



high-level weights of the decision-making processes when it
comes to cost, delay, uncertainty, and environmental impact.
Using the test data generated by the team, we illustrate the
challenges of the analysis, in particular, how we will infer
values of time and risk aversions from the survey results. The
results presented here are exploratory in nature, but the team
is interested to see if the actual respondents will demonstrate
values similar to the test, and, if the values align with AUs’
actual costs of delay, as expected.

The definition of the environmental hotspots is also crucial.
Our first analysis points to the following issues:

• a potential difficulty to agree on the definition (in terms
of percentiles),

• the fact that a hotspot may be very easily avoided by
changing the trajectory FL,

• the fact that hotspots are particularly dynamic, which
presents a challenge to the incentive scheme, espe-
cially taking into account that the current route-charging
scheme is static, and simple in comparison.

The regression performed with the survey and the climate
hotspots will be integrated into the overall GRC model, which
will be used to estimate the impact of a new incentive scheme,
both in terms of environmental impact and overall efficiency
of the system.
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