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Abstract—Planning aircraft trajectories to avoid climate-
sensitive areas poses operational challenges, including increased
traffic complexity and potential safety risks. This study presents
a framework designed to plan operationally feasible climate-
friendly routes from the perspective of the air traffic management
(ATM) system. The problem is formulated as a constrained
Markov game, where air traffic complexity, a key indicator of air
traffic manageability, serves as the objective function, and climate
hotspot avoidance is imposed as a constraint. The proposed
method employs the multi-agent proximal policy optimization
algorithm and adapts it to handle constraints related to climate
hotspot avoidance using the Lagrangian technique. To ensure
scalability, parameter sharing is employed, allowing the algo-
rithm to deal with varying numbers of concurrently operating
aircraft in different scenarios. Experimental results demonstrate
that the proposed algorithm effectively balances environmental
goals with traffic manageability, offering operationally feasible
climate-optimal trajectories.

Keywords—Climate impact, Aircraft trajectory optimization,
Air traffic management system, Multi-agent reinforcement learn-
ing, Constrained Markov decision process, Proximal policy opti-
mization algorithm.

I. INTRODUCTION

The aviation sector is a major contributor to climate change
through CO2 emissions and various non-CO2 forcing agents
[1]. Recent studies highlight that non-CO2 emissions from
aviation account for approximately two-thirds of the sector’s
total contribution to global warming [1], [2]. Key contributors
include the emissions of nitrogen oxides and water vapor
and the formation of persistent contrails. The climate impact
of these non-CO2 species highly depends on meteorological
conditions at the time and location of emissions, making
flight planning a promising short/medium-term strategy for
mitigating their corresponding effects [3].

Extensive research has explored leveraging these spatiotem-
poral dependencies to plan aircraft trajectories in a more
climate-friendly manner [4], [5]. Although these approaches
show significant potential for reducing climate impact, they
primarily focus on optimizing individual flight trajectories

(see [6]). This narrow focus overlooks complex interactions
between flights and the overall manageability of air traffic,
raising concerns about the practical feasibility of such opti-
mized flight plans [7].

As highlighted in [7], optimizing individual flight trajecto-
ries without considering their interactions can negatively im-
pact air traffic manageability. To better understand the climate
impact mitigation potential achievable through flight planning,
it is essential to conduct analyses at the network scale, consid-
ering the collective behavior of all flights within the system.
In [8], we made the first attempt to address this challenge
in the literature by proposing a two-stage method. Initially,
we optimized each individual trajectory in a climate-friendly
manner (micro-level flight planning). Then, we minimized
potential conflicts by making slight adjustments to the speed
profile of the optimized routes [8]. However, this approach
has drawbacks, particularly in terms of computational cost.
Optimizing aircraft trajectories at the micro-level is computa-
tionally very intensive [6]. Additionally, the subsequent phase,
which modifies trajectories to maintain ATM performance,
adds additional computational complexity. Moreover, adjust-
ments made to flight profiles during the second phase may
unnecessarily compromise the optimal performance achieved
in the initial trajectory optimization due to the absence of a
feedback scheme between the two stages.

In this work, we propose a single-step optimization al-
gorithm that simultaneously addresses both climate impact
mitigation and air traffic manageability. In the proposed al-
gorithm, each aircraft has a dual objective: reducing climate
impact and maintaining air traffic manageability. To mitigate
climate impact, we first identify specific airspace regions
where aircraft emissions have significant warming effects,
termed ‘ECHO’ areas. These regions are then incorporated
as constraints that aircraft should avoid [3]. To ensure the
operational feasibility of trajectories, traffic complexity is
considered as the objective function to be minimized. Starting
from business-as-usual (BAU) trajectories, each aircraft adjusts



its flight path to avoid ECHO areas while minimizing the
overall air traffic complexity.

Solving this multi-agent control problem presents significant
complexities due to the large number of agents involved
(thousands of aircraft), each with multiple state and control
variables [4]. Each aircraft’s trajectory follows a highly non-
linear 3D point mass model, representing the aircraft’s dy-
namical behavior, making the optimization problem difficult
to solve directly. Additionally, the objective of minimizing air
traffic complexity creates inter-agent dependencies; mathemat-
ically, this coupling requires incorporating additional terms in
each agent’s objective function to account for the states of
neighboring aircraft. This dependency transforms the problem
into a large-scale, coupled optimization, where each agent’s
optimal path cannot be computed separately. Furthermore,
each scenario often requires a separate solution, as control in-
puts must be optimized for specific conditions and constraints.

Multi-agent reinforcement learning (MARL) simplifies the
multi-agent control problem by utilizing policy learning, where
agents learn policies through training. MARL reduces high-
dimensional state-action spaces by using function approxima-
tion, like neural networks, to generalize from sampled experi-
ences, enabling agents to make decisions across a broad state
space without explicitly exploring each possible combination
[9]. The MARL framework can inherently manage complex
dynamics by training agents through interactions with the
environment in a model-free manner, eliminating the need
to accurately model system dynamics [10]. By designing re-
wards that account for air traffic complexity, MARL implicitly
fosters inter-agent coordination without the need for explicit
optimization of coupled objectives [9]. Furthermore, for new
scenarios, agents can leverage the trained policy for decision-
making without the need to solve the problem from scratch.

To efficiently address the climate-optimal flight planning
problem at the ATM network scale, we introduce a frame-
work based on constrained multi-agent reinforcement learn-
ing (MARL). Each aircraft is treated as an agent, and the
entire airspace, encompassing all aircraft, is modeled as an
environment with multiple decision-makers. While extensive
research has been conducted on unconstrained MARL [10],
[11], constrained MARL remains less explored. The authors
in [12] proposed a constrained MARL approach; however, it
faces several limitations. Applying such methods to large-
scale domains, such as aviation with thousands of agents,
requires training numerous networks, which becomes com-
putationally expensive. Additionally, the turn-based action
selection process in this approach may be inefficient in multi-
agent environments, as agents must wait for others to act,
resulting in delays and coordination challenges. Moreover,
the study in [12] does not account for environments with
partial observability, restricting its applicability in real-world
scenarios.

In this study, we present a cooperative framework that uti-
lizes multi-agent proximal policy optimization (MAPPO) [13].
MAPPO has demonstrated superior performance in various
cooperative multi-agent games [13] and has been successfully

applied to diverse areas, such as unmanned aerial vehicles
[14] and air traffic control systems [15]. Building on its
success, we adapt MAPPO to incorporate constraint handling
for individual agents through the Lagrangian approach. This
adaptation allows us to effectively balance the dual objectives
of minimizing climate impact and ensuring air traffic manage-
ability. We employ a centralized learning and decentralized
execution scheme, which enables efficient coordination among
multiple aircraft [16]. Recognizing the need for scalability in
scenarios involving varying numbers of agents, we implement
shared policy parameters, ensuring flexibility across diverse air
traffic situations. Our contributions are summarized as follows:

• Introducing an optimization framework to plan climate-
optimized trajectories while simultaneously ensuring their
feasibility from the ATM perspective.

• Proposing a constrained MARL framework that employs
the MAPPO algorithm and adapts it to handle constraints
related to climate hotspot avoidance.

We evaluate the proposed framework through experiments
using real traffic data within European airspace. We compare
the performance of the constrained MAPPO algorithm against
two MAPPO variants, each optimized either for complexity re-
duction or for reducing climate-hotspot violations. The results
highlight that optimizing for one objective (i.e., complexity re-
duction or hotspot avoidance) does not necessarily address the
other. In contrast, the proposed constrained MAPPO success-
fully avoids a large number of climate hotspots while reducing
complexity to levels even lower than those of business-as-
usual trajectories, demonstrating its potential to plan feasible,
climate-optimal paths in a computationally efficient manner.

II. CONSTRAINED MULTI-AGENT REINFORCEMENT
LEARNING

A. Partially observable constrained Markov decision process

We formulate the problem as a partially observable con-
strained Markov decision process (POCMDP) defined by the
tuple ⟨N ,S,A,O,P, γ, R, {Ci}Ni=1, {ci}Ni=1, s0⟩. Here, N =
{1, . . . , N} represents the set of agents, S is the combined
state space for all agents, Ai denotes the action space for agent
i, A = A1× · · · ×AN is the joint action space for all agents,
oi = O(S, i) represents the local observation for agent i at
state s, P : S × A → ∆(S) is the state transition probability
function, γ ∈ [0, 1) is the discount factor, R : S×A → R is the
shared reward function, Ci : S ×Ai → R is the cost function
for agent i, with a cost threshold ci. In this fully cooperative
setting, the reward function R depends on the joint actions of
all agents, reflecting its coupling across agents. The constraints
are decoupled, as each agent’s cost Ci depends only on its own
actions ai.

We denote the initial state of all agents combined by s0 ∈ S.
At each time step t, agent i observes oit and selects an action ait
according to a randomized stationary policy πi(·|oit) ∈ Πi. The
joint action at = (a1t , . . . , a

N
t ) is then executed, transitioning

the system to a new state st+1 ∼ P(·|st,at). Each agent i
then receives a reward R(st,at) and incurs a cost Ci(st, a

i
t).
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Figure 1. Overview of the proposed framework. Each aircraft receives a local observation about the surrounding traffic and the location of climate-sensitive
hotspots (ECHO areas). Based on these observations, the aircraft executes actions according to a trained policy aimed at avoiding hotspots while maintaining
manageable traffic complexity. Note: lateral route modifications are illustrated here to represent the full scope of potential adjustments; however, only vertical
and speed changes were implemented in this study.

The set of joint policies is denoted by π = {πi}i∈N
and is represented as Π := Π1 × · · · × ΠN . For any joint
policy π ∈ Π, we define the reward value function at
state s as V π

R (s) := Eat∼π,st∼P [
∑∞

t=0 γ
tR(st,at) | s0 = s]

and cost value function at state s as V π
Ci(s) :=

Eat∼π,st∼P
[∑∞

t=0 γ
tCi(st, a

i
t) | s0 = s

]
for i ∈ N .

The goal is to find a policy that maximizes the reward value
function V π

R (s0) while ensuring that the constraint V π
Ci(s0) ≤

ci is satisfied for every agent i. Formally, this is expressed as:

max
π∈Π

V π
R (s0), s.t. V π

Ci(s0) ≤ ci, ∀i ∈ N . (1)

In this study, we focus on a large population of agents that
are assumed to be homogeneous. This assumption is justified
by a common reward function that aligns all agents’ inter-
ests toward minimizing air traffic complexity while avoiding
climate-sensitive regions. Such homogeneity also implies that
the agents play interchangeable roles in the system’s evolution
and are nearly indistinguishable from each other [17]. Due
to the homogeneity of the agents, parameter sharing can be
applied to enhance scalability and training efficiency [18].
This allows all agents to use a single shared policy [13],
[19]. The shared policy, denoted by πθ and parameterized by
θ, enables training to utilize the collective experience of all

agents. Meanwhile, each agent i can still take its own actions,
πθ(·|oit), based on its observations oit [20].

B. Constrained multi-agent proximal policy optimization

Solving constrained MARL problems involves several chal-
lenges. These include non-stationarity, where the environment
evolves dynamically in response to the actions of multiple
agents: scalability, where computational complexity grows
exponentially with the number of agents; and training stability,
where large policy updates can lead to instability and perfor-
mance collapse by erasing previously learned good behaviors.
Additionally, balancing reward optimization with constraint
satisfaction further complicates the problem.

To tackle these challenges in an unconstrained setting, [13]
introduced the MAPPO algorithm, which extends the proximal
policy optimization (PPO) [21] framework from single-agent
to multi-agent environments. MAPPO employs separate neural
networks for the policy πθ and the value function Vϕ(s). The
value function helps to reduce the variance during training.
MAPPO follows a centralized training with decentralized
execution approach and has shown superior performance in
various multi-agent scenarios, such as Google Research Foot-
ball, the StarCraft Multi-Agent Challenge, and Hanabi [13].
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In this study, we extend the MAPPO to address constrained
optimization. For single-agent reinforcement learning, [22]
utilized the Lagrangian technique to incorporate constraints
directly into the PPO objective function, achieving reliable
safety performance. Inspired by this approach, we combine the
Lagrangian method with MAPPO to address the constrained
multi-agent problem defined in 1. We formulate as the follow-
ing min-max problem:

max
θ

min
λi≥0, i∈N

V πθ

R (s0)−
∑
i∈N

λi(V πθ

Ci (s0)− ci). (2)

To solve this min-max problem, we apply gradient descent
on the Lagrange multipliers {λi}i∈N and gradient ascent on
the policy parameters θ. However, directly applying gradient
ascent on θ can lead to large, unstable updates, potentially
causing the policy to forget previously learned good behaviors,
which results in performance collapse. The PPO framework
mitigates this issue by employing trust region optimization,
which constrains the magnitude of policy updates. PPO
achieves this by clipping the probability ratio πθ

πθold
within

(1− ϵ, 1 + ϵ), ensuring that the new policy πθ remains close
to the old policy πθold . This clipping mechanism enhances
stability and enables more controlled updates.

To introduce the MAPPO method [13], we
define the reward state-action value function
Qπθ

R (s,a) := Eat∼πθ,st∼P [
∑∞

t=0 γ
tR(st,at)|s0 = s,a0 = a]

and the cost state-action value function Qπθ

Ci(s, a
i) :=

Eat∼πθ,st∼P [
∑∞

t=0 γ
tCi(st, a

i
t)|s0 = s, ai0 = ai] for

i ∈ N . And the advantage function is defined as
Aπθ

u (s, a) := Qπθ
u (s, a)− V πθ

u (s) for u ∈ {R} ∪ {Ci|i ∈ N}.
This function evaluates the benefit of taking action a in
state s relative to the baseline value V πθ

u (s). Using these
definitions, the MAPPO objective is formulated as:

L
(
θ, {λi}i∈N

)
:= Ea∼πθ,s∼p

[ N∑
i=1

min

(
πθ(a

i | oi)
πθold(a

i | oi)
Aπθ

λi (s,a) ,

clip
(

πθ(a
i | oi)

πθold(a
i | oi)

, 1− ϵ, 1 + ϵ

)
Aπθ

λi (s,a)

)]
,

(3)

where Aπθ

λi (s,a) :=
A

πθ
R (s,a)

N − λi
(
Aπθ

Ci

(
s, ai

)
− ci

)
, and the

advantage functions are computed using generalized advantage
estimation . Here, λi penalizes constraint violations.

To solve problem (2), we iteratively apply the following
update rules:

λi ← λi − αλ∇λiL
(
θ, {λi}i∈N

)
, ∀i ∈ N ,

θ ← θ + αθ∇θL
(
θ, {λi}i∈N

)
,

where αλ and αθ are the learning rates for updating {λi}i∈N
and θ, respectively. These updates balance constraint satisfac-
tion with reward maximization at the individual agent level.

III. CASTING CLIMATE OPTIMAL TRAJECTORY PLANNING
AT NETWORK SCALE AS A CONSTRAINED MARL PROBLEM

In this section, we outline the key components of the MARL
framework used to solve the flight planning problem for the

benefit of climate. Specifically, we define the observation
space, action space, reward function, and cost function.

A. Observation space

In our multi-agent reinforcement learning framework, we
model the environment as a POCMDP. The state st at time
t encapsulates all information about the environment, includ-
ing the positions, velocities, headings, and trajectories of all
aircraft, as well as the locations and characteristics of climate
hotspots.

Each aircraft i receives a local observation oit, which is a
function of the state st. The local observation oit for each
aircraft comprises the following components:

• Trajectory information τ it : Detailed data on the aircraft’s
discretized trajectory:

τ it =
[
(φi

0, λ
i
0, h

i
0)t, . . . , (φ

i
k, λ

i
k, h

i
k)t

]
,

where the tuple (φi
l, λ

i
l, h

i
l)t represents the latitude [hft],

longitude [degree], and altitude [degree] at each dis-
cretized point l and time step t.

• Flight parameters: Information including heading angle
χi
t, flight phase pit, speed vit [m/s], and the duration T i

t

over which the aircraft i flies the most complex grid
segment at time step t.

• Information about neighboring aircraft Iit : Relative infor-
mation about neighboring aircraft within a certain vicin-
ity, which aids in assessing local air traffic complexity.
We denote (rlv, r

l
χ, r

l
p)t as the relative speed, heading

difference, and phase difference with respect to the agent
i for each neighboring aircraft l at time step t. The
information about neighboring aircraft for agent i is given
by:

Iit =
(
(r1v, r

1
χ, r

1
p)t, . . . , (r

m
v , rmχ , rmp )t

)
,

where m is the number of neighboring aircraft.
• Climate hotspot information E: Coordinates of the cen-

ters of climate hotspot areas, which are common obser-
vations available to all agents:

E =
[
(φe1 , λe1 , he1), . . . , (φenh

, λenh
, henh

)
]
,

where nh is the number of hotspots, and (φej , λej , hej )
represents the location of hotspot j.

Based on the above, the local observation for agent i at time
step t is defined as:

oit =
[
τ it , χ

i
t, p

i
t, v

i
t, T

i
t , I

i
t , E

]
.

B. Action space

In this study, the action space for each agent is defined by
the potential modifications to the aircraft’s trajectory. Specifi-
cally, agents can execute predefined maneuvers to meet defined
objectives. These maneuvers are categorized into two primary
types: speed adjustments and altitude changes. Agents can alter
their speed by increasing or decreasing the Mach number by
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0.03 or by maintaining their current velocity. Similarly, altitude
adjustments involve increasing or decreasing the flight level by
20 hft, or maintaining the current altitude. The selected action
is applied uniformly to all points of the trajectory. For instance,
if an agent chooses to increase its altitude, the entire flight
profile τ i is updated to reflect the new altitude. Accordingly,
all information related to the trajectory, such as information
on neighboring aircraft, is updated.

C. Reward function

The reward function R provides the immediate reward
received by all agents for transitioning from state s to state s′

due to the joint action a. In this study, the reward function
is defined by the traffic complexity score. The complexity
score serves as an indicator of the difficulty and effort required
to effectively monitor and manage air traffic situations. It is
calculated based on three key metrics: vertical (ν), horizontal
(κ), and speed (υ) differences interacting flows. ν captures
vertical maneuvers and represents the complexity of managing
flights with varying flight phases (managing mixed-phase
traffic is more challenging than handling aircraft in similar
phases (e.g., only cruising)). κ reflects the complexity of
handling intersecting flows, which is inherently more complex
than managing parallel flows. Finally, υ represents speed vari-
ations among aircraft, with the assumption that similar speeds
correlate with lower complexity. These indicators collectively
provide insights into potential hazards within the airspace,
focusing on the duration and severity of interactions rather
than solely the presence of aircraft in the same volume.

To assess traffic complexity, the airspace is divided into
identical 4D grids, representing time and 3D spatial dimen-
sions. Two aircraft are considered to be interacting at any
given time if they are located within the same cell from each
aircraft’s perspective [23]. The complexity for each aircraft i
with respect to aircraft k is computed as follows:

Ψi,k
t =

gt+∆t∑
gt

(νi,k + κi,k + υi,k)

where gt is the grid that aircraft i enters at time t, and gt+∆t is
the cell that aircraft i exits at time t+∆t. The sum operator
encompasses all cells that aircraft i crosses between gt and
gt+∆t. The variables νi,k, κi,k and υi,k are computed as:

νi,k =

{
2κ2

(txi−tei)+(txk−tek)
if κ ̸= ∅ and P i ̸= P k

0 otherwise

κi,k =

{
2κ2

(txi−tei)+(txk−tek)
if κ ̸= ∅ and |χi − χk| > 20◦

0 otherwise

υi,k =

{
2κ2

(txi−tei)+(txk−tek)
if κ ̸= ∅ and |vi − vk| > 35 kts

0 otherwise

where te and tx are the entering and exit times of aircraft
within the cell, respectively. P represents the flight phase,
χ denotes the heading angle, v is the true airspeed, and κ
represents the time overlap between the two aircraft, which is

defined as: κ = [tie, t
i
x] ∩ [tke , t

k
x]. The overall reward function

is then calculated as follows:

Rt = Ψ0 −
N∑
i=1

N∑
k=1,k ̸=i

Ψi,k
t

where Ψ0 is the initial complexity score.

D. Constraints

The non-CO2 climate impact of aircraft emissions, includ-
ing contrail formation, nitrogen oxides-induced changes in
atmospheric concentrations of methane and ozone, and water
vapor emissions, exhibits significant spatiotemporal variability.
Therefore, we can mitigate their corresponding climate effects
by planning aircraft trajectories to avoid areas where the
emissions have a large climate impact. These areas, often
referred to as climate hotspots or ECHO areas, are generally
regions where the net non-CO2 climate effects exceed prede-
fined thresholds. Interested readers are referred to [3] for an
approach to identify such areas.

In this study, to achieve trajectories that are climatically
friendly, we model the avoidance of climate hotspots as
constraints Ci to be satisfied. We define the following perfor-
mance metric to quantify the cost of constraint violation (i.e.,
the intersection of flight trajectories with the climate sensitive
areas) to be included in Eq. (3):

Ci
t =

{
ch if τ it ∈ E

0 otherwise
.

Here, τ it represents the trajectory of aircraft i during time
interval [t, t+∆t], ch is a constant cost, and E denotes ECHO
areas. The equation implies that when an aircraft flies through
climate-sensitive areas, a cost ch is incurred.

IV. CASE STUDY

We performed an experiment utilizing a real traffic scenario
over ECAC1 airspace on December 20, 2018. The case study
includes all the flights within ECAC airspace from 12:00
UTC to 16:00 UTC. The weather data, including wind and
temperature, was obtained from the ERA5 reanalysis data
products available at the Copernicus Data Store2. The ini-
tial flight trajectories were obtained using our in-house tool,
ROOST. 3 Although the initial trajectories in this study were
generated using ROOST, the framework is flexible and can
use other planned trajectories, such as those available from
Eurocontrol’s demand data repository (DDR2) dataset4. Each
aircraft’s trajectory includes detailed information on latitude,
longitude, altitude, time, true airspeed, Mach number, mass,
heading angle, and flight phase.

1European Civil Aviation Conference
2https://cds.climate.copernicus.eu/cdsapp\#!/dataset/

reanalysis-era5-pressure-levels?tab=form
3ROOST is publicly available and accessible via DOI: https://doi.org/10.

5281/zenodo.7495472
4https://www.eurocontrol.int/ddr
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Figure 2. Performance comparisons in terms of the reward.
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Figure 3. Performance comparison in terms of the cost. We set the cost
threshold ci = 0 for all i ∈ N .

Given the computational complexity of the traffic scenario,
which involves approximately 6,000 flights, we adopted a
strategy to reduce the computational burden by generating
random subsets of the data. Specifically, we selected random
portions of airspace measuring 500 by 500 nautical miles
within a one-hour time frame. All flights intersecting these
regions during the specified period were grouped into subsets.
Each subset contains 90–120 flights. This approach allows
a flight to appear in multiple groups, each with different
group members, ensuring coverage of the entire airspace and
providing sufficient variability in the training data.

As an initial step and proof of concept, this study employs
fictitious climate hotspots in the airspace; however, the pro-
posed approach can seamlessly accommodate real hotspots
without loss of generality. These hotspots are generated across
flight levels ranging from FL280 to FL450, with a 75%
probability of occurring. Their locations are randomly assigned
within the airspace, and they are modeled as ellipsoids with
a radius of 20 nautical miles and a vertical extent of 1000
ft. For simplicity, a uniform cost is applied whenever an
aircraft enters a hotspot, regardless of the distance flown within
it. Future work will extend the model to incorporate real
hotspots and account for the distance aircraft travel within
these regions. Nevertheless, real hotspots can also be modeled
as ellipsoids.

Once all preprocessing is finalized, including trajectory clus-
tering and hotspot generation, the proposed strategy outlined
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Figure 4. Performance comparison of trained policies across three algorithms
over 100 test sets, each containing 90–120 flights.

TABLE I. HYPERPARAMETERS USED IN THE EXPERIMENT.

Hyperparameters Values Hyperparameters Values
Critic lr 1e-3 Batch size 124
Actor lr 1e-3 N mini-batch 32

Safety bound 0 ϵ 0.2
Eval. episodes 100 Lagrangian coef. rate 0.1

Optimiser Adam ch 10

in Section II-B is implemented. The state space, action space,
reward function, and cost function, as described in Section
III, are incorporated into our experimental framework. In this
study, the time step is set to 60 minutes.

We initialize the policy network πθ. The critic and cost-
critic networks are set up to compute the advantage and cost-
advantage functions in Eq. (3), respectively. All networks
(i.e., policy network, critic, and cost-critic) share a similar
architecture, each designed as a three-layer multi-layer per-
ceptron (MLP) with two hidden layers of 264 units each.
The actor network’s final layer produces action probabilities
via a softmax activation function, whereas the final layers
of the critic and cost-critic networks output single scalar
values representing the estimated cumulative reward and cost,
respectively. ReLU activation functions are employed between
layers, and orthogonal initialization is used for all networks
to enhance training stability. Detailed of the hyperparameters
used in the experiment is presented in Table I.

The proposed ’constrained MAPPO’ algorithm is compared
against two variations of the MAPPO algorithm, each targeting
different optimization objectives. The first variation, ’MAPPO-
complexity,’ focuses only on optimizing traffic complexity,
while the second, ’MAPPO-climate’, considers avoiding cli-
mate hotspots. Figure 2 presents a comparison of reward per-
formance for the three algorithms. The vertical axis represents
the sum of the rewards for all agents within a set, and the
reward curve is smoothed over 300 episodes for better clarity.
As observed in Fig. 2, the MAPPO-complexity algorithm
consistently achieves a higher reward, as it focuses solely
on minimizing traffic complexity. In contrast, the MAPPO-
climate algorithm, which only considers climate impact by
avoiding hotspots, exhibits low reward performance due to
the lack of emphasis on traffic complexity. The proposed
constrained MAPPO algorithm achieves a competitive reward
performance relative to MAPPO-complexity.
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 (b) Re-planned trajectories using Constrained MAPPO (a) Initial trajectories 

Figure 5. Hotspot violations for both the initial and re-planned trajectories across various flight levels. The red areas represent regions where aircraft trajectories
intersect with climate-sensitive hotspots.

Figure 3 presents a comparison of the episode cost of vio-
lation for the three algorithms: MAPPO-complexity, MAPPO-
climate, and the proposed constrained MAPPO. The vertical
axis shows the average episode cost for all agents, with
the safety constraint value set to 0. As seen in the figure,
the MAPPO-complexity algorithm, which does not prioritize
climate constraints, incurs the highest cost due to significant
violations of climate hotspots. On the other hand, the MAPPO-
climate algorithm, which focuses solely on minimizing climate
impact, maintains very low costs, as it effectively avoids
climate hotspots. The proposed constrained MAPPO algorithm
achieves a balance between these two objectives. While its
cost is higher than MAPPO-climate, it still maintains climate
hotspot avoidance at reasonable levels, while optimizing for
traffic complexity. This trade-off demonstrates the effective-
ness of constrained MAPPO in managing the conflicting
objectives of minimizing both the cost of hotspot violation
and traffic complexity.

The policies derived from the three algorithms were evalu-
ated on 100 test sets to assess their performance in balancing
traffic complexity and hotspot avoidance. As depicted in Fig.
4, the proposed constrained MAPPO algorithm successfully
reduces both hotspot violations and traffic complexity, demon-
strating its capability to manage these conflicting objectives
simultaneously. In contrast, the MAPPO-complexity algo-
rithm, which focuses solely on optimizing traffic complexity,
improves traffic manageability but results in a high number
of hotspot violations. On the other hand, the MAPPO-climate
algorithm, which only considers hotspot avoidance, effectively
minimizes hotspot violations but at the expense of increased
traffic complexity.

To provide a visual representation of the proposed ap-
proach’s performance, a subset of the traffic within the latitude

range [37,52] and longitude range [-5,15] between 13:00 UTC
and 14:00 UTC was selected. The hotspot violations of the
initial trajectories and those re-planned using the constrained
MAPPO algorithm are depicted in Fig. 5, where the red
areas indicate parts of the trajectories that crossed hotspots.
Additionally, the traffic complexity for this set is presented in
Fig. 6. The results indicate that complexity can be reduced
to levels even lower than those of business-as-usual trajecto-
ries, showing the algorithm’s potential for planning feasible,
climate-optimal routes.

V. DISCUSSION

The results underscore a trade-off between the two ob-
jectives: reducing traffic complexity and minimizing hotspot
violations. The challenge, therefore, lies in finding an optimal
balance that addresses both concerns simultaneously. The
proposed constrained MAPPO algorithm successfully manages
this trade-off.

However, there are some limitations in this study that
highlight opportunities for future enhancement. In this study,
airspace users (AU) preferences, such as cost efficiency and
punctuality, were not directly incorporated (though the initial
trajectories are cost-optimal trajectories). Yet, the proposed
framework is capable of handling multiple constraints. Future
research could introduce additional operational constraints,
such as limiting increases in fuel consumption and flight time
within specified thresholds. This would allow us to address AU
preferences for operational cost control as an added constraint,
similar to hotspot avoidance, thereby enhancing the model’s
practical applicability.

We employed parameter sharing for homogeneous agents
primarily to enhance scalability and adaptability and reduce
the number of training parameters, which was essential given
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 (a) Initial trajectories 
Figure 6. Comparison of traffic complexity associated with the initial trajectories (a) and the re-planned trajectories using constrained MAPPO (b). The color
scale indicates the complexity score, with darker regions representing areas of higher traffic complexity.

the large-scale nature of the problem. However, the framework
could be extended to accommodate heterogeneous agents,
where each aircraft would have its own unique parameters
rather than sharing them across agents. While this would allow
for more individualized optimization, it would also increase
memory requirements for storing each agent’s policy and could
limit the model’s adaptability to different scenarios.

One of the limitations of this study is the use of ficti-
tious hotspots rather than real ones. However, real hotspots
could seamlessly be incorporated into this framework. Looking
ahead, future research will focus on extending the model to
incorporate state-of-the-art climate impact estimation models
(e.g., algorithmic climate change functions and Contrail Cir-
rus prediction (CoCiP) model) to determine actual climate
hotspots and allow for their dynamic changes due to vary-
ing meteorological conditions. However, scenarios with high
hotspot density would likely reduce flexibility in managing
traffic complexity, as avoiding multiple hotspots may constrain
trajectory options. Additionally, we aim to enhance the algo-
rithm by integrating more decision variables, such as lateral
paths, to further improve the flexibility and efficiency of the
proposed methodology, making it more adaptable to complex,
real-world scenarios.

VI. CONCLUSION

This paper introduced a novel approach for mitigating
the environmental impact of aviation at the network scale
by employing constrained multi-agent reinforcement learning.
Our findings demonstrate that constrained MARL is a viable
and efficient strategy for achieving more sustainable aviation
operations. Conventional two-step optimization methods are

time-consuming and risk losing the initial optimality when
modifying flight plans to maintain air traffic manageability.
The proposed approach simplifies this process by embedding
constraints directly within the optimization framework, en-
abling the optimization of pre-planned trajectories in a single
step. Simulation results showed that the proposed approach
could effectively mitigate climate effects while preserving
operational manageability.
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[17] K. Zhang, Z. Yang, and T. Başar, “Multi-agent reinforcement learning:
A selective overview of theories and algorithms,” Handbook of rein-
forcement learning and control, pp. 321–384, 2021.

[18] J. Foerster, I. A. Assael, N. De Freitas, and S. Whiteson, “Learning to
communicate with deep multi-agent reinforcement learning,” Advances
in neural information processing systems, vol. 29, 2016.

[19] F. Christianos, G. Papoudakis, M. A. Rahman, and S. V. Albrecht,
“Scaling multi-agent reinforcement learning with selective parameter
sharing,” in International Conference on Machine Learning. PMLR,
2021, pp. 1989–1998.

[20] J. K. Gupta, M. Egorov, and M. Kochenderfer, “Cooperative multi-agent
control using deep reinforcement learning,” in Autonomous Agents and
Multiagent Systems: AAMAS 2017 Workshops, Best Papers, São Paulo,
Brazil, May 8-12, 2017, Revised Selected Papers 16. Springer, 2017,
pp. 66–83.

[21] J. Schulman, S. Levine, P. Abbeel, M. Jordan, and P. Moritz, “Trust
region policy optimization,” in International conference on machine
learning. PMLR, 2015, pp. 1889–1897.

[22] A. Ray, J. Achiam, and D. Amodei, “Benchmarking safe exploration in
deep reinforcement learning,” arXiv preprint arXiv:1910.01708, vol. 7,
no. 1, p. 2, 2019.

[23] E. A. Group et al., “Complexity metrics for ANSP benchmarking
analysis,” EUROCONTROL, April, 2006.

9




