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Abstract—This paper presents an objective, data-driven frame-
work for quantifying air traffic complexity in the Terminal
Manoeuvring Area (TMA) using historical ADS-B data from
Singapore TMA. The motivation for developing this framework
stems from the limitations of traditional subjective measures,
which are often influenced by individual perceptions and can vary
significantly between air traffic controllers. Subjective measures
may also fail to capture real-time operational demands, especially
in complex, high-density environments such as Singapore TMA.
By focusing on operational outcomes—specifically vectoring and
holding patterns—the framework provides a more accurate
reflection of real-time complexity. Principal Component Analysis
(PCA) and k-means clustering are employed to classify com-
plexity levels based on trajectory features such as arc lengths,
curvatures, and holding durations. The results show that total
arc lengths and curvatures are significant complexity factors,
with extensive vectoring contributing more to TMA complexity
than holding patterns. The significance of this work lies in
its data-driven and objective approach to measuring air traffic
complexity, offering a more accurate reflection of real-time de-
mands compared to traditional subjective methods. Quantitative
evaluations across multiple real-world scenarios validate the
framework’s effectiveness, showing that TMA complexity is more
strongly associated with vectoring intensity and holding patterns
than with flight density alone. This current framework can be
extended to incorporate vertical profiles of arrival and departure
flights and develop predictive models with practical, actionable
lookahead times for real-time air traffic management.

Keywords—Air Traffic Management, Terminal Manoeuvring
Area, Complexity, Data-driven, Unsupervised Machine Learning,
Clustering

I. INTRODUCTION

The Terminal Manoeuvring Area (TMA), which serves
as the critical transition between the en-route sectors and
aerodrome control zone [1], is a vital and complex airspace in
air traffic management (ATM). This complexity is influenced
by many factors, including airways structure of Standard
Terminal Arrival Routes (STARs) and Standard Instrument
Departures (SIDs), traffic density, the dynamic coordination
between multiple arriving and departing flights, the mix of
aircraft types in the traffic and meteorological conditions [2],
[3]. In terms of the definition of complexity in air traffic
control (ATC) literature, Meckiff et al. [4] described it as the
level of challenge a traffic situation poses to an air traffic
controller (ATCO) while Mogford et al. [5] referred ATC

complexity as “the effect on the controller of the airspace and
the air traffic flying within it”.

The concept of complexity is of paramount importance in
the Air Traffic Control (ATC) domain, as it is a key driver
of air traffic controllers’ workload, which in turn directly
influences airspace capacity [6]–[8]. Figure 1 shows the re-
lationship between ATC complexity and controller workload.
The factors contributing to ATC complexity can be broadly
classified into two categories: airspace geometry, and traffic
demand and distribution. ATC complexity, along with the de-
mands of the interface, equipment, and procedures, contributes
to the overall taskload of the controller. This taskload is further
modulated by individual performance shaping factors (PSFs),
which include personal attributes such as age, experience, and
skills, as well as the cognitive strategies employed by the
controller, which are shaped by professional training. As a
result, different controllers may perceive different levels of
workload, even when facing the same taskload. Therefore,
while taskload represents the objective demands of a task,
workload reflects the subjective perception of these demands
during task execution. As such, this work will focus on study-
ing ATC complexity in relation to the additional observable
taskload due to increased complexity, rather than the subjective
workload experienced by controllers. This approach is chosen
because workload is subjective and influenced by various
mediating factors which are difficult to quantify and observe
directly from the air traffic data.

Figure 1. Factors affecting controller workload, adapted from [5], [9], [10].

A. Related work
Many studies have focused on complexity indicators for en-

route sectors, but only a few have explored them for the TMA.



Traditionally, air traffic complexity has been assessed using
subjective evaluations by controllers, such as in Laudeman et
al.’s work on Dynamic Density (DD) [11]. This metric, which
uses regression analysis to assign weights to factors based on
subjective assessments, has been extended to include predic-
tive capabilities [12] and additional complexity factors [7],
[13]. However, these models are often sector-specific and
may not generalize well to other airspace [14], [15], while
subjective assessments introduce variability [16]. Furthermore,
en-route models, which consider changes in heading, altitude,
and speed as complexity sources, are less applicable to TMA,
where such changes are expected and managed by controllers.

Recent years have seen increased research into TMA com-
plexity models. Netjasov et al. [10] introduced a metric to
assess complexity in terminal airspace, incorporating static
and dynamic factors such as airspace structure, runway ca-
pacity, traffic levels, and aircraft types. Applied to London
Heathrow, the metric provides valuable insights but may
not fully capture real-time variations, limiting its practical
application in dynamic settings. In a related development,
Deng et al. [17] proposed a complexity estimation framework
for RNAV terminal airspace, with components for vectoring,
separation, and anomaly complexities. Although the frame-
work aids in detecting operational anomalies, it assumes a
linear relationship between components with equal weighting,
similar to Netjasov’s work, which may not reflect the true
interactions between factors [18].

Delahaye et al. developed a complexity metric for both
en-route and TMA sectors based on non-linear [19] and
linear [20] dynamical systems, aiming to measure the intrinsic
complexity of aircraft trajectories by aligning a vector field
with observed positions and speeds. This generates a complex-
ity map for comparing areas of varying complexity. However,
to compute complexity using this metric, flight plan trajec-
tories must be used instead of actual flown trajectories. This
is because historical flown trajectories incorporate air traffic
controllers’ actions in resolving conflicts, which can lead to
an underestimation of complexity when applying the metric.
The use of flight plans, however, presents its own challenges.
Flight plans are often proprietary to airlines, especially in Asia,
making them difficult to acquire. Additionally, flight plan tra-
jectories may not be suitable for real-time applications, as they
do not reflect real-time variations in traffic. These real-time
changes are crucial for accurately assessing the dynamic and
ever-changing conditions in airspace operations. As a result,
relying solely on flight plans to compute complexity may lead
to an inaccurate representation of operational demands. To
address these limitations, alternative methods are needed that
can capture real-time variations and provide a more accurate
assessment of airspace complexity.

B. Objective & Motivation

To address the gaps mentioned in the previous works,
this paper proposes a framework that leverages historical
Automatic Dependent Surveillance-Broadcast (ADS-B) data
and airspace structure to learn and identify different levels of

air traffic complexity within the TMA. Unlike flight plan data,
historical flight trajectory data are readily accessible through
open sources like the OpenSky Network [21] for ADS-B data.
The framework is designed to be adaptable across various
TMAs, providing a consistent and objective assessment of
complexity.

The primary motivation for this research is to achieve an
objective assessment of air traffic complexity. By utilizing
a data-driven metric, the proposed framework provides clear
and consistent information that reduces the cognitive load
on controllers, allowing them to focus on managing traf-
fic rather than interpreting subjective assessments. Although
the current work does not develop a predictive model, the
framework lays the groundwork for future research by pro-
viding a solid, objective basis for complexity assessment.
This foundation will be instrumental in developing predictive
methods to anticipate potential high-risk air traffic situations,
enabling proactive workload distribution among controllers.
Such advancements could reduce the risk of human error
and ensure more efficient resource allocation. Additionally,
the framework’s objective complexity metric supports collab-
orative decision-making with adjacent sector controllers by
providing a unified understanding of the airspace situation.
This shared perspective facilitates better coordination and
more effective decision-making. Ultimately, integrating this
metric with emerging technologies, such as AI-driven decision
support systems and automated traffic management tools, will
ensure that air traffic management remains adaptive, efficient,
and scalable as the aviation industry continues to evolve.

The remainder of this paper is organized as follows: Section
II focuses on formulating the problem by establishing the
relationship between vectoring, holding patterns, and TMA
complexity through a data-driven and machine learning ap-
proach. Building on this foundation, Section III details the
methodology employed to develop the proposed framework.
Section IV then presents an experimental study, showcasing
the application of the framework within a specific TMA.
Finally, Section V concludes the paper by summarizing key
findings and discussing potential avenues for future research
aimed at further enhancing the framework and integrating it
with emerging technologies.

II. PROBLEM FORMULATION

Traditionally, airspace complexity has been assessed using
factors such as flight density and potential vertical, horizontal,
and speed interactions, as outlined in Eurocontrol’s complexity
metric [22]. However, these metrics focus on the sources
of complexity rather than how it manifests operationally.
This paper adopts a different approach by quantifying TMA
complexity based on features extracted from actual flown
trajectories. These features inherently capture the complexity
of the airspace at specific moments. Among these, tactical
strategies like vectoring [1] and holding patterns [23], com-
monly used to manage arrival delays, may serve as indicators
of increased complexity.
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In the TMA, Standard Terminal Arrival Routes (STARs)
and Standard Instrument Departures (SIDs) [23] provide struc-
tured, predefined sequences of waypoints that guide arriving
and departing aircraft along specific routes. These procedures,
which include altitude and speed constraints, ensure orderly
and efficient traffic flow. However, operational disruptions such
as traffic congestion, weather conditions, or runway unavail-
ability often necessitate deviations from these standard routes.
In such cases, ATCOs may implement vectoring or holding
manoeuvres as illustrated in Figure 2. Vectoring involves
providing specific heading instructions to ensure sufficient
aircraft separation while holding requires aircraft to fly in
circular or racetrack patterns to delay their approach.

Figure 2. Historical arrival and departure flight trajectories within the Singa-
pore Terminal Manoeuvring Area (TMA) over a one-hour period in 2024.
Arrival flights (red) exhibit notable occurrences of vectoring and holding
patterns, as indicated, while departure flights (blue) follow more streamlined
routes. The presence of these manoeuvres highlights the operational complex-
ity of managing arrival traffic during this timeframe.

This study focuses on arrival flights rather than departures
due to the more complex and unpredictable nature of managing
inbound traffic. Unlike departures, which follow relatively
rigid departure slots and have more controlled sequencing,
arrivals are often subject to dynamically changing conditions.
Arrival flights must be managed in real-time as they transi-
tion from en route to approach, often requiring holding and
vectoring to absorb delays and ensure safe separation between
aircraft. These deviations may serve as indicators of TMA
complexity, as they signal that standard arrival procedures are
insufficient to handle the traffic volume or other constraints. In
contrast, departures typically face fewer airborne delays and
deviations since their timing and sequence can be controlled
more easily on the ground. The need for such manoeuvres,
especially for arrivals, significantly increases the task load on
ATCOs. Therefore, the magnitude and duration of vectoring
and holding serve as key measures of the complexity in TMA,
particularly for managing arrival traffic.

The approach presented in this paper is inherently data-
driven, leveraging historical trajectory data to quantify com-

plexity based on observable outcomes, such as the frequency
and duration of vectoring and holding manoeuvres. These ma-
noeuvres, extracted from large datasets of actual flight paths,
serve as real-time indicators of increased complexity. Given
the volume and variability of this data, a machine learning
approach is well-suited to identify patterns and relationships
within the data that would be difficult to discern using tra-
ditional methods. By focusing on these tactical strategies,
the study provides a clearer representation of the operational
challenges involved in managing arrival flights within the
TMA. This differs from traditional methods that focus on
underlying sources, such as traffic density or weather. Once
the TMA complexity can be quantified using this framework,
the relationship between TMA complexity and these sources
can be explored to develop a prediction model; however, this
is beyond the scope of the current study.

To sum up, this paper introduces a framework for quanti-
fying TMA complexity through operational outcomes, specif-
ically vectoring and holding patterns, with a particular focus
on arrival flights due to their inherently higher complexity in
the TMA. This data-driven approach provides a more direct
reflection of the airspace’s real-time demands, offering an
objective way to measure complexity based on actual observed
controller interventions.

III. METHODOLOGY

The methodology presented here aims to establish an ob-
jective framework for assessing TMA complexity, leveraging
historical flight data to quantify operational factors such as
vectoring and holding patterns. The methodology framework,
shown in Figure 3, comprises four key components: data
source, data processing, feature extraction, and machine learn-
ing. Each component is essential for developing a comprehen-
sive understanding of TMA complexity.

A. Data Source

The analysis utilizes two primary data sources: historical
ADS-B data and airspace structure information.

1) Historical ADS-B Data: This dataset provides compre-
hensive information on aircraft trajectories, including
position, altitude, speed, and timestamps. ADS-B data
offers detailed insights into real-time flight operations,
making it crucial for analyzing operational outcomes
such as vectoring and holding patterns. The ADS-B data
utilized in this study was sourced from Flightradar24,
covering the period from May 15 to July 31, 2024.

2) Airspace Structure: Information on the airspace struc-
ture is obtained from Aeronautical Information Publica-
tions (AIPs). These publications detail the configuration
of the TMA, including Standard Terminal Arrival Routes
(STARs) and Standard Instrument Departures (SIDs)
procedures. This structural information is essential for
understanding the predefined routes and constraints that
influence flight behaviour within the TMA.

3



Figure 3. Methodology framework for learning complexity values in the TMA. The data-driven methodology framework consists of four components: data
sources, data processing, feature extraction and machine learning, respectively.

B. Data Processing

The data processing phase involves several key steps to
prepare the trajectory data for analysis. Beyond basic data
cleaning, which ensures the dataset’s integrity, the process
includes trajectory smoothing and trajectory matching:

1) Trajectory Smoothing with Bézier Curves: To address
the noisy nature of ADS-B data, trajectory smoothing is
performed using Bézier curves. Bézier curves are para-
metric curves defined by control points that influence
their shape [24]. They are particularly effective in mod-
elling smooth, continuous paths and are commonly used
in graphics and data fitting. By applying Bézier curves
to the noisy trajectory data, we achieve a smoother
representation of flight paths that reduces the impact
of noise and irregularities, providing a more accurate
depiction of the intended trajectories.

2) Dynamic Time Warping (DTW) for Trajectory
Matching: To accurately align arrival trajectories with
their corresponding Standard Terminal Arrival Routes
(STARs), Dynamic Time Warping (DTW) is employed.
DTW is a technique for measuring similarity between
two temporal sequences that may differ in speed or
timing [25]. It calculates the optimal alignment between
sequences by allowing non-linear mappings of time axes.
Traditional distance metrics, such as Euclidean distance,
may not be suitable for this task because they assume a
direct, one-to-one correspondence between points. DTW,
on the other hand, can accommodate variations in timing
and speed, making it ideal for matching trajectories
that deviate from their standard routes. This capability
allows DTW to accurately align observed trajectories
with predefined STARs, even when there are deviations
or variations in timing.

C. Features Extraction

In the feature extraction phase, key operational features are
derived from the trajectories to quantify TMA complexity. The
primary features include vectoring manoeuvres and holding
patterns:

1) Vectoring: Vectoring is represented by two main fea-
tures: curvatures and arc lengths. Higher curvatures and
longer arc lengths are indicative of more significant

vectoring manoeuvres. The curvature of a trajectory is
calculated using the formula:

κ =

∣∣∣d2y
dt2

dx
dt − d2x

dt2
dy
dt

∣∣∣((
dx
dt

)2
+

(
dy
dt

)2
)3/2

(1)

where x(t) and y(t) are the coordinates of the tra-
jectory as functions of time t. Here, dx

dt and dy
dt are

the first derivatives of x(t) and y(t) with respect to t,
representing the velocity components along the x and
y directions. d2x

dt2 and d2y
dt2 are the second derivatives,

representing the acceleration components. The curvature
κ measures how sharply the path bends at each point.
Figure 4 illustrates the curvature values along a sampled
trajectory before and after applying trajectory smooth-
ing. The raw curvature values, calculated directly from
the original data, exhibit significant noise due to the
inherent variability in the ADS-B measurements. In
contrast, after applying Bézier curve smoothing, the
curvature values become much more stable. The sig-
nificant peaks in the smoothed curvature values reflect
more accurately the bends and turns in the trajectory.
This smoothing process effectively filters out the noise,
providing a clearer and more precise representation of
the trajectory’s curvature.
For each trajectory, a total curvature value is obtained
by summing the curvature values along the path, exclud-
ing the contributions from holding patterns. Similarly,
the total arc length is calculated as the sum of the
distances between consecutive points, also excluding
holding patterns. This exclusion is crucial because the
complexity contribution of vectoring and holding pat-
terns is not equivalent. Holding patterns are established
procedures with simpler instructions provided by air
traffic controllers, making them less complex compared
to vectoring. Vectoring involves continuous monitoring
and dynamic instruction changes, which adds to its
complexity. By isolating the effects of vectoring and
holding, the analysis provides a more accurate measure
of the trajectory’s complexity related to vectoring and
holding, respectively. The features are then normalized
based on the total curvature and arc length of the as-
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(a) (b)

Figure 4. (a) Original flight trajectory along with the corresponding curvature values at each point of the trajectory. (b) Curve fitting using a Bézier curve,
showing the corresponding curvature values along the fitted Bézier curve. Notably, the significant peaks in the curvature values align with the actual turns in
the original trajectory, showing the effectiveness of Bézier curve fitting in smoothing the trajectory.

sociated STAR to ensure comparability across different
STARs. This normalization process makes the curvature
and arc length values independent of the specific STAR,
allowing for a standardized measure of vectoring across
different routes.

2) Holding Patterns: Holding patterns are characterized
by the duration of holding manoeuvres. This feature is
extracted directly from the trajectory data by identifying
segments where the aircraft is flying in holding patterns
and calculating the total holding duration. The method
used to detect holding patterns is based on the approach
outlined in [26], which accurately identifies the holding
patterns from the flight trajectory data.

D. Machine Learning

The machine learning phase consists of four key com-
ponents: Principal Component Analysis (PCA), unsupervised
machine learning, complexity labeling for trajectories, and the
computation of TMA complexity for different scenarios.

1) Principal Component Analysis: PCA is used to reduce
the dimensionality of the feature space while preserving
the most significant variance in the data [27]. This aids
the clustering process by simplifying the data while
maintaining relevant trajectory information. While the
dataset consists of only three features, curvature, arc
length, and holding duration, PCA is still valuable for
improving data quality. It helps to remove potential
correlations between features, ensuring the clustering
algorithm works with uncorrelated components. Addi-
tionally, PCA enhances data interpretation by identifying
the principal components that capture the most variance,

and it reduces noise, allowing the algorithm to focus on
meaningful patterns without being influenced by minor
errors or variations.

2) Unsupervised Machine Learning Clustering: Machine
learning is adopted in this framework for uncovering
hidden patterns in complex datasets without explicit
labels. In the absence of ground truth for TMA complex-
ity, unsupervised clustering algorithms group trajectories
by feature similarities, offering valuable insights into
different complexity levels.
Clustering algorithms are applied to the PCA-
transformed components rather than the raw data to
leverage the reduced dimensionality while preserving
essential variance. Various clustering algorithms, in-
cluding k-means, agglomerative hierarchical clustering,
and Gaussian Mixture Model (GMM), are evaluated for
performance. Given the absence of ground truth labels
for TMA complexity, unsupervised machine learning
clustering is employed to identify patterns and group
trajectories based on their features without predefined
categories. To assess the quality of the clusters and
determine the optimal number of clusters, metrics such
as the Silhouette Score and Davies-Bouldin Index are
used.
The Silhouette Score evaluates clustering quality by
measuring how similar each data point is to its own
cluster compared to other clusters. For a data point i,
the Silhouette Score S(i) is calculated as:

S(i) =
b(i)− a(i)

max(a(i), b(i))
(2)
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where a(i) is the average distance from i to all other
points within the same cluster, and b(i) is the minimum
average distance from i to all points in the nearest
neighboring cluster. The Silhouette Score ranges from
-1 to +1, with higher values indicating better clustering.
The Davies-Bouldin Index assesses cluster separation
and intra-cluster cohesion. It is calculated as:

DB =
1

k

k∑
i=1

max
i̸=j

(
s(i) + s(j)

d(i, j)

)
(3)

where s(i) is the average distance between all points
in cluster i and the centroid of cluster i, and d(i, j)
is the distance between the centroids of clusters i and
j. Lower values of the Davies-Bouldin Index indicate
better clustering quality.
A Combined Score is used to optimize clustering
performance:

Combined Score = S −DB (4)

where S is the average Silhouette Score, and DB is
the Davies-Bouldin Index. This combined score balances
the need for well-clustered data points (high Silhouette
Score) with the need for well-separated clusters (low
Davies-Bouldin Index). Maximizing this combined score
helps identify the optimal number of clusters, reflecting
the best representation of the data’s underlying structure.

3) Complexity Labeling for Trajectories: Once the clus-
ters are determined, each cluster is analyzed based on the
features that contribute to trajectory complexity, such as
curvature, arc length, and holding duration. The clusters
are then ranked in terms of complexity, from lowest to
highest, based on these feature values. Clusters with
lower rankings correspond to trajectories that exhibit
simpler patterns, while higher-ranked clusters indicate
more complex trajectories. Thus, the complexity of each
trajectory is defined by the rank of its associated cluster,
providing a straightforward way to interpret trajectory
complexity.

4) TMA complexity of different scenarios: For a scenario
with n flights, the overall complexity is calculated as a
weighted sum of the complexities of all n trajectories.
Each cluster is assigned a weight based on its rank. Let
there be k clusters, and the weights {w1, w2, . . . , wk}
correspond to the ranks of the clusters. The complexity
C of a scenario is given by the formula:

C =

n∑
i=1

wcluster(i) (5)

where n is the total number of flights in the scenario,
cluster(i) refers to the cluster of i-th trajectory, and
wcluster(i) is the weight assigned to the cluster based on
its rank, selected from the list {w1, w2, . . . , wk}.

IV. EXPERIMENTAL STUDY

The experimental study aims to validate the proposed frame-
work’s ability to classify and quantify TMA complexity using
a data-driven approach. The study focuses on the Singapore
TMA and evaluates the model using ADS-B data spanning
from May 15 to July 31, 2024.

A. Principal Component Analysis

The PCA analysis was conducted to reduce the dimensional-
ity while preserving significant variance. Principal Component
1 (PC1) explains 57% of the variance and is mainly influenced
by total arc lengths (loading of 0.70) and total curvatures
(loading of 0.69), highlighting their role in the variance.
In contrast, holding duration has a lower loading of 0.19,
indicating a lesser impact on PC1. On the other hand, Principal
Component 2 (PC2) accounts for 33% of the variance and
is primarily driven by holding duration (loading of 0.98),
with minimal contributions from total arc lengths (-0.10) and
total curvatures (-0.17). The scatter plot of PC1 versus PC2
(Figure 5) visually represents the distribution of the data across
these two principal components.

Figure 5. Scatter plot of Principal Component 1 and Principal Component 2
from the Principal Component Analysis (PCA) of three normalized variables:
arc lengths, curvatures, and holding duration.

B. Unsupervised Machine Learning Clustering

The performance of the three clustering algorithms for dif-
ferent numbers of clusters was evaluated using the combined
score as illustrated in Figure 6. Among the evaluated algo-
rithms, k-means achieved the highest combined score at k = 4,
indicating the optimal balance of cluster quality. Consequently,
k-means with k = 4 was selected as the preferred clustering
configuration. Figure 7 displays the clustering results of the
data using the selected k-means algorithm.

C. Complexity Labeling for Trajectories

The ranking of different clusters is explained based on their
complexity characteristics. The clusters are ranked from 1 to 4,
with 1 indicating the lowest complexity and 4 indicating the
highest complexity. These rankings reflect the relative com-
plexity of each cluster, with green representing the simplest
trajectories and purple representing the most complex.
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Figure 6. Combined scores for different numbers of clusters using K-Means,
Gaussian Mixture Models (GMM) and Agglomerative clustering algorithms.
The combined score is calculated as the silhouette score minus the Davies-
Bouldin index. The highest combined score is obtained using the K-Means
clustering algorithm at k=4, indicating the optimal number of clusters.

Figure 7. K-means clustering results with k=4 for the principal components.

1) Green Cluster: Represents the lowest complexity. This
cluster has the shortest arc length and the lowest cur-
vature, with minimal holding duration, making this the
least complex.

2) Blue Cluster: Indicates moderate complexity. It features
slightly higher curvature, arc length, and longer holding
duration than the green cluster. The increased holding
duration accounts for its elevated complexity.

3) Red Cluster: Displays higher complexity, with greater
curvature and arc length compared to the blue cluster,
though it has a shorter holding duration. The significant
vectoring involved raises its complexity rank.

4) Purple Cluster: The highest complexity, marked by the
longest arc length and greatest curvature, despite a short
holding duration. The extensive vectoring in this cluster
justifies its top complexity ranking.

D. TMA complexity of different scenario

In the analysis of TMA complexity, the overall complexity
of different scenarios is computed as the weighted sum of
the complexities of all trajectories, as previously defined
in Equation 4. This approach aggregates the complexity of
individual trajectories based on their cluster assignment and
the corresponding cluster weights.

The TMA complexity of every 1-hour time periods from
15 May to 31 July 2024 are computed and the violin-plot
distribution is shown in the Figure 8. The plot visualizes
the spread and distribution of the computed total complexity

values. The density of the data is represented by the width
of the plot at different points along the complexity scale.
From the violin plot, it can be observed that the majority of
the complexity values lie between 10 and 40, with a denser
concentration around the 20-30 range, suggesting that most
time periods during the observed window experienced TMA
complexity within this range. The distribution also shows
some asymmetry, with a longer tail extending towards higher
complexity values, indicating that while higher complexity
periods (above 60) are less frequent, they do occur.

Figure 8. Distribution of total complexities within the airspace, based on 1-
hour time periods from 15 May to 31 July 2024, shown using a violin plot.

Figure 9 illustrates the hourly trends in total TMA complex-
ity across different days. The plot shows that complexity is
lowest between midnight and early morning (00:00 to 04:00),
with a gradual rise beginning around 05:00, peaking between
06:00 and 07:00. The complexity exhibits two distinct peaks
in the afternoon: one around 14:00 and another, larger peak
between 17:00 and 18:00. Disparities in the peak complexity
values are observed across different days. After 20:00, com-
plexity decreases and remains low into the night.

Figure 9. Hourly trends in total TMA complexity across different days,
showing variations in complexity levels throughout the day.

To validate the effectiveness of the framework, several sce-
narios have been plotted in Figure 10 to visually demonstrate
its capability to accurately label and differentiate complexity
levels across various situations. These visualizations illustrate
how the framework assigns and scales complexity values,
providing a clear picture of how different scenarios are repre-
sented in terms of TMA complexity.

Figure 10a shows a scenario from a 1-hour period with
28 arrival flights in the TMA. All trajectories in this period
are assigned to cluster 1, indicating minimal vectoring and
holding. This scenario represents the highest number of arrival
flights where all trajectories are categorized into cluster 1
across the dataset. Thus, the presence of significant vectoring
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(a) This scenario shows the highest number of arrival flights where all trajectories fall
into cluster 1. (b) This scenario has flight trajectories distributed across all four complexity clusters.

(c) This scenario presents the highest number of arrival flights within a single one-hour
period in the dataset. (d) This scenario represents the highest total complexity recorded across the entire dataset.

Figure 10. Arrival trajectories are colour-coded based on their assigned clusters, with their corresponding total complexities compared across various one-hour
periods.

or holding is expected when the number of arrival flights
exceeds 28. In contrast, Figure 10b shows a scenario with
fewer arrival and departure flights but a higher complexity
level of 45, due to increased vectoring and holding. This
illustrates that flight density alone does not fully reflect TMA
complexity, which may be influenced by other operational
factors.

Figure 10c and Figure 10d illustrate TMA complexity
during periods when the number of arrival flights is near
its maximum for a 1-hour interval. Despite having fewer
departure flights, Figure 10d exhibits significantly higher TMA
complexity compared to Figure 10c. This is because Fig-
ure 10d involves both extensive holding patterns and substan-
tial vectoring, whereas Figure 10c primarily features holding
patterns. This observation validates the framework’s design, as
it demonstrates that vectoring, which is more challenging to
manage especially when flight density is high, contributes to
higher complexity than holding patterns.

For this dataset, the complexity model produces output

values ranging from 1 to 91, which may not be immediately
practical for decision-making by air traffic controllers. To
make these values more actionable, end-users such as shift
supervisors or flow coordinators within the TMA can define
thresholds to classify complexity into low, medium, and high
levels. Based on the results in Figure 10a, where up to 28
arrival flights occur without significant vectoring or holding,
complexity scores below 30 could be categorized as low.
Scores between 30 and 60 could represent medium complexity,
while those above 61 may be classified as high. This creates
a clearer, more intuitive scale tailored to operational needs.

V. CONCLUSION AND FUTURE WORK

This study introduces a framework for quantifying air traffic
complexity in the TMA using historical ADS-B data from Sin-
gapore Changi Airport. The framework focuses on quantifying
TMA complexity through operational outcomes, specifically
vectoring and holding patterns, with a particular emphasis on
arrival flights due to their inherently higher complexity in the
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TMA. This data-driven approach offers a direct reflection of
the airspace’s real-time demands, providing an objective way
to measure complexity based on actual observed controller
interventions. The framework leverages Principal Component
Analysis (PCA) and k-means clustering to identify and classify
complexity levels based on trajectory features such as arc
lengths, curvatures, and holding durations.

The PCA results highlight that total arc lengths and cur-
vatures are primary contributors to complexity, while holding
duration has a lesser impact. K-means clustering with k = 4
effectively categorized trajectories into complexity clusters,
from low to high. Experimental results validated the frame-
work across multiple real-world scenarios. Comparing time
periods with varying arrival flight numbers, we demonstrated
that complexity is not solely a function of flight density but is
strongly correlated with the degree of vectoring and holding
required. Notably, scenarios with extensive vectoring were
significantly more complex than those dominated by holding
patterns, even with similar flight numbers.

This framework produces a scalable complexity model that
generates output values between 1 and 91 for this dataset,
offering a comprehensive range for complexity assessment. To
enhance practicality for air traffic controllers and operational
supervisors, a flexible threshold system is recommended for
classifying complexity into low, medium, and high categories
based on operational needs. This approach ensures that the
complexity model is both actionable and adaptable to varying
operational scenarios.

The significance of this work lies in its data-driven, objec-
tive approach to measuring air traffic complexity, providing
a more accurate reflection of real-time demands and laying
the groundwork for future prediction models. Future work
will expand the framework to include operational outcomes
in the vertical profiles of arrival and departure flights, ad-
dressing possible interactions such as levelling-off instructions.
Additionally, validating complexity values through human-
in-the-loop studies and developing a predictive model with
practical and actionable lookahead time will further enhance
the model’s applicability and effectiveness in real-time air
traffic management.
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