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Abstract—Even with the recent advancements in Artificial
Intelligence (AI), incorporating AI-based systems into air traffic
management (ATM) and air traffic control (ATC) poses signif-
icant challenges due to the extremely low tolerance for errors
in ATM systems. Therefore, we propose the adoption of a novel
human-AI hybrid (HAH) paradigm in ATM, emphasizing the
collaborative aspect and high safety standards of human-AI
interaction. In contrast to the substitution and augmentation
concepts discussed within the human-AI teaming paradigm,
which conveys that the roles of AI and humans are partitioned,
we prefer the HAH paradigm, in which human and AI systems
collaborate as integrated units to accomplish tasks. Under the
HAH paradigm, ATM can significantly benefit from the comple-
mentary blend of ATCO judgment, intuition, and adaptability
alongside the perceptual competencies, computational prowess,
and tireless attention to detail that AI can offer. Some critical
elements and design principles of HAH are investigated, and
an example of HAH in air traffic conflict resolution, a typical
human-centric and safety-critical task, is also presented for
discussion. These contributions are fundamental prerequisites
for successfully introducing HAH into ATM/ATC and will help
create a framework for better understanding and supporting the
effective use of AI systems for ATM/ATC.

Keywords—Human-AI Hybrid, Human-AI Teaming, Air Traf-
fic Management, Air Traffic Control, AI-based approach.

I. INTRODUCTION

Air traffic management (ATM) and Air Traffic Control
(ATC) are quintessential examples of safety-critical systems
due to their direct impact on the safety of thousands of
passengers and crew members daily. The system’s failure can
lead to catastrophic consequences, underscoring the paramount
importance of maintaining rigorous safety standards and pro-
tocols. Furthermore, the complexity of air traffic management
arises from intricate interactions between air traffic controllers
(ATCOs), evolving technological systems, and varying envi-
ronmental factors. These interactions usually require real-time
decision-making under immense pressure and often with in-
complete information, which is characteristic of many safety-
critical domains.

On the other hand, over the past decade, Artificial Intel-
ligence (AI) has made significant strides, surpassing human
performance on benchmarks like image classification in 2015,
reading comprehension in 2017, visual reasoning in 2020, and
natural language inference in 2021 [1]. With AI and Ma-
chine Learning (ML) emerging as promising tools to optimize
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decision-making processes, their integration into ATM has
become a topic of paramount importance and keen interest.
This has also been recognized by international organizations
such as the International Civil Aviation Organisation (ICAO)
[2], the Federal Aviation Administration (FAA) [3], SESAR
Joint Undertaking (SESAR JU) [4] and the European Union
Aviation Safety Agency (EASA) [5]. Integrating AI into the
highly regulated ATM presents substantial opportunities for
multiple stakeholders. This includes scientists and researchers
engaged in developing ML models, certification agencies
responsible for ensuring adherence to safety standards, and
the end-users, like ATCOs, who play a central role in im-
plementing and relying on these technological advancements.
Recently, EASA published the first set of technical objectives
and organization provisions necessary to approve Level 1
AI applications (assistance to humans) [6]. EASA has also
discussed the safety assessment and guidance for safety-related
ML applications in terms of the initial safety assessment
(during the design phase) and continuous safety assessment
(based on operational data and in-service events) [7].

However, incorporating AI into this domain poses signifi-
cant challenges due to the extremely low tolerance for errors
in ATM systems. Many state-of-the-art AI systems, particu-
larly based on deep learning models, can exhibit fuzzy and
unpredictable behavior. More importantly, AI struggles with
complex tasks that involve higher-order cognition and reason-
ing capabilities, like commonsense reasoning and planning [1],
which are frequently encountered in time-critical and safety-
sensitive scenarios. These tasks require a deeper understanding
of semantics, relationships, and real-world knowledge to make
inferences from visual/audio inputs, which remains an open
challenge for AI systems [1]. On the other hand, humans
possess an innate ability to perform commonsense reasoning
and planning tasks with relative ease, leveraging their deep
understanding of semantics, contextual relationships, and com-
prehensive real-world knowledge. This cognitive advantage
over current AI systems becomes particularly crucial in time-
critical and safety-sensitive scenarios frequently encountered
in ATM/ATC. More recently, AI advancements have catalyzed
the emergence of synergistic integration of human and AI
capabilities. This evolution represents a paradigm shift, fo-
cusing not on replacing human ingenuity but on augmenting
it through a complementary relationship with AI. Balancing
AI capabilities with ATCO expertise and judgment is crucial



to harnessing AI’s potential advantages, such as improved
efficiency and predictive capabilities, while ensuring safety
and reliability standards.

Under the HAH paradigm, ATM can significantly benefit
from the complementary blend of ATCO judgment, intu-
ition, and adaptability alongside the perceptual competencies,
computational prowess, and tireless attention to detail that
AI can offer. By synergistically leveraging the strengths of
ATCO and AI, these systems can enhance safety, improve
operational efficiency, and reduce the likelihood of catas-
trophic failures. However, the successful implementation of
HAH in ATM systems demands innovative approaches for
human-centric design, dynamic adaptability, and human-AI
integration and co-evolution while adhering to stringent safety
requirements. As a use case, AI can handle repetitive, non-
safety-critical tasks, such as routine communication and traffic
flow analysis, allowing ATCOs to focus on critical decision-
making and safety-critical scenarios. Additionally, HAH can
improve real-time decision-making capabilities in which AI
systems can aid controllers in planning and managing complex
and congested air traffic scenarios. Furthermore, HAH can
facilitate continuous monitoring and adaptation to changing
environmental conditions. For instance, AI systems can con-
stantly evaluate traffic patterns, weather conditions, and other
variables, providing real-time updates and alerts to ATCOs.
This enables a more proactive approach to managing air
traffic, enhancing situational awareness, and enabling timely
responses to emerging issues.

Figure 1. The concept diagram of HAH emphasizes human-centric design,
human-AI integration, adaptation, co-evolution, and dependability. Within
HAH agent, human and AI are unified unit with internal communication to
maintain efficient shared situation awareness. The HAH agent firstly receives
perception from the safety-critical environment and dynamic adjust the roles
of human and AI based on human’s guidance. Based on the allocated roles,
the unified unit will process the perception to provide the safe decision. The
data generated through the whole process is logged for improving human and
AI performance through continuous learning and co-evolution.

This paper introduces a concept definition of HAH (depicted
in Figure 1), which is essential for elucidating and accom-
modating the multifaceted landscape of HAH in ATM/ATC.
Second, this paper examines the critical factors influencing
HAH design and development. Finally, a potential application
of HAH in air traffic conflict resolution, a typical human-

centric and safety-critical task, is selected for discussion.
These contributions are fundamental prerequisites for success-
fully introducing HAH into ATM/ATC and will help create
a framework for better understanding and supporting the
effective use of AI systems for ATM/ATC.

II. HUMAN-AI HYBRID PARADIGM

In ATM and other domains, various terms describe the
interworking between human agents and AI-enabled systems,
often interchangeably. This ambiguity arises from inconsistent
terminology across disciplines and fragmented discussions
in fields such as information systems, human-computer in-
teraction, engineering, and management. Each definition en-
capsulates unique concepts with specific characteristics and
requirements, making the selection of appropriate terminology
essential for efficient design and development. For safety-
critical systems like ATM/ATC, we argue that the HAH is
particularly effective and must be precisely defined, designed,
and developed.

A. Definition of Human-AI Hybrid

Definition: Human-AI Hybrid

HAH refers to a human-centric paradigm with emer-
gent interaction and continuous adaption with shared
knowledge between humans and AI systems as an inte-
grated unit, leveraging their complementary strengths
while mitigating weaknesses. This approach aims to
enhance dependability in high-risk environments and
maintain human authority in final decision-making
while fostering co-evolution, adaptation, and trust
within the overall system.

HAH systems in ATM must be dependable, human-centric,
adaptable, evolving, and unified. The core characteristics of
HAH definition are further elaborated below for better clarifi-
cation of the discussed HAH definition.

• Dependability: Dependability is paramount in any AI
system, including HAH systems, especially in safety-
critical tasks, because it directly impacts operations’
safety, reliability, and effectiveness [8]. A dependable sys-
tem ensures that AI functions consistently and accurately
under all conditions, even in the face of uncertainties,
allowing ATCOs to trust their decisions and actions
without constant oversight. It ensures that the human-AI
partnership enhances, rather than endangers, safety.

• Human-centric design: A human-centric design in AI
collaboration is essential for ensuring ethical decision-
making, as it keeps ATCOs in control and accountable
for AI-driven decisions. This approach enhances safety
and reliability by prioritizing ATCO oversight, allowing
ATCOs to monitor, intervene, and adapt AI systems to
prevent risks and respond to changing conditions. It em-
powers individuals by augmenting rather than replacing
ATCO abilities, ensuring that AI systems reflect and sup-
port ATCOs preferences and needs. This approach also
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aligns with legal and regulatory requirements, ensuring
compliance and fostering responsible AI development.

• Adaptability: The ability to adjust and optimize the
division of roles, responsibilities, and control to ensure
the highest levels of effectiveness and safety. It allows the
system to respond to the unique demands of each situa-
tion, leveraging the strengths of both humans and AI [9].
The dynamic adaptation, on the one hand, ensures that
AI handles routine, high-volume tasks, reducing ATCO
cognitive load and allowing ATCOs to focus on more
complex, critical decisions. On the other hand, it also
enables rapid shifts in control during emergencies, where
ATCO intuition and decision-making are paramount. This
flexibility enhances safety by ensuring that the most
capable entity—ATCO or AI—is in control at any given
moment and improves overall system efficiency, respon-
siveness, and resilience in the face of evolving challenges.

• Co-evolution: Co-evolution, or continuous learning, is
essential. It allows AI to adapt not only to changes in
ATCO behavior and preferences but also requires human
operators to evolve as AI capabilities improve, enabling
them to leverage the increasingly sophisticated support
that AI offers. This process necessitates both entities to
dynamically update their respective mental models to
maintain an up-to-date shared mental model. Through
co-evolution, both humans and AI systems enhance their
capabilities—humans develop new cognitive and opera-
tional skills, while AI refines its decision-making pro-
cesses based on human input.

• Human-AI integration: Human-AI integration as a uni-
fied unit is crucial because it allows for the seamless
blending of human intuition and ethical judgment with
the computational power, precision, and speed of AI [10].
By functioning as a unified unit, this integration enables
real-time adaptability and ensures that the strengths of
both human and AI components are fully leveraged. In
dynamic and complex environments like ATM, the ability
of ATCOs and AI to operate as a single, unified system
enhances decision-making, improves response times, and
reduces the likelihood of errors. This deep integration also
fosters a continuous exchange of information, enabling
AI to learn from human input and vice versa, ultimately
leading to more effective and efficient outcomes.

• Trust: Trust is a multifaceted concept that plays a pivotal
role in ensuring HAH systems’ smooth operation and
adoption. Due to its unique characteristics, trust in a HAH
system differs from traditional trust in human-to-human
or human-to-technology relationships. Unlike static rela-
tionships, trust in HAH systems evolves based on the AI’s
performance, reliability, and ongoing human interactions.
It is also highly context-dependent, meaning trust can
fluctuate based on specific tasks or situations. One critical
factor is the need for calibrated trust—humans must ac-
curately perceive the AI’s strengths and limitations. Mis-
calibrated trust can negatively impact system performance
and safety, whether too high (leading to automation bias)

or too low (resulting in under-utilization). Finally, trust
in a HAH system is bi-directional—just as humans must
trust the AI, the AI should also ”trust” human inputs. This
means that AI systems must incorporate human feedback,
learn from operator corrections, and adapt their behavior
accordingly. The interaction should be a collaborative,
evolving process where both the human and the AI
influence each other’s decisions and actions.

B. Discussion on related terms of HAH in literature

Based on how humans and AI collaborate, these terms
can be grouped into three general paradigms or definitions:
Human-AI Collaboration (HAC) [11], Human-AI Teaming
(HAT) [12], [13], and Human-AI Hybrids (HAH) [14]–[16].
Generally, both human-AI teaming and human-AI hybrids can
be seen as subsets of human-AI collaboration. Furthermore,
although human-AI teaming and human-AI hybrids share
several characteristics, they possess distinct features that are
important to differentiate. Their relationship is illustrated in
Figure 2 and further discussed below.

Figure 2. Illustration of the relationship between Human-AI Collaboration
(HAC), Human-AI Teaming (HAT), and Human-AI Hybrids (HAH). Com-
pared to HAT, HAH emphasizes human-AI integration, dynamic adaptation,
human authority, and co-evolution.

Human-AI Collaboration is a widely discussed concept,
broadly encompassing any cooperative interaction between
humans and AI, where both contribute to a shared goal.
The structure of this collaboration can vary, with roles and
responsibilities shifting depending on the context and specific
requirements. In some cases, humans oversee AI systems that
act as aides, enhancing human capabilities through decision
support. Alternatively, humans and AI can work together as
equal teammates, leveraging their complementary strengths.
AI might also serve as a moderator of human performance
[17], ensuring that human actions remain within acceptable
boundaries and reducing potential errors or biases. Overall,
human-AI collaboration can range from substitution (where
AI replaces humans) to augmentation (where humans and AI
enhance each other) to assemblage (where AI and humans are
dynamically integrated as a cohesive unit).

Another key term is Human-AI Teaming, which refers to
scenarios where humans and AI work together as partners,
each with distinct roles that enable mutual augmentation in
task performance. In this model of collaboration, humans and
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AI operate as separate entities that coordinate their efforts,
typically with predefined roles—AI handles specific tasks
while humans focus on others. The division of responsibilities
is often fixed, with clear distinctions between the roles of AI
and humans. For example, AI systems might manage repetitive
tasks in air traffic control, while ATCOs handle more complex
decision-making and oversee airspace traffic. Despite the clear
role partitioning, there remains a level of interaction and
communication between the two.

In contrast, the Human-AI Hybrid (HAH) is often seen
as more effective in safety-critical systems like air traffic
control, where seamless integration and real-time adjustments
are crucial. Unlike in Human-AI Teaming, where roles are
distinctly partitioned, the boundaries between human and AI
roles in a hybrid system are fluid and dynamically adjusted
[10]. The AI is not just a tool or partner but a vital part
of a unified system where human and AI contributions are
interdependent and complementary.

III. DESIGN PRINCIPLES FOR HAH SYSTEMS

While HAH promises to outperform either humans or AI
systems operating independently, merely combining human
and AI capabilities within a team is insufficient. An effective
HAH requires humans to (1) comprehend and anticipate AI
behavior, (2) exert timely and appropriate control over the
system, and (3) establish trust in the AI system [18], [19]. Re-
searchers must, therefore, address these human-centric aspects
alongside the question of optimal AI roles within HAH. Effec-
tive collaboration, adaptation, and trust are fundamental pillars
of successful human-AI interaction, each playing a pivotal role
in shaping teamwork, navigating dynamic environments, and
building dependability. The list of design principles for HAH
is presented in Figure 3 and further details are discussed below.

Human-Centric Design with Safety Priority: In ATM
and ATC, the design must prioritize the safety of passengers,
crew, and ground personnel. The system should be user-
centric, ensuring that the AI aids ATCOs without increasing
their workload or causing confusion. Safety protocols must be
embedded into every aspect of the system. For instance, an AI
system that assists air traffic controllers by suggesting optimal
flight paths should include clear safety checks for potential
conflicts (e.g., other aircraft, weather conditions) and present
them alongside its recommendations. The AI might display
a flight path suggestion, highlight potential conflicts, and
suggest alternative actions or routes. Meanwhile, the critical
role of human factors (HF) in safety-critical systems should
be emphasized.

Transparency and Explainability with Traceability: The
utilization of machine learning methods, notably deep learn-
ing (neural networks), in AI systems presents a significant
challenge for humans to retain an accurate and contempora-
neous understanding of the system’s dynamic capabilities. As
the AI system continuously learns and adapts, its decision-
making processes and actions in any given situation become
increasingly complex and dynamic, straining the ability of
humans to keep pace. The requirements for transparency and

explainability in AI solutions have increased to bridge this
gap and compensate for the inevitable deficiencies in human
mental models caused by the evolving nature of AI systems.
These solutions should communicate the underlying logic and
rationale driving the system’s decisions, enabling humans to
maintain a more accurate understanding of the AI system’s
decision-making processes over time. In dynamic, time-critical
scenarios commonplace in safety-critical environments, real-
time transparency becomes crucial for decision-making, while
explanations primarily contribute to developing improved
mental models for future scenarios. However, in situations
with sufficient time for review and analysis, transparency and
explainability can directly impact decision-making processes.
For instance, if an AI system recommends diverting a flight
due to predicted weather conditions, it should explain the
data sources (e.g., weather radar, satellite data), the reasoning
process, and how it weighs different factors. The system
should log these decisions so that they can be reviewed in
post-incident analyses or during routine audits.

User Control and Human-in-the-Loop (HITL): Human
operators must maintain ultimate control over AI-assisted
decisions [20]. HITL design ensures that human judgment is
central, especially when quick and decisive action is required.
In ATC, if an AI suggests re-routing an aircraft to avoid
conflict, the human controller must be able to accept, reject, or
modify the suggestion. The AI system should present its case
but defer to the human operator’s final decision. For example,
if the AI recommends a reroute due to detected turbulence,
the controller can override this if they have updated infor-
mation or if the change would cause other issues. However,
a significant concern arises in real-time safety-critical tasks
when ATCOs become overly reliant on AI outputs. This over-
reliance can lead to a phenomenon known as automation-
induced complacency, where operators divert their attention
elsewhere, potentially missing critical situations that demand
immediate intervention. Humans should ideally maintain SA
consistently or, at minimum, be able to intervene when neces-
sary promptly. Mechanisms fostering heightened engagement,
such as task divisions ensuring individuals retain meaningful
roles and expertise, are crucial, along with the ability to exert
meaningful control over operations [21]. Effective strategies
for transferring control to humans, considering their need to
re-establish SA, are imperative.

Adaptability and Context Awareness: The HAH system
must adapt to different operational contexts and recognize and
respond to changing situations. This adaptability is critical in
environments like ATC, where conditions can shift rapidly.
During an unexpected event, such as an aircraft losing com-
munication, the HAH system could adapt by prioritizing this
aircraft in its monitoring and providing the ATCO with specific
protocols and suggestions based on historical data of similar
incidents. The AI should also adjust its behavior based on the
time of day, traffic density, or even the specific experience
level of the ATCO on duty.

Reliability, Robustness, and Fail-Safes: In safety-critical
systems, AI must be exceptionally reliable and robust. There
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Figure 3. The list of discussed design principles for HAH and how it is related to the mentioned HAH definition

should be built-in fail-safes and redundancy mechanisms to
ensure the system can handle unexpected inputs or failures
without compromising safety. For instance, an AI system used
for conflict detection in ATC should have multiple layers of
redundancy. If the primary AI system fails, a backup system
should immediately take over, using a different algorithm or
data source to ensure continuous operation. Additionally, there
should be manual override options that allow controllers to
switch to traditional, non-AI-based methods if needed.

Feedback Loops and Continuous Learning: Continuous
improvement is essential in safety-critical systems. A major
focus lies in developing AI for effective HAH [12], [22] by
transitioning towards bidirectional information exchange. AI
systems must actively observe and analyze human perfor-
mance, aligning their capabilities with the goals and objec-
tives of their human counterparts. Crucially, this collaborative
approach requires a closed-loop feedback system, where both
objective system performance metrics and subjective human
feedback are systematically integrated back into the AI system.
This continuous cycle of learning and adaptation empowers AI
to provide proactive, contextualized support tailored to human
needs. Whether suggesting relevant tasks, sharing contextual
information, or offering personalized recommendations, the AI
must be designed to act as an intelligent partner, augmenting
human capabilities through timely, goal-oriented assistance.
Moreover, HAH systems must expose their biases and learning
limitations—stemming from the generalizability constraints or
non-causal patterns in the training data—to humans. As AI
may encounter situations beyond its capabilities, it’s crucial
to identify and communicate the system’s limits and biases to
end-users.

Collaboration and Shared Situational Awareness: Ef-
fective collaboration between humans and AI in safety-critical
environments requires shared situational awareness [23]. The
AI system should present information in a way that is easily
understood by human operators and facilitates teamwork. For
instance, in an emergency when an aircraft is experiencing
engine failure, the AI system could provide ATCO with real-
time analysis of the situation, including recommended descent
trajectories and their possible outcomes [24]. The AI could
also facilitate communication between different team mem-
bers, such as the controller, pilots, and emergency responders,

ensuring everyone has the same understanding of the situation.

IV. AIR CONFLICT RESOLUTION UNDER HAH PARADIGM

A. Related Work on AI-based for Conflict Resolution

Air traffic conflict resolution is a dynamic, time-sensitive,
and safety-critical aspect of air traffic control. It involves a
complex interaction of humans, machines, and procedures.
In current sector-based operations, where the airspace is
subdivided into smaller geographical regions, ensuring safe
separation between aircraft by resolving potential conflicts and
maintaining an efficient traffic flow is the primary responsi-
bility of air traffic controllers (ATCOs). This task is human-
centric and safety-critical, demanding high cognitive effort.

Over time, ATCOs develop certain inherent preferences in
managing air traffic conflicts, known as ‘conflict resolution
strategies.’ These strategies help ATCOs manage air traffic
while preserving their cognitive resources. However, existing
AI methods [25], [26], typically do not incorporate ATCOs’
conflict resolution strategies, resulting in low acceptance of
these methods due to lack of conformance between ATCOs’
perceptions of conflict resolutions and the advisories provided
by automation tools. Recent research [27], [28] has demon-
strated the advantage of using ATCOs’ conflict resolution
data to develop learning-based models for ATCO-conformal
conflict resolution. These approaches aim to learn ATCO’s
mental model and mimic the ATCO’s decision for given
conflict scenarios (refer to Figure 4). Therefore, ATCOs can
better understand and quickly validate the AI’s resolution,
leading to lower workload and higher ATCO acceptance.

While these conformal models encapsulate ATCOs’ conflict
resolution strategies and actions, they may also incorporate
potential inefficiencies, such as excessive aircraft vectoring
during maneuvers or higher separation buffers during conflict
resolution. It is beneficial to devise a method that enables the
model to adjust its balance between optimal and conformity
dynamically. As discussed in [29], while ATCOs generally pre-
ferred conformal resolutions to resolve conflicts, there is also
an inclination towards balanced conflict resolutions, which
improve maneuver efficiency. ATCO feedback indicated that
such a conflict resolution advisory mechanism could enhance
controller decision-making. Those intelligent conflict resolu-
tion tools are consistently considered recommender systems
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Figure 4. The concept diagram for learning air traffic conflict resolutions using
reinforcement learning approach, sourced from [27]. The AI agent learned
the ATCO’s preferences in conflict resolution by considering the historical
ATCO’s actions for the critic loss to guide the convergence of the agent policy.
Therefore, the trained policy can reproduce ATCO’s resolution for similar air
traffic conflict scenarios.

when integrated into an operational setting, offering advisories
that ATCOs can accept or reject. ATCOs remain the final
decision-makers in all situations.

Furthermore, addressing the long-term future air traffic
demand requires a paradigm shift from current concepts of
operations. As such, alternative concepts like flow-centric
operations (FCOs) are being explored [30]. This new concept
involves managing air traffic from an aggregated perspective
rather than focusing on individual flights (as in sector-based
operations), based on the formation and evolution of major
traffic flows [31]. As a result, ATCOs’ responsibility shifts
from managing all traffic within a given sector to overseeing
a specified number of aircraft throughout their flight segment
within an airspace. ATCOs handling a flow must ensure safe
separations between the flows (inter-flow) as well as between
the aircraft within the same flow (intra-flow) [32]. Given the
complexity of these scenarios, AI is expected to be essential
in future air traffic control, particularly in conflict resolution
tasks.

Key insights from these studies emphasize the importance
of involving ATCOs in the AI development. Their domain
expertise has been crucial in tailoring AI solutions to fit
the operational context, with iterative feedback helping refine
AI functionalities to make them more intuitive and effective.
This collaboration between human expertise and AI has the
potential to significantly improve efficiency and safety in air
traffic management. However, by contracting with the HAH,
these approaches have limitations in considering the evolution
of ATCO behaviors during the task operation. Moreover,
as discussed, AI will have more autonomy and tasks for
handling traffic, so the mechanism for real-time adjustment
of the level of automation should also be investigated. Some
considerations for further studies on conflict resolution under
the HAH paradigm are discussed in the following section,
which is expected to provide the reader a better idea of what a
HAH conflict resolution should have for safely and efficiently
working with ATCOs.

B. A HAH Approach to Air Traffic Conflict Resolution

A HAH paradigm facilitates seamless collaboration between
ATCO and AI, combining human expertise with AI’s compu-
tational strength to optimize safety and efficiency. This con-
trasts with traditional systems, where static roles and limited
feedback mechanisms often result in a lack of alignment and
trust between humans and AI. Below, we explore how a HAH
approach can enhance air traffic conflict resolution and a visual
summary is presented in Figure 5.

1) Personalized Conflict Resolution System: A Conflict
Resolution system would be personalized and adapt to individ-
ual ATCO preferences and workflows, ensuring the human-AI
interaction is as seamless as possible.

• Leveraging ATCO Data for Conformal Conflict Reso-
lution: Each ATCO has a unique working style, decision-
making process, and experience level. By collecting and
analyzing past ATCO decisions, preferences, and behav-
iors, AI systems can personalize the conflict resolution
process. This tailored approach would ensure that recom-
mendations and conflict resolution strategies align with
the operator’s individual tendencies, potentially reducing
the cognitive load and enhancing decision accuracy. For
instance, if an ATCO consistently favors certain types of
conflict resolutions (e.g., altitude adjustments over course
changes), the AI could prioritize similar solutions in its
suggestions.

• Customized Interface for Visualized Information and
Communication Modes: The amount and type of infor-
mation visualized in an air traffic management system can
vary depending on the situation and the ATCO’s cognitive
workload. Some ATCOs may prefer a more minimalistic
interface with only the most critical data points, while
others might want a detailed overview of all variables.
Similarly, communication modes (text, visual alerts, or
verbal communication) can be customized to fit the
ATCO’s preferences, making it easier for them to respond
quickly and effectively. This adaptability helps ensure
that ATCOs are neither overwhelmed nor underinformed
during conflict resolution.

• Customized Roles/Tasks and Level of Automation
for Dynamic Adaptation: Incorporating the fact that
different ATCO may perceive the same conflict scenario
differently, with varying levels of risk tolerance/appetite,
historical data of ATCO behaviors should be analyzed to
construct the workload and air traffic complexity models
for each for each ATCO. Then, a personalized system
could support each ATCO to set their preferred task
allocation and levels of automation in conflict resolution
tasks. For example, one ATCO might want the AI to
provide only suggestions, while another may be more
comfortable with the AI executing certain resolutions
autonomously under specific conditions. This flexibility
allows for a smoother human-AI interaction, ensuring
that the ATCO retains control over the decision-making
process while benefiting from AI support.
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Figure 5. Considerations for design and development of HAH conflict resolution system.

2) ATCO-AI ”Communication” for Shared Situational
Awareness: Shared situational awareness is critical in ATC,
especially in conflict resolution where split-second decisions
must be made. More importantly, shared situational awareness
allows dynamic adaptation, especially in emergencies, when
autonomy is transferred back to ATCO for manual handling.
Therefore, to maintain shared situational awareness, effective
communication and information exchange between ATCOs
and AI systems must be designed and developed.

• Information flow from AI to ATCO - ”What-If” Func-
tionalities and Alternative Resolutions: AI systems can
offer ”what-if” functionalities to help ATCOs assess the
potential consequences of different actions. For example,
if an ATCO is deciding whether to alter a plane’s course
or change its altitude, the AI can present the potential
outcomes of each option, such as fuel consumption,
impact on surrounding flights, or flight path safety. AI
can also generate alternative resolutions, giving ATCOs a
broader set of options to explore before selecting the best
course of action. Since conflict resolution is time-critical,
detailed explanations of AI decisions should be available
only on demand, preventing information overload while
offering deeper insights when needed. Besides, if the
system detects unsafe behaviour from the ATCO, instead
of ‘policing’ them, the HAH system could bring the
risk to the ATCO’s attention more sensitively [33] using
polite, neutral language or subtle visual cues to gently
alert ATCO without causing disruption or alarm.

• Information flow from ATCO to AI - Capturing
ATCO Actions and Psychophysiological Monitoring:
ATCOs influence the AI’s decision-making by their ac-
tions and interactions with the system. By recording
ATCO inputs (via keyboard, touchscreens, or voice com-
mands), AI can continuously learn from these decisions
and adapt its behavior to align more closely with ATCO’s
style. Additionally, monitoring ATCO psychophysiolog-
ical data (such as eye-tracking or voice stress analysis)
allows AI to assess the operator’s real-time stress levels
and workload. In high-stress situations, the AI could
reduce non-critical alerts or take on more autonomous
tasks to ease the ATCO’s cognitive load. Or when AI
detects that the ATCO’s attention is not focused, AI

can return autonomy to the ATCO to help improve their
concentration level.

3) Co-Evolution and Enhanced Decision-Making: Tradi-
tional conflict resolution systems often limit human-AI inter-
action to predefined roles and tasks. AI provides recommenda-
tions or automation without adapting to the human’s evolving
needs. However, A co-evolutionary approach supports mutual
learning, where ATCOs and AI systems continuously adapt to
each other’s behavior. This feedback loop improves decision-
making over time as the AI learns from the ATCO’s strategies
and the ATCO gains deeper insights into how AI can assist in
complex scenarios.

• AI Learning from ATCO Decision Patterns: In a co-
evolutionary system, the AI continuously learns from the
ATCO’s real-time choices and interactions. For example,
if an ATCO regularly overrides AI suggestions to priori-
tize safety in specific situations or to account for unique
weather conditions, the AI can adjust its future decision-
making process to reflect these nuanced judgments. This
allows the AI to develop a model of conflict resolution
that is informed not only by preset rules but also by
human expertise, leading to more relevant and actionable
recommendations.

• ATCO Learning from AI Predictions: AI can predict
outcomes and simulate ”what-if” scenarios more rapidly
than an ATCO can process manually. For instance, the AI
might calculate the future trajectories of multiple aircraft
in conflict, showing the ATCO the potential impact of
various decisions (such as changes in altitude or course).
As the ATCO interacts with this data and sees the
outcomes, they learn how to interpret and trust the AI’s
predictions more efficiently. This leads to faster, more in-
formed decision-making and more effective collaboration
between humans and machines.

In summary, future research directions for conflict resolution
within the HAH paradigm should explore how to personalize
CDR tools for individual ATCOs. This involves incorporating
shared situation awareness and co-evolution to uphold system
safety and efficiency. Based on the preceding discussion,
several research topics related to human factors, algorithms,
user interfaces, and system design are summarized in Table I.
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Research Topic Description

Continuous Learning for Conformal
Conflict Resolution

AI continuously adapts to ATCO preferences by updating its model based on recorded data, maintaining
alignment with evolving ATCO behaviors. Model updates should occur based on discrepancies between ATCO
and AI decisions, with real-time monitoring.

Predictability and Exploration of AI
Agent for Enhanced Situation Aware-
ness

AI systems can provide ”what-if” functionality, enabling ATCOs to explore alternative resolutions and consider
potential consequences before selecting the most appropriate solution.

Customized Interface for Visualized In-
formation and Communication Modes

Includes on-demand explanations to improve transparency and usability.

Real-time ATCO Stress Levels and
Workload Estimation

Real-time psychophysiological data can be used to assess ATCO workload, allowing for adaptive system
responses.

Dynamic Task Allocation Investigation of task decomposition and dynamic allocation between ATCO and AI, including transitions
between various allocation strategies.

Fail-safe Mechanism for CDR A fail-safe mechanism is required to monitor AI performance in real-time, alerting and allowing intervention
as necessary. This mechanism relies on shared situation awareness and dynamic task allocation to ensure safe
adjustments of AI tasks.

TABLE I. POTENTIAL RESEARCH TOPICS FOR DEVELOPING A HAH CR TOOL ENCOMPASSING HUMAN FACTORS, ALGORITHMS, USER INTERFACES, AND SYSTEM 
DESIGN.

V. CONCLUSION

As AI continues to advance, there is growing interest in inte-
grating it into ATM/ATC, where failures can have severe con-
sequences. Leveraging HAH—a human-centric paradigm with
emergent interaction and continuous adaptation with shared
knowledge between humans and AI systems as an integrated
unit—holds immense promise for real-time decision-making in
ATM/ATC, as it capitalizes on the strengths of both humans
and AI while mitigating their respective limitations. This
study provides a comprehensive framework for understanding
and supporting the effective use of AI systems in HAH for
ATM/ATC. The insights and recommendations presented here
can inform the development of more effective and reliable
HAH systems, ultimately enhancing safety and performance
in ATM/ATC. The ongoing journey towards integrating human
and AI capabilities in ATM/ATC necessitates continued explo-
ration and collaboration across disciplines. This collaboration
will help address the remaining challenges and unlock the
full potential of HAH in safeguarding lives and advancing the
frontiers of ATM/ATC.
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