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Abstract—This study examines the effect of seat assignment
strategies on the transfer time of connecting passengers at a
hub airport. Passenger seat allocation significantly influences
disembarkation times, which can increase the risk of missed
connections, particularly in tight transfer situations. We propose
a novel seat assignment strategy that allocates seats to non-
paying passengers after check-in, prioritising those with tight
connections. This approach diverges from traditional methods
focused on airline turnaround efficiency, instead optimizing for
passenger transfer times and reducing missed connections. Our
simulation, based on real-world data from Paris-Charles de
Gaulle airport, demonstrates that this passenger-centric model
decreases missed connections by 12%, enhances service levels,
reduces airline compensation costs, and improves airport opera-
tions. The model accounts for variables such as seat occupancy,
luggage, and passenger type (e.g., business, leisure) and is tested
under various scenarios, including air traffic delays.

Keywords—Airline seat allocation, Simulation, Connecting pas-
sengers, Aircraft disembarkation

I. INTRODUCTION

The COVID-19 pandemic deeply impacted the airline in-
dustry, leading to a resurgence of the hub-and-spoke strategy
[1]. This change has increased the number of connecting
flights offered by airlines to passengers. While this strategy
allows airlines to cover a wider range of destinations, it also
introduces greater uncertainty into passenger journeys. A delay
on the first flight can lead to missed connections, resulting in
significant delays at the final destination.

Missing a connecting flight is often the result of a series of
interrelated events: a delay on the first flight, a long taxiing
time on arrival, a long disembarkation time, long walking
distances due to distant disembarkation and boarding gates, or
long queues at border control for international flights. These
factors can result in passengers arriving late at their departure
gate and being stranded.

This scenario is highly undesirable for passengers, who must
then wait to be re-accommodated on another flight. However,
it is equally problematic for airlines. According to Regulation
(EC) No 261/2004 [2], airlines must re-book passengers who
miss their connections, and if the delay exceeds three hours,
as is often the case when a connection is missed, they must
also provide financial compensation.

The literature has explored various methods to improve
passenger transfers. For example, Kim et al. [3] investigated
gate assignment optimization as a way to balance the needs

of airports and airlines. However, this approach is challeng-
ing to implement due to the complexity of gate allocation,
which involves numerous factors such as airport management
strategies, taxiway logistics, gate conflicts, aircraft compati-
bility, and strategic decisions about passenger flows and even
shopping behaviour.

Guo et al. [4] used a combination of regression trees
and simulations to predict passenger flow at immigration
and transfer security areas. Their approach allows airports to
anticipate late-arriving passengers and assist them in catching
their connecting flights by speeding up transfers or early re-
booking. However, their study does not clearly outline specific
actions, such as reallocating security staff to handle delayed
passengers, nor does it address the costs associated with these
decisions. While re-booking helps passengers, it does not
prevent delays at their final destination.

An important area for improvement is the optimisation of
the disembarkation process. Wald et al. [5] and Qiang et al. [6]
have shown that structured disembarkation strategies outper-
form unstructured ones. In particular, column-based strategies,
in which passengers disembark from left to right or from
the aisle to the window, tend to reduce total disembarkation
time more effectively than traditional front-to-back row-based
methods. While these studies evaluate metrics such as total or
average passenger disembarkation time, they do not address
the specific needs of connecting passengers and focus solely
on overall disembarkation efficiency.

This study focuses on a related but distinct issue: seat
allocation strategy. The seat assigned to a passenger plays a
crucial role in determining his or her disembarkation time,
which has a direct impact on transfer times for connecting
passengers. We propose a novel seat assignment strategy that
prioritises passengers with tight connections, moving away
from the current practice of randomly assigning seats to pas-
sengers who do not pay for seat selection. By recognising the
additional stress and time pressure faced by passengers with
shorter transfer windows, we aim to allocate seats in a way
that minimises their disembarkation time, thereby reducing the
likelihood of missed connections and improving the overall
passenger experience.

This approach involves a minor adjustment to the check-in
process. Passengers willing to pay an additional fee can still
select a specific seat. Those who opt not to pay will check in



without an assigned seat. At the close of the check-in period,
airlines will allocate the remaining seats based on priority,
considering expected connection times. This strategy assumes
that airlines possess information about connecting passengers,
which is typically available for those travelling within the same
airline or alliance.

The proposed seat allocation strategy is evaluated using
a cellular automata simulation model inspired by Schultz
et al. [7]. Although simple, this model can be fine-tuned
to realistically simulate passenger behaviour. The case study
is on Paris-Charles de Gaulle airport, using historical flight
schedules and actual gate delay data. Passenger flows are
simulated and a connecting passenger scheme is generated
across the airport based on a day of historical operations.
Simulations are performed, incorporating stochastic elements
such as luggage collecting time or pre-reserved seat selection.
The results are compared with those from the traditional
random seat allocation to assess the benefits of the proposed
seat allocation strategy. To promote open science, all code used
to generate this research is publicly available at the following
link: https://github.com/geoffreyscozzaro31/planeDeboarding.

The remainder of the paper is structured as follows. The
modelling framework is described in Section II. Section III
presents the seat allocation strategy and Section IV the disem-
barkation simulation validation. The case study is introduced
in Section V. Finally, Section VI presents the results.

II. MODELLING FRAMEWORK

This section outlines the modelling framework adopted for
the aircraft disembarkation process.

A. Simulating disembarkation process

We use a simulation-based approach to model the passen-
ger disembarkation process. This method effectively captures
passenger interactions and provides a realistic evaluation of
airport operations such as boarding procedures [8] and security
screening systems [9].

Our model is inspired by the work of Schultz et al. [7] and
uses cellular automata to simulate the disembarkation process.
In this model, the aircraft is divided into square cells, each of
finite size and capable of accommodating a single passenger.
These cells represent either a seat or a section of the aircraft
aisle. In this work, we adopt the following assumptions:

1) aircraft considered in this study are typical of medium-
range configurations, such as the A320 or B737, which
feature a single aisle with a 3+3 seating arrangement,

2) disembarkation occurs exclusively through the front
door.

Each passenger is assigned a dynamic status, among the
following ones: “seated”, “standing up from the seat”, “moving
in the aisle”, “waiting in the aisle”, “collecting luggage”, and
“disembarked”.

Passenger movement is modelled using a cellular automata
approach, where the evolution of passengers’ positions occurs
in discrete time steps according to predefined rules. At the
start, all passengers are in the “seated” status. As flights may

Figure 1. Passenger status transition flow. Each case represents a passenger
status, and each arrow represents a possible status transition.

not be fully booked, some seats remain unoccupied. During
each time step, passengers who can reduce their distance to
the exit by moving to an adjacent available cell will do so.
Three types of actions are considered:

1) Moving left/right: Passengers still seated may move to
an adjacent cell (either a seat or the aisle) if it is vacant.

2) Moving forward: Passengers in the aisle may move
forward, if the next cell is empty, to proceed to the exit.

3) Collect luggage: Passengers with baggage will collect
it from the overhead bin directly above their row. They
will remain in the corridor cell for a specified time to
collect their luggage.

Figure 1 illustrates the passenger status transition flows
during the disembarkation process.

B. Conflict resolution strategies

When two passengers from adjacent cells attempt to enter
the same empty cell, a conflict arises. Two main rules are
introduced to deal with this:

• Courtesy Rule: This strategy prioritises passengers closer
to the exit, giving precedence to those in the front rows
over those in subsequent rows. If passengers from both
the left and right attempt to enter the aisle simultaneously,
a random selection determines who moves first.

• Aisle-priority rule: This strategy always gives priority
to the passenger already in the aisle, ensuring that their
movement towards the exit takes precedence over those
still seated or moving from adjacent cells.

This model accounts for the time required for each pas-
senger action, allowing different speeds to be assigned to
various movements. For example, the luggage retrieval process
is simulated by a brief pause after the passenger stands in the
aisle.

The different movement speeds are represented by the time
spent in each cell. The simulation is divided into identical
time steps, and the step duration is calibrated to the shortest
allowed movement duration.

Additionally, a buffer time is included to account for the
deployment of the jet bridge before the gate opens. The
different parameter settings used to configure the simulation
are thoroughly described and validated in Section IV.

Figure 2 presents a visualisation of the disembarkation pro-
cess, following the aisle-priority rule, at three different time
steps. The GIF animation is available through the following
link: https://github.com/geoffreyscozzaro31/planeDeboarding
/blob/main/medias/deboarding/animations/animation deboard
ing aisle priority deboarding rule 45fps v2.gif
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(a) Frame 0/642 (b) Frame 300/642 (c) Frame 500/642

Figure 2. Screenshots of the disembarkation process simulation at different time steps. In this scenario, disembarkation priority is given to passengers already
in the aisle.

III. SEAT ALLOCATION STRATEGY

We propose a novel seat allocation strategy for passengers
who have checked in without pre-booking their seats. Airlines
can implement this allocation after the check-in deadline, once
the total number of unallocated passengers is known. The
strategy aims to minimise the risk of connecting passengers
missing their next flight by prioritising them based on their
estimated transfer time - a value that airlines can usually
calculate using available data on passengers connecting to
other flights within the same alliance.

Each passenger is assigned a priority index, Pi, where i is
the passenger index, based on the urgency of their connection.
The passengers are then ordered such that P1 > P2 > · · · >
PN , where N represents the total number of passengers still
awaiting seat assignments.

The seat assignment process can be formulated as a match-
ing algorithm. Let Sj denote the availability of the j-th seat,
where Sj = 1 if the seat is available and Sj = 0 otherwise.
Each seat Sj is associated with a disembarkation time Tj ,
where T1 < T2 < · · · < TM represents the disembarkation
time for all M seats, ranked in ascending order. The goal of the

matching algorithm is to assign the highest-priority passenger
to the seat with the earliest disembarkation time.

Here is the pseudo-code of the seat allocation strategy:
Passenger-Seat matching algorithm
1) Variable Definitions:

• Sj = 1 if the j-th seat is already booked, 0 else
• Pi = Priority index of passenger i
• Tj = Disembarkation time for seat j

2) Sort passengers by descending priority index:
• P1 > P2 > · · · > PN

3) Sort seats by ascending disembarkation time:
• T1 < T2 < · · · < TM

4) Initialize indices:
• i← 1 (Passenger index)
• j ← 1 (Seat index)

5) While i ≤ N and j ≤M do:
• if Sj = 0:

– Assign passenger i to seat j
– i← i+ 1

• j ← j + 1
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Parameter Value
Cell size 0.4mx0.4m
Cell capacity 1 passenger
Number of rows n
Seat per row 3 +3
Number of cells n× (3 + 3 + 1)× 2
Simulation’s time step 0.5s
Moving left/right/forward 0.5s
Luggage collecting duration X ∼ Weibull(α = 1.7, β = 8)
Jet bridge deployment time 180s

TABLE I. SIMULATION PARAMETERS

The disembarkation time Tj for each seat is determined by 
the disembarkation strategy used, such as the courtesy rule or 
the aisle-priority rule presented in Section II. For example, if 
passengers are disembarking under the courtesy rule, rows will 
empty sequentially from the front to the back of the aircraft. In 
this case, seats in the first row will have shorter disembarkation 
times than those in subsequent rows. On the other hand, if the 
aisle-priority rule is applied, seats closer to the aisle will have 
shorter disembarkation times. This means, for example, that 
a passenger in the third row, seated close to the aisle, should 
disembark before a passenger seated by the window in the first 
row.

Exceptions may occur when passengers retrieve luggage 
from the overhead bins, potentially blocking those behind them 
and allowing passengers in the rows ahead to disembark earlier 
under the aisle-priority rule. A similar situation may arise 
under the courtesy rule if there are empty seats in a row, 
allowing a passenger sitting in an aisle seat in a rear row to 
disembark before a passenger sitting further forward.

For simplicity, we disregard these exceptions and assume 
that passengers seated closer to the aisle will disembark earlier 
under the aisle-priority rule. Conversely, passengers in the 
front rows will disembark earlier under the courtesy rule.

The performance of the proposed seat allocation strategy 
is compared to the traditional random assignment method 
through multiple simulations. Different key performance indi-
cators are assessed, such as passenger disembarkation times, 
or the number of passengers missing their connections. The 
details and parameter values used for calibration and simula-
tion are provided in the following section.

IV. SIMULATION

We calibrate our simulation using various parameters in-
spired by [7], which are summarised in Table I. The dis-
embarkation model developed in this paper is verified by 
comparing its results with findings from the existing literature. 
Namilae et al. [10] provided reference values for similar 
aircraft configurations, specifically single-aisle aircraft with 
3+3 seats per row. Their study reported disembarkation times 
of 8 to 10 minutes for a 144-seat configuration and 10 to 12 
minutes for an 182-seat configuration, using the courtesy rule 
disembarkation strategy (i.e. from the front to the rear of the 
aircraft).

To maintain consistency with the reference study, this 
analysis assumes that the aircraft was operating at 100% load

TABLE II. TOTAL DISEMBARKATION TIMES (IN MINUTES) OVER 100
SIMULATIONS DEPENDING ON DISEMBARKATION STRATEGY

Cabin config Courtesy rule Aisle-priority rule
Min Mean Max Min Mean Max

144-seat 7.60 9.42 11.29 5.16 6.47 7.76
182-seat 10.02 11.92 14.12 6.57 8.12 9.60

factor, with all passengers carrying overhead luggage. Gate
bridge connection time was excluded. For each configuration
(144 seats and 182 seats), 100 replications of the simulation
experiment were performed to account for the stochasticity
of baggage collection times. Among the 100 replications, the
minimum, average and maximum total disembarkation time
are extracted. Table II summarises the simulation results for
both the courtesy rule and the aisle-priority rule followed
during passenger disembarkation.

This table shows that the model produces results under
the courtesy rule for passenger disembarkation comparable
to those in the literature. The average disembarkation times
are centred on the expected range, i.e. 8-10 minutes for the
144-seat configuration and 10-12 minutes for the 182-seat
configuration, with slightly larger minimum and maximum
values. This consistency underscores the model’s robustness,
as it aligns well with established findings and effectively
simulates the disembarkation process.

The aisle-priority rule was also evaluated to determine
whether it reduces the total disembarkation time, as expected,
according to [5] and [6]. The results in Table II show a
clear reduction in time compared to the courtesy rule, further
increasing confidence in the simulation model. These findings
support the subsequent analyses in Section VI, which assess
the impact of seat allocation on connecting passenger trans-
fers.

V. CASE STUDY

This section details the methodology we developed for mod-
elling passenger transfers at Paris Charles de Gaulle (CDG)
airport, using historical flight and passenger data. First, the
parameters for flight disembarkation are introduced. Next, the
methodology for simulating connecting passengers is outlined.
Finally, the operational characteristics of the historical operat-
ing day considered, including arrival and departure flight sets,
are described.

A. Flight disembarkation

The simulation of the disembarkation process is based
on a single-aisle medium-haul aircraft with a typical 3+3
seating configuration. The number of rows varies according
to the flight selected. Only medium-range arriving flights are
analysed, excluding long-range twin-aisle aircraft. Passengers
are divided into three groups: (1) those with pre-booked seats,
(2) transfer passengers without pre-booked seats and (3) all
other passengers. Business class passengers are assumed to
have pre-booked seats.

We assume the following distribution of passenger types
20% with pre-booked seats, 40% as transfer passengers with-
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Figure 3. Probability distribution of pre-booked seat selection for a 30-row aircraft. Row 1 is positioned at the front of the cabin.

TABLE III. PARAMETERS FOR FLIGHT DISEMBARKING SIMULATION

Parameter Value
% of passengers with pre-booked seats X ∼ U(15%, 25%)
% of connecting passengers X ∼ U(30%, 50%)
% Other passengers Adjusted to sum to 100%
% Passengers with carry-on luggage X ∼ U(85%, 95%)
% Aircraft seat occupancy X ∼ U(81.5%, 91.5%)

out pre-booked seats, and 40% categorised as other. To intro-
duce variability, we apply a uniform random value of ±5% to
the proportions of pre-reserved seats, and a uniform random
value of ±10% for the share of transfer passengers.

In terms of the location of pre-reserved seats, Shao et al.
[11] found that passengers have a strong preference for seats
at the front of the aircraft and tend to avoid middle seats.
Consequently, we design a probability distribution that favours
the allocation of pre-booked seats to the front of the aircraft,
and specifically to window or aisle seats. Figure 3 illustrates
the probability distribution we retain on an example for a 30-
row aircraft.

Regarding cabin baggage, the proportion of passengers car-
rying cabin baggage varies across airlines. Low-cost carriers
typically charge extra for cabin baggage, reducing its preva-
lence among passengers. However, since this study focuses on
major airlines operating at CDG that offer free cabin baggage,
we assume that 90% of passengers have cabin baggage, with
a random variation of ±5%.

Seat occupancy is defined based on Air France’s June 2019
activity report [12], which reports an average passenger load
factor of 86.5% for short- and medium-haul flights. We adopt
this value and apply a uniform random variation of ±5%.
Table III summarises the parameters retained for simulating
flight disembarkation.

B. Passenger transfer modelling

Since the dataset does not include information on the num-
ber of transfer passengers per flight, a modelling framework
was developed to generate connecting passengers. A specific
proportion of transfer passengers and a realistic transfer time
window are considered to identify potential connecting flights.
A focus is made on flights operated by the airport’s main
airline, as connecting flights are typically managed by the
same airline or by airlines within the same alliance. Due
to the absence of gate assignment data for each flight, the
average transfer time cannot be directly calculated. Instead, a
transfer time is randomly selected from a predefined interval
to represent the minimum required transfer time. Additionally,
a boarding threshold before departure is also considered.

According to the Paris Aéroport website [13], the minimum
transfer time ranges from 10 to 95 minutes. This range is
used to generate realistic walking transfer times for connecting
passengers. In addition, we allow a minimum buffer of 10
minutes between the walking time and the scheduled transfer
time to avoid generating infeasible transfers, in line with com-
mon industry practice where airlines avoid creating impractical
transfer schedules.

We assume that, on average, 40% of passengers on each
flight are connecting passengers, and consider a random vari-
ation uniformly distributed between [-10%, 10%].

Air France, one of the main airlines operating at CDG,
states that the boarding time is between 15 and 20 minutes,
depending on whether the flight is domestic or international
[14]. For this study, 20 minutes is used as no distinction is
made between domestic and international flights.

A potential connection is defined as two flights, one ar-
riving and one departing, with a reasonable transfer time for
passengers, falling within the following time window:
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TABLE IV. CHARACTERISTICS OF THE OPERATIONAL DAY CONSIDERED

Date 2019-06-24
Number of arriving flights 726
Number of departing flights 721
Total number of arriving passengers 121854
Total number of departing passengers 124579
Average delay per arriving flight 8.14 minutes
Average delay per departing flight 20.76 minutes
Number of arrivals operated by the considered
airline with fewer than 200 passengers

275

Number of connecting passengers simulated 13698

• Minimum transfer time: 45 minutes.
• Maximum transfer time: 3 hours.

These thresholds ensure that only practical connections are
considered. For each arriving flight, the model identifies poten-
tial departing flights within the specified transfer time window.
Connecting passengers are then randomly assigned to these
flights, ensuring a realistic distribution across the available
connections.

In this study, we focus exclusively on departures from
single-aisle aircraft and connecting passengers within the same
airline. Therefore, we only consider arrival flights carrying less
than 200 passengers and operated by the main airline operating
at CDG airport. In the absence of exact aircraft configurations,
we estimate the number of rows based on the passenger load
factor for each instance. For example, if 180 passengers were
carried and the passenger load factor is set to 90%, the total
number of seats is calculated as follows:⌈

180

0.9× 6

⌉
= 34 rows

C. Characteristics of the historical operating day considered

We consider one day among the data set that covered one
month of historical traffic at CDG airport. This day was the
busiest day in June 2019, with a total of 1447 flights operated
during the day. The different characteristics of this day are
presented in Table IV.

Both theoretical and actual transfer times are calculated for
each generated connection:

• Theoretical transfer time: The difference between the
scheduled arrival and departure times of the flights used
to identify candidate connections. This time is considered
when allocating seats to connecting passengers.

• Actual transfer time: The difference between the actual
block times of the flights, taking into account any op-
erational delays. This time is considered to assess, after
simulating the disembarkation time, whether passengers
will be able to make their connections.

Figure 4 illustrates the distribution of transfer times for
the selected day. The data show that delays contributed to
a broader dispersion of transfer times, with arrival delays
increasing the pressure on passenger transfers, while departure
delays extended the overall transfer duration. Several con-
nections became infeasible due to delays, resulting in some
instances of negative transfer times.

Figure 4. Passenger transfer time distribution for the historical operating day.
Scheduled and actual transfer times are represented by blue and orange curves,
respectively.

VI. RESULTS AND DISCUSSION

This section presents the results of the case study outlined
earlier. We simulated the disembarkation process for all flights
with fewer than 200 passengers over a whole day of opera-
tions, evaluating passenger disembarkation times. To account
for stochastic factors such as the proportion of passengers
with hand luggage, luggage retrieval time, the number and
distribution of pre-assigned seats, and other variables, we
conducted 10 simulations for the whole day.

A. Seat allocation strategies: Random vs. Connecting passen-
ger priority

The study aimed to compare two seat allocation strategies
for non-reserved seats: a random allocation method and a
proposed strategy that assigns seats to passengers with tight
transfer times to minimise disembarkation duration. This com-
parison was conducted under two disembarkation protocols:
the courtesy rule, where passengers in front rows disembark
first, and the aisle-priority rule, which prioritises passengers
seated closest to the aisle.

A total of 4x10 simulations were conducted to evaluate the
outcomes for an entire day of operations. Figure 5a and 5b
present box plots illustrating the total number of passengers
missing their flights and the average disembarkation times,
respectively. Each box plot corresponds to a specific com-
bination of seat allocation strategy for unreserved seats and
the disembarkation rule applied. For the x-axis, “random”
refers to a random seat allocation, while “connecting” refers
to an allocation focused on connecting passengers. Similarly,
“courtesy” and “aisle” refer to the courtesy rule and the aisle-
priority rule used for disembarkation, respectively.

The “Random-Courtesy” box plot of Figure 5a, which
represents the random seat allocation strategy combined with
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(a) Number of passengers who missed their connecting flight during the day

(b) Passenger disembarkation times throughout the day

Figure 5. Box plots illustrating the total number of passengers missing their
connecting flights (top figure) and passenger disembarkation times (bottom
figure) across the operating day. Each box plot represents the results from 10
simulation runs, with each box corresponding to a unique combination of seat
allocation strategy and disembarkation rule.

the courtesy disembarkation rule, translates the worst perfor-
mance, with 1,950 to 1,990 passengers missing their connec-
tions over the day. In contrast, the same seat assignment com-
bined with the aisle-priority rule for disembarkation enables
approximately 250 additional passengers to make their con-
nections (cf “Random-Aisle” box plot). This improvement is
attributed to the significant reduction in overall disembarkation
time under the aisle-priority rule, as demonstrated through
Figure 5b. Specifically, the average disembarkation time is
reduced by 45%, from 9 minutes to 5 minutes. This reduction
is crucial for passengers with tight connections, allowing about
13% more of them to successfully catch their onward flights.

Equally remarkable is the impact of the new seat allocation
strategy proposed in this study compared to the traditional ran-
dom allocation. This can be done by comparing the “Random-
Courtesy” box plot with the “Connecting-Courtesy” one of
Figure 5a. The new allocation leads to a 12% reduction in
the number of passengers missing their flights. This effect
is almost equivalent to that obtained by changing the disem-
barkation rule, although it does not affect the disembarkation
times, as observed in Figure 5b by comparing the “Random-
Courtesy” and “Connecting-Courtesy” box plots.

By combining the benefits of a connecting passenger-
oriented seat allocation strategy with the aisle-priority rule for
disembarkation, the total number of passengers missing their
flights is reduced to less than 1,700 (cf “Connecting-Aisle”
box plot Figure 5a). This represents an overall reduction of
14% compared to the traditional strategy used by airlines,
i.e. random seat allocation and the courtesy rule for disem-
barkation. However, the savings from the two strategies are
not cumulative, i.e. the improvement is lower than 13% +

12%, since if disembarkation times are already minimised, the
seat reassignment of connecting passengers is less effective in
helping them to make their connections.

From a practical perspective, seat reassignment is easier
to implement than disembarkation strategies, which require
passenger coordination. In particular, aisle-priority rule re-
quires the active involvement of staff, making it less practical.
In contrast, seat reallocation can be integrated into the pre-
boarding process without requiring real-time intervention.

The observed reduction in the number of passengers missing
their flights represents a significant improvement in both
passenger experience and airline cost management. Indeed, a
missed connection can lead to significant delays for passengers
at their final destination. Bratu et al. [15] estimate that if
stranded passengers represent only 3% of the total delayed
passenger volume, their delays represent 39% of the total
passenger delay, i.e. a total delay at their final destination
of 303 minutes. This result is also beneficial for airlines,
as re-accommodating passengers who miss their connections
involves both logistical and financial costs. European Union
Regulation (EC) No 261/2004 requires airlines to compensate
passengers for missed connections and long delays. In addi-
tion, missed connections can degrade passengers’ perception
of the airline, leading to reduced customer loyalty and erosion
of market share. This effect, as highlighted by Cook et al.
[16], can be a dominant factor in the economics of airline
delays. The proposed seat allocation strategy creates therefore
a win-win situation for both airlines and passengers.

B. Influence of the percentage of pre-reserved seats

The influence of the proportion of pre-reserved seats on
the performance of the seat allocation strategy proposed in
this paper is evaluated below. The results presented earlier
were based on the assumption that approximately 20% of
seats were pre-reserved. Here, we ran simulations with pre-
reservation rates ranging from 0% to 100% over the day.
The 0% scenario, although hypothetical, represents a case
where no seats are pre-reserved, allowing the seat allocation
algorithm full flexibility to assign optimal seats to passengers
with tight connections. In contrast, the 100% pre-reserved
scenario reflects a random seat allocation where all seats
are already pre-reserved and the seat allocation algorithm is
inactive. The only difference is that it assumes a slightly higher
probability that passengers will choose front, aisle or window
seats, resulting in a higher probability that middle and rear
seats will remain unoccupied. For this analysis, we will focus
only on the courtesy disembarkation rule, as it is the traditional
rule adopted in operational conditions. Figure 6 illustrates the
impact of the proportion of pre-reserved seats on the number
of passengers missing their connecting flights.

The key observation is that the lower the percentage of
pre-reserved seats, the more effective the connecting passen-
ger seat reallocation strategy becomes. This is because pre-
reserved seats tend to be those with shorter disembarkation
times, such as those at the front of the aircraft or near the
aisle. A high proportion of pre-reserved seats limits the ability
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Figure 6. Evolution of the number of passengers missing their flights as
a function of the proportion of pre-reserved seats. The 100% pre-reserved
strategy mirrors random seat allocation, where connecting passengers are
randomly distributed throughout the cabin. The courtesy disembarkation rule,
i.e. passengers disembarking from front to rear, is considered here.

of the algorithm to optimally allocate seats with shorter dis-
embarkation times to connecting passengers with tight transfer
windows. The increase in efficiency follows a linear trend, with
2,000 passengers missing their flights with 100% pre-reserved
seats to 1,700 with 0% pre-reserved seats. This represents an
improvement of 15%.

VII. CONCLUSION

This study investigates the potential benefits of an innovative
look-ahead seat allocation strategy that prioritises connecting
passengers, yielding advantages for passengers, airlines, and
airports. Unlike the traditional random allocation of unreserved
seats, which primarily benefits airlines, our approach assigns
seats with shorter disembarkation times to passengers with
tight connections. We tested this strategy using real data
from Paris Charles de Gaulle Airport, focusing on small-
and medium-sized aircraft operated by a major airline. The
analysis incorporated actual flight delays, further constraining
passenger transfer times compared to scheduled connections.
The results indicate that, under a front-to-rear disembarkation
strategy with a single front exit, the proposed seat allocation
for non-reserved seats enables approximately 12% of passen-
gers to successfully recover their initially missed connections.

The proportion of pre-reserved seats plays a critical role
in the effectiveness of the proposed seat allocation strategy. A
higher percentage of pre-reserved seats reduces the algorithm’s
efficiency, as most seats with short disembarkation times are
already reserved. This underscores the potential advantage
for airlines that offer paid seat reservations, as limiting the
number of pre-reserved seats may increase the benefits of this
reallocation strategy up to 15%.

Overall, the proposed seat reallocation strategy offers a
win-win solution for airlines, passengers, and airports. Ad-
ditionally, it helps reduce the costs airlines incur in re-
accommodating and compensating passengers as mandated by
Regulation (EC) No 261/2004.

Future work could incorporate detailed data on connecting
passengers, origin-destination pairs, gate assignments, and ter-
minal configurations for a more accurate assessment of transfer

times. The framework’s flexibility allows for the integration
of more complex data. Additionally, it currently overlooks
the behaviour of passenger groups, which strongly influences
passenger speed [17] and should therefore be considered in
future studies. Including such behaviour in future iterations
would improve the accuracy of the seat allocation strategy.
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