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Abstract—With the rapid increase in the use of Unmanned Aerial
Systems (UAS) for commercial applications such as medical
and parcel delivery, the need for safe airborne separation in
airspace has become critical. This paper examines the impact of
position uncertainty on autonomous separation methods within
U-Space, a European Union initiative for managing drone traffic.
The study focuses on evaluating various conflict resolution
algorithms—specifically, Modified Voltage Potential (MVP) and
Velocity Obstacle (VO) variations—under conditions of naviga-
tional uncertainty. Through Monte Carlo simulations using the
BlueSky ATM simulator, position uncertainty stemming from
Global Navigation Satellite Systems (GNSS) errors is modelled
and analysed. The research compares the effectiveness of different
conflict resolution strategies in preventing conflicts between UAS,
measuring intrusion prevention rates and the closest point of
approach during encounters. The results indicate that MVP pro-
vides superior performance in handling positional uncertainty,
offering more robust conflict resolution capabilities than VO-
based methods especially at shallow angles conflict situation.
These findings are critical for ensuring the safe integration of
UAS into increasingly congested airspace environments, guiding
future developments in U-Space operations.
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I. INTRODUCTION

Commercial applications that involve Unmanned Aerial
Systems (UAS), commonly known as drones, are on the verge
of rapid growth. With applications such as medical delivery,
parcel delivery, and remote monitoring for infrastructure and
emergency response, the commercial drone sector is expected
to grow to unprecedented levels in the coming decades. The
EU drone outlook study [1] estimates some 500,000 commer-
cial drones in EU airspace alone by 2050. This, of course,
requires an extra effort to allow drones to fly safely among
existing air traffic.

The CORUS project proposes a U-Space concept of oper-
ations (CONOPS) to allow UAS to fly safely in the airspace
[2]. Several services will be available in U-Space to enable
safe operations, such as registration, remote identification,
and separation management. Any aircraft, both crewed and
uncrewed, flying in the U-Space is expected to be registered.
Next to it, remote identification provides situational awareness
by communicating all aircraft positions by radio or through the
internet. Most crucially, the U-Space concept relies on auton-
omy - since the traffic numbers are expected to be too high for

human operators to effectively manage, all of the separation
management is to be performed by an autonomous separation
management system. Such a system will be comprised of
multiple layers [3], namely a strategic (pre-flight) component
that manages planning and flows, a tactical in-flight component
that will avoid conflicts when they occur, and a collision
avoidance (detect-and-avoid) system. This paper investigates
possible implementations for the Tactical Layer, which will
be crucial to enable UAS flight and fulfill the mandatory self-
separation requirement set in the U-Space CONOPS [2].

In literature, numerous conflict resolution algorithms for
tactical separation have been proposed. Geometric methods
have proven to be especially effective in terms of safety and
low computational demand. Velocity Obstacle (VO) [4], a
geometry-based algorithm, enables UAS to find the shortest
way out of the conflict. Several variations of VO are also
available [5]–[8], with each proven to perform better than the
original VO. Another conflict resolution algorithm is Modified
Voltage Potential (MVP) [9], using the distance at the closest
point of approach (CPA) vector to determine the direction
of the resolution velocity. Although numerous scenarios have
been conducted to compare these algorithms [10], [11], the
accurate modelling of uncertainty aspect is often still missing.

Uncertainty in U-Space is an imminent problem. Position
information is typically obtained from Global Navigation
Satellite Systems (GNSS). This is then transmitted through
the radio-based or internet-based service called Automatic
Dependent Surveillance - Light (ADS-L) [12]. There are two
types of uncertainty that affect these position data: one related
to communication and the other to navigational uncertainty.
These types of uncertainty are inherent to communication,
navigation, and surveillance systems [13]. The navigational
uncertainty can be modelled using a Gaussian Distribution,
while the communication uncertainty is defined in terms of
update rate and reception probability.

The aim of this work is to evaluate several Conflict Reso-
lution methods under navigational uncertainty and determine
how they perform in terms of safety. To this end, an ADS-
L model is developed as a plugin for the BlueSky ATC [14]
simulator. This plugin is designed to include positional error
due to GNSS as variables, allowing for the simulation of
the uncertainties that drones will experience when performing
conflict resolution with communication loss and positioning



error. Then, Monte Carlo simulations are run for three different
Velocity Obstacle-based methods: Modified Voltage Potential
(MVP), priority-based Velocity Obstacle (VO), and cooper-
ative optimal VO. The Monte Carlo simulations consider a
range of relative headings and speeds. The methods will be
compared in terms of intrusion prevention rate (IPR) and
distance at the closest point of approach (CPA).

II. STATE-BASED AUTONOMOUS SEPARATION

In state-based autonomous separation, the positions, ground
speeds, and headings of conflicting aircraft are used to perform
conflict resolution. Each aircraft considers itself the ownship
and others as intruders, with the ownship’s state determined
through internal measurements. The states of intruders, how-
ever, are obtained via ADS-L communication, introducing
both navigation and communication uncertainties. These un-
certainties can lead to inaccuracies in state measurements and
potentially delay conflict detection or resolution. Since ADS-
L broadcasts aircraft states every second, reception delays
due to range limitations or interference can result in outdated
information, causing asymmetry in conflict detection.

Given these uncertainties, effective coordination among
UAS becomes essential to maintain safe separation. To achieve
self-separation, UAS must coordinate during flight. Many
studies outline three forms of coordination: explicit, implicit,
and uncoordinated. Explicit coordination involves direct com-
munication of resolution maneuvers, while implicit coordi-
nation relies on common rules that all UAS follow without
direct communication. In this research, implicit coordination
is selected due to its simplicity in implementation. Moreover,
ADS-L, the primary communication and surveillance system,
does not support explicit coordination, reinforcing the need for
a rule-based approach in U-Space.

Building on this framework, we selected three state-based
conflict resolution methods for comparison, chosen for their
ability to operate in continuous space, lower computational
complexity, and ease of implementation. The first method is
the original Velocity Obstacle (VO) [4], a geometry-based
approach for conflict resolution. The second is Modified
Voltage Potential (MVP) [9], which draws inspiration from
the behavior of charged particles repelling each other when
in close proximity. Both VO and MVP require cooperation
between ownship and intruders to avoid conflicts. In contrast,
the third method, Selective Velocity Obstacle (SVO) [8],
integrates priority-based rules from the rules of the air [15],
allowing it to manage conflicts based on established right-
of-way guidelines. The details of these algorithms will be
discussed in the following paragraphs.

To construct VO, a triangle is first drawn using the two
tangent lines to the protected zone of the intruder. This
triangle is called the collision cone (CC). Then, the triangle is
translated in the direction of the intruder’s velocity. This new
triangle represents the set of velocity vectors that will evolve
into conflict with the intruder. The solution to the conflict is to
select a new velocity vector, which is the closest point between
the current velocity and the side of the VO. Figure 1 illustrates

Figure 1: Illustration of the Velocity Obstacle (VO) and Collision
Cone (CC) for collision avoidance, showing the relative velocity
vector (Vrel) and its components. The diagram contrasts the optimal
velocity (Vopt) and the MVP strategy within the permissible velocity
space, highlighting how these strategies work to prevent conflicts by
adjusting the velocity outside the VO region.

the construction of VO in a pairwise conflict situation, with
the green line showing the change in velocity. Note that there
are infinitely many resolution velocity in a given conflict. The
resolution velocity can be placed anywhere along the velocity
obstacle triangle or outside of it.

One drawback of VO is the oscillation and reciprocating
problem [6]. Among different VO variations, SVO or VO -
priority-based is selected since it implements the rules of the
air, an existing convention for conflict resolution in manned
aircraft [8]. The algorithm allows certain aircraft to have
priority, thus removing the necessity to perform a maneuver in
the case of conflict. In a hyper-dense UAS environment, with
no navigational uncertainty, VO - priority-based is proven to
perform better than the original VO in terms of number of
losses of separation.

The next conflict resolution is MVP, using the closest point
of approach (CPA) vector to produce the new velocity of the
ownship. With this approach, the resolution velocity is simpler
to produce compared to VO. In its original form, MVP allows
conflict resolution by changing exclusively heading, speed, or
both [9]. Changing both speed and heading results in shortest-
way-out version of MVP, the version we consider in this paper.
Even though it stems from a different calculation, the concept
of MVP can be illustrated in the velocity obstacle triangle
as seen in Figure 1. From the figure, it can be seen that
the solution lies on the side of the VO triangle, proving that
the resolution velocity from MVP results in a conflict free
condition.

A slight difference between MVP and VO is that MVP
is not perpendicular to the triangle side. This happens since
the resolution velocity is calculated from the CPA vector.
With this, MVP produces a slightly higher magnitude for the
resolution velocity. Even though there’s only a tiny difference,
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[10] shows that MVP performs better in an extremely dense
condition.

III. PROPAGATION OF UNCERTAINTY

Propagation of uncertainty refers to the process of determin-
ing how uncertainties in input variables affect the uncertainty
in the output of a function. In this context, the input variables
represent measurements such as position, speed, and heading,
which are subject to measurement errors or uncertainties.
When these inputs are processed through a function—such
as a conflict resolution algorithm—the output variables, like
the resolution velocity, also inherit a degree of uncertainty.

In the simplest, linear case, the relationship between in-
put and output uncertainties can be mapped using a set of
straightforward rules. For instance, if a random variable with
a standard deviation of σ is transformed by a function that
scales the variable by a factor of two, the standard deviation
of the output would be σ/2. This linear relationship makes it
relatively easy to predict how uncertainties in the input will
affect the output.

However, in non-linear functions, such as those found in
state-based conflict resolution algorithms, the propagation of
uncertainty becomes much more complex. A simple linear
approximation is typically insufficient to describe how un-
certainties evolve through the function. In such cases, Monte
Carlo simulations are often employed to model and estimate
the combined uncertainties, offering a more accurate rep-
resentation of the behavior of the system under real-world
conditions.

In the context of state-based conflict resolution, the accuracy
of the resolution maneuver relies on precise input variables
such as position, ground speed, and heading. However, these
variables are inherently subject to measurement errors due to
navigation and communication uncertainties. This introduces
stochastic elements into the calculation of resolution velocities,
potentially leading to suboptimal or unsafe maneuvers. Since
all three conflict resolution algorithms discussed involve highly
non-linear functions, Monte Carlo simulations are necessary
to assess the propagation and performance of these algorithms
under uncertainty.

Understanding how the uncertainty propagates is essential
for ensuring the safety of aircraft operation in U-Space. The
input variables for the conflict detection and resolution, with
their uncertainty, directly affect the safety of the resolution
manoeuvre. By analyzing the effect, we can determine the
most suitable algorithm in a given condition. In this paper,
we will focus on the positional uncertainty as described in the
next section.

IV. EXPERIMENT SETUP

The experimental setup for this study focuses on assess-
ing the performance of different conflict resolution algo-
rithms under varying conditions of navigation uncertainty.
The simulations were conducted using the BlueSky open-
source ATM simulator, complemented with an ADS-L plugin
to replicate the real-world communication environment in

which unmanned aerial systems (UAS) are expected to operate.
Although ADS-L has both GNSS-based positional errors and
communication losses, only the former is considered in this
research to clearly analyze the positional impact on the conflict
resolution algorithms. The positional uncertainty is modeled
using a Gaussian Distribution and follows the convention in
the ADS-L technical specifications [12]. From the technical
specifications, the horizontal position accuracy is included in
the broadcast message and the value varies from below 3 m,
10 m, 30 m, 0.05 NM, and all the way to higher than 0.5 NM.
We select 30 m as a test case since values higher than that are
too permissive for UAS operation - this corresponds to ’value’
5 for the horizontal position accuracy as per EASA [12].

A. Independent variables

Three independent variables are considered in this study.
The first is the resolution method, with three levels: Modified
Voltage Potential (MVP), Velocity Obstacle (VO) priority-
based, and VO optimal change. The second variable is the
initial heading, which is varied between 0 and 359 degrees in
steps of 1 degree. The third independent variable is intruder
speed with four levels: 5, 15, 25, and 35 kts. The ownship
speed is kept constant at 20 kts.

Based on these variables, a full factorial experiment matrix
is constructed, where each combination is run 500 times to
ensure sufficient statistical power.

B. Dependent measures

The Intrusion Prevention Rate (IPR) (Eq. (1)) corresponds
to the proportion of conflicts that were successfully resolved,
and it is used as an indicator of algorithm effectiveness. The
mean distance at CPA measures how close the aircraft come to
each other during a conflict, providing insight into the severity
of any remaining separation loss events.

IPR =
ncfl − nLoS

ncfl
(1)

Additionally, we assess how positional accuracy propagates
into the resolution velocity and final position distribution. As
outlined in Section III, positional errors introduce variability
into the computation of resolution velocities, potentially caus-
ing deviations from the most effective flight paths. Finally, the
mean and standard deviation of the final position are analysed
to evaluate how these deviations evolve under varying angles.

C. Simulation settings

Conflict detection is configured with a look-ahead time of
15 seconds. This value is chosen since the results in [13] show
that there is no significant improvement in the IPR and loss
of separation severity beyond this value. For UAS, there is no
standard separation size yet, therefore 50 meters is chosen as
a horizontal separation margin as commonly used in literature
[8], [11]. The simulations are conducted with an upper runtime
boundary of 60 seconds, ensuring that each conflict scenario
was resolved within a realistic time frame. This setup allows
for thorough testing of each algorithm’s ability to handle the
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Figure 2: Comparison of intrusion prevention rate for different conflict resolution methods at different angles and speeds. Overall, MVP has
the highest intrusion prevention rate. Note that VO - Optimal Change performs slightly worse than MVP, specifically at shallow angles..

dynamic and uncertain environment that UAS would face in
a decentralized airspace.

V. RESULTS AND ANALYSIS

A. Intrusion Prevention Rate

Figure 2 illustrates a comparison of intrusion prevention
rates for the three conflict resolution methods for all com-
binations of initial heading and intruder speed. Since VO -
priority-based is a modified version of VO - optimal change,
the two conflict resolution methods will be compared to each
other. Next, VO - optimal change will be contrasted to MVP.

For an intruder speed of 5 kts, the intrusion prevention
rates (IPR) for both VO - optimal change and VO - priority-
based are nearly identical across all headings. However, at
higher intruder speeds (15 to 35 kts), the two algorithms
begin to diverge in performance, with the priority-based VO
underperforming at larger conflict angles (90 to 135 degrees).
Interestingly, at shallow conflict angles (-45 to 45 degrees),
the optimal-change VO algorithm performs worse than the
priority-based VO. For instance, at an intruder speed of 15
kts and a heading of 90 to 135 degrees, the mean IPR for
priority-based VO is 0.92, whereas for optimal change VO,
it is 1.00. Conversely, at the same speed but within the 0
to 45 degrees range, the mean IPR for optimal change VO
drops to 0.94, compared to 0.98 for the priority-based VO.
Another interesting observation is the asymmetrical VO -
priority-based. This happens due to the priority rules assigned
depending on the state of the ownship and intruding aircraft.

The analysis showed that among the three algorithms,
MVP consistently outperforms the others in terms of IPR,
achieving the highest average IPR of 0.985 ± 0.009. VO -
optimal change follows closely with an IPR of 0.983± 0.024,
while VO - priority-based ranks third with 0.960 ± 0.036.
Notably, MVP not only has the highest average IPR but also
demonstrates greater consistency, as indicated by its lower
standard deviation compared to the other methods.

B. Mean Distance at CPA

The IPR results show that the average IPR for the three
algorithms are more than 96%. With 500 repetitions per
scenario this means that there are fewer than 50 observed
losses of separation per scenario. To increase the power of
the distance at CPA results, this metric is therefore averaged
for each range of 45 degrees heading.

Figure 3 shows a comparison between methods for their
mean distance at CPA. For four different intruder speed
categories, from 5 to 35 kts with 10 kts increments, the three
conflict resolution methods are plotted. For each resolution
method in each plot, there are eight values corresponding to
the mean distance at CPA for 0-45 degrees, 45-90 degrees,
and so on up to 315-360 degrees initial heading.

Overall, MVP achieves the greatest average distance at the
closest point of approach (CPA), with a value of 44.11± 2.69
meters. VO - optimal change follows closely at 43.89± 4.27
meters, while VO - priority-based ranks lowest with 43.18±
3.41 meters.

C. Position Uncertainty and Resolution Velocity

To understand the source of difference in IPR, we look
at how the position uncertainty is related to the resolution
velocity. Figure 4 shows how the position uncertainty is
mapped into the resolution velocity for VO (in blue) and MVP
(in orange) for the ownship aircraft for an initial heading
difference of 5 degrees and intruder speed of 15 kts. This
figure is generated by running a Monte Carlo simulation to
propagate the position uncertainty to the resolution velocity
space. The Monte Carlo simulation is used in place of an
analytical propagation analysis, as the the methods includes
trigonometric functions and logic, for which it is difficult to
compute the resolution velocity distribution using the Gaussian
position distribution. The horizontal axis represents the y-
body component, corresponding to the velocity in the lateral
(sideways) direction, while the vertical axis represents the x-
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Figure 3: Comparison of mean distance at CPA for different conflict resolution methods at different angles and speeds. MVP and VO - Optimal
Change have similar mean distance at CPA while VO - Priority-Based results in a closer distance.

body component, corresponding to the velocity in the forward
direction.

For the MVP, the resolution velocity in the x-body com-
ponent has a mean and standard deviation of 19.99 ± 0.55
knots, while for the VO, it is 19.25 ± 0.54 knots. In the y-
body component, the values are −0.02 ± 2.14 knots for the
MVP and 0.18± 1.78 knots for the VO.

Another possible source of dissimilarity between VO and
MVP is the magnitude of the speed change from the true
resolution velocity. Since the biggest IPR for both conflict
resolution difference happens at shallow angle, Figure 5 shows
the speed change from 0 up to 90 degrees. It is notable that
the speed change for MVP is generally higher than VO for all

Figure 4: This plot compares the resolution velocity for x-body and
y-body component of different conflict resolution algorithms. The
shaded area indicates the velocity obstacle triangle, with density plots
showing the distribution of each strategy’s samples across the velocity
axes.

initial intruder speed and heading difference. In line with the
IPR values, the highest difference in speed change exists at
15 and 25 kts for shallow angles, with MVP requires higher
magnitude. This disparity between the two potentially leads to
the the distinct IPR at shallow angles.

So far, we have arrived at two probable sources of difference
between the resolution algorithms. The first reason is that
the position uncertainty is propagated differently into the
resolution velocity space of MVP and VO as shown in Figure
4. The second one is that MVP has a higher speed change
compared to VO, thus resulting in higher IPR. While the first
one is inherent in the algorithm, the latter can be verified by
increasing the speed change in VO algorithm.

Figure 5: Comparison of speed changes for VO (blue) and MVP
(orange) conflict resolution. MVP generally requires a higher speed
change compared to VO.
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Figure 6: Speed change for Ownship (left) and Intruder (right) for
different conflict resolution methods as a function of initial heading
difference.

D. Scaled Velocity Obstacle

For the VO method, the resolution velocity is obtained by
projecting the current ownship velocity to the velocity obstacle
triangle. In this way, a bigger speed change can be obtained
by multiplying the ownship velocity with a ”scaling factor”
before the projection. This applies when the ownship speed is
bigger than the intruder’s at shallow angle. In contrast, when
the ownship speed is lower, its speed is divided by the scaling
factor. The results of this scaled velocity obstacle can be seen
in Figure 4 and Figure 6.

Figure 4 shows a sample of the resolution velocity distribu-
tion for VO scaled by 1.10 (in red) and 1.15 (in purple). These
two values are selected arbitrarily close to 1.00 so that they
do not differ significantly from the original value. Another
important remark is to have the highest resolution velocity
from the two higher than the MVP. After the scaling, the
distribution still follows the ‘arc’ shape as in the original VO
samples.

Figure 6 shows the speed change for the VO scaled by 1.10
(in red) and 1.15 (in purple), for both the ownship and intruder.
Since the biggest disparity appears at shallow angles for 15 and
25 kts, the region of interest is constrained to these conditions.
Next, when compared to the MVP, it is notable that the speed
changes of the scaled VO algorithms are higher. Thus, if higher
speed change truly leads to higher IPR, these two algorithms
should have a better safety performance compared to MVP
and VO.

Using the same simulation configuration as outlined in Sec-
tion IV, we obtained the IPR for the scaled VO in comparison
to the initial VO and MVP, as illustrated in Figure 7. Despite
the higher speed change of the two scaled VOs compared to
the MVP and original VO, their IPR is significantly worse.
Moreover, when the scaling factor is increased from 1.10 to
1.15, the IPR is reduced further.

Figure 7: Intrusion Prevention Rate comparison for VO - Opt Change,
MVP, V O∗1.1, and V O∗1.15 strategies at intruder speeds of 15 kts
(left) and 25 kts (right). The plots illustrate how the two scaled VO
show significantly worse safety performance compared to the rest..

E. Accumulated Uncertainty

Figure 8 presents the final position for a scenario involving
an intruder speed of 15 knots and a conflict angle of 5 degrees,
recorded 60 seconds after the simulation began. Along the y-
body axis, the distribution of the final position shows that for
the MVP algorithm, the UAS moved an average distance of
15.29± 24.07 meters, while for VO, it moved 119.53± 23.17
meters. In the x-body direction, the distances recorded were
613.19 ± 7.42 meters for MVP and 589.38 ± 23.92 meters
for VO. This is a promising way to visualise the consequence
of how position error has accumulated and propagated in the
CR algorithm, resulting in a non-deterministic final position.
It also highlights the higher variance in positional outcome for

Figure 8: Comparison of the logged final ownship position for
scenario with intruder speed of 15 kts and conflict angle of 5 degrees.
The position for VO (in blue) shows a higher standard deviation
in comparison to MVP (in orange). This potentially explains the
difference in IPR.
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Figure 9: The figure shows the standard deviation of the x-body (top row) and y-body (bottom row) components of final position across
different intruder speeds and initial heading differences. It compares the performance of the Velocity Obstacle (VO) and Modified Voltage
Potential (MVP) algorithms, with MVP generally displaying lower x-body and y-body variability, indicating greater robustness to positional
uncertainty input. .

the VO algorithm.
Figure 9 compares the final position standard deviation

in the x-body and y-body components for varying intruder
speeds and initial heading differences. The x-body standard
deviation shows a significant disparity between VO and MVP,
particularly at shallow angles, which gradually decreases as
the angle increases. Notably, the difference is much smaller at
intruder speeds of 5 kts and 35 kts. This pattern is consistent
with the IPR variation between VO and MVP, as shown in
Figure 7.

VI. DISCUSSION

When comparing between optimal change VO and priority-
based VO, it is clear that the optimal change is generally
better than the latter except for the shallow angles. In a two
aircraft conflict situation, the overall performance for optimal
change VO is higher because it requires both agents to perform
manoeuvre. In this way, the conflict resolution is more robust
to uncertainty.

In general, MVP outperform the other algorithms in both
IPR and distance at CPA. The drop in IPR in shallow angles
for optimal change VO is the most crucial downside of the
algorithm. This is crucial for airspace structuring concepts like
the Layers concept [16], which limits allowed heading ranges
at different altitudes to reduce conflict probability.

In order to explain why this gap in performance exists,
further analyses were performed. The uncertainty propagation
analysis in terms of velocity shows that the mean and standard
deviation of the resolution velocity are similar between the two
methods, with MVP having higher speed change. However,
the distribution of the resolution velocity differs significantly

between MVP and VO Importantly, the resolution velocity for
MVP is mapped differently from VO, as seen in . For MVP,
the resolution velocity samples are distributed in a “line”. Both
have two peaks which corresponds to the sides of the VO
triangle. It is difficult to explain these shapes geometrically or
algebraically due to the non-linearity of the resolution velocity
calculation - naturally, the geometry of resolution is likely the
cause.

Scaling the Velocity Obstacle’s speed change showed that
the greater velocity change inherent to the MVP algorithm is
not the principal cause. Although the difference in the mag-
nitude of the resolution velocity between the two algorithms
is less than 0.5 knots, this small difference accumulates over
time, resulting in the standard deviation of the final distance
at X-body position for VO being higher than MVP, especially
at shallow angles. The difference decreases as the angles
approach 45 degrees.

Therefore, this is deemed to be inherent to the method
itself, and how uncertainty propagates through the resolution
logic. MVP and VO starts from a small difference in the
resolution velocity, as shown in Figure 1, but the final position
distribution shown in Figure 8 shows the difference in the two
methods. MVP demonstrates greater robustness to positional
uncertainty, even when the VO-based method attempts to
increase speed changes. This robustness is evident in the
standard deviation of final logged ownship positions, which
show lower variation in all initial heading and intruder speed
situations. These findings highlight the importance of consid-
ering for how positional uncertainty propagates to resolution
velocity space and accumulates over time when selecting a
conflict resolution algorithm.
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VII. CONCLUSION AND FUTURE WORK

In this study, we have examined the effects of positional
uncertainty on the performance of autonomous separation
algorithms, specifically focusing on Modified Voltage Potential
(MVP), Velocity Obstacle (VO) priority-based, and VO opti-
mal change methods. Through a series of Monte Carlo simu-
lations conducted in the BlueSky ATM simulator, we assessed
the safety performance of these algorithms under varying
initial intruder speeds and heading differences. The primary
metrics used for evaluation were the Intrusion Prevention Rate
(IPR) and the mean distance at the Closest Point of Approach
(CPA), which provided a comprehensive understanding of how
each algorithm manages conflicts under uncertainty.

The results indicate that MVP consistently outperforms
VO-based methods, particularly in scenarios with shallow
conflict angles. Additionally, the comparison between VO
priority-based and optimal change highlights that both-agent
maneuvering is more effective than priority rule in maintaining
separation than the former, especially when uncertainty is
present. MVP’s superior handling of positional uncertainty, as
demonstrated by its higher IPR and mean distance at CPA, can
be attributed to its more effective propagation of uncertainty
within the resolution velocity space. Attempts to improve
the performance of VO through scaling revealed that simply
increasing speed changes does not necessarily lead to better
outcomes; in fact, it degrades the safety performance. From the
recorded position of the UAS at the end of the simulation, the
variation in the x-body position is significantly lower for MVP
especially at shallow angles. This shows that MVP is more
robust to the position uncertainty even after the resolution
manoeuvres are performed and accumulate over time. This
highlights the importance of how the uncertainty is propagated
into the resolution velocity space.

Given these findings, MVP emerges as the most reliable
and robust conflict resolution method under conditions of
positional uncertainty. While VO and its variants may have
specific applications where they perform adequately, MVP’s
ability to maintain safe separation across a broader range
of scenarios makes it the preferred choice for autonomous
UAS operations. This is particularly critical in the increasingly
complex airspace where UAS are expected to operate, as
ensuring safety under uncertainty is a necessity. Therefore,
if tactical self-separation is adopted in the future, MVP can
reliably support its implementation.

Future research should continue to investigate how var-
ious sources of uncertainty affect conflict resolution algo-
rithms. These uncertainties include positional errors, speed
and heading measurement inaccuracies for navigation, and
communication-related issues such as message delays and
losses. In addition, vulnerabilities specific to GNSS-based
navigation, such as spoofing and jamming, should be examined
to understand their impact on the self-separation procedure.
As the integration of UAS into existing airspace systems
advances, it is essential to assess how these algorithms perform
under more realistic and varied conditions to ensure their

safe and effective deployment. The methodologies used in this
study also provide a valuable framework for evaluating other
emerging conflict resolution strategies, ensuring they are rig-
orously tested before implementation in operational settings.
Furthermore, future studies should aim to develop an analytical
solution that describes how positional uncertainty propagates
into resolution velocity. This would offer deeper insight into
the mathematical relationship between input uncertainties and
their effects on the resolution process, potentially improving
the predictability and reliability of these algorithms under
uncertainty.
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