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Abstract—Airport airside congestion, driven by the growing
imbalance between air traffic demand and constrained ca-
pacity, presents significant operational challenges. To address
this, there is a critical need for effective models that capture
the complex interactions within the airside (taxiway-runway-
gate) system and provide insights into traffic flow dynamics
and congestion mechanisms. Traditional approaches, such as
microsimulation and queuing models, although detailed, tend to
focus on individual components without capturing the broader
interactions within sub-systems. This limitation, combined with
high computational demands, restricts their effectiveness for real-
time applications. This study proposes adapting the Macroscopic
Fundamental Diagram (MFD) to model airside traffic using
three-dimensional aircraft trajectory data. By focusing on aggre-
gate traffic variables—flow, density, and speed—the MFD offers
a computationally efficient approach to understanding airside
congestion patterns and informed decision-making.

This paper presents a novel methodology for constructing
airside MFDs using A-SMGCS data from Singapore Changi Air-
port. The study also investigates the spatial and temporal factors
contributing to congestion, offering insights into how congestion
patterns develop and evolve under varying operational conditions.
In the temporal domain, even during low-demand periods,
departure and arrival banks contribute to congestion. In the
spatial domain, traffic inhomogeneity—an uneven distribution of
traffic on the airside network—reduces overall flow, particularly
during congestion. These findings highlight the potential to
improve airside capacity utilization and mitigate congestion by
distributing traffic more evenly across both temporal and spatial
domains, i.e., minimizing schedule banks and ensuring a balanced
allocation of taxi routes.

Keywords—Macroscopic Fundamental Diagram; Airside Con-
gestion; Demand Banking; Inhomogenous Taxi-routes.

I. INTRODUCTION

Airport airside is a complex system, characterised by non-
linear and non-hierarchical interactions between humans (air
traffic controllers (ATCOs), pilots), machines (aircraft, naviga-
tion aids), procedures (safe separation, pushback procedures,
delay management), and environment (runway, taxiway, gate
etc.). Globally, the growing disparity between increasing air
traffic demand and constrained airside capacity is leading to
congestion [1]. To mitigate airside congestion, it is critical
to understand the interactions between traffic demand and
airside capacity, along with developing effective models that
capture traffic flow characteristics and the mechanisms by

which congestion forms, spreads, and dissipates. Existing
airside modeling approaches either focus on detailed aircraft
trajectories [2] or specific subsystems (like runways) [3],
failing to capture the full complexity of interactions across
the entire airside network. In this context, there is a need for
airside traffic models that can robustly describe the interactions
among various stochastic and uncertain processes—such as
aircraft pushbacks, taxiway movements, runway holdings and
take-offs—at an aggregated network level.

Traditional airside modelling encompasses a variety of
approaches, including statistical methods [4], stochastic queu-
ing models [3], [5], and microsimulation methods [6], [7].
While statistical methods and queuing network models provide
valuable insights, they often fail to capture congestion caused
by factors beyond runway queuing, such as delays at network
nodes due to conflicts [3]. Furthermore, although microsim-
ulation models, if well calibrated, could accurately describe
the network traffic dynamics, they typically require substantial
computational resources and time, which limits their effec-
tiveness for real-time applications. In contrast, macroscopic
modeling approaches offer a more scalable and computation-
ally efficient alternative by focusing on aggregate traffic flows
rather than individual aircraft movements. By capturing the
overall dynamics of the airside system, macroscopic models
can provide timely insights into congestion patterns and enable
rapid decision-making, making them well-suited for real-time
applications and large-scale operational planning [8]. Despite
their advantages, there is a notable lack of well-developed
macroscopic models specifically tailored for airside traffic
management.

Inspired from road traffic modelling literature, this paper
proposes adapting the Macroscopic Fundamental Diagram
(MFD) to model the dynamics of traffic flow and congestion
on the airside. First introduced by Godfrey [9] in 1969 and
later formalized by Geroliminis and Daganzo [10] in 2008, the
MFD provides a representation of traffic dynamics for an urban
road network. Irrespective of the specific origins and destina-
tions, the MFD [11] could characterize the overall behavior of
network traffic by capturing the relationship between flow Q,
density K, and average speed V at an aggregate level across a
network [12]. Flow, Q, measured in vehicles (or aircraft) per



hour, represents the rate at which units of traffic pass through a
network (or a specific point on the network). In the context of
airside operations, flow is analogous to the throughput of the
network via the runway. Density, K, measured in vehicles (or
aircraft) per kilometer, indicates the concentration of vehicles
within a network or along a certain segment of the network.
Average speed, V , typically in kilometers per hour (km/h),
represents the mean speed at which traffic moves through
the network. In other words, flow indicates the efficiency
of the system, density reflects the extent of congestion, and
average speed shows how fast traffic is moving. Understanding
the relationship between these variables helps in diagnosing
congestion patterns and predicting system performance under
various scenarios.

To the best of our understanding, only two existing works—
those by Yang et al. [8] and Wang et al. [13]—have focused
on modeling the MFD for airport airside networks, albeit with
limitations. Yang et al. [8] were the first to demonstrate the
existence of an MFD for an airport airside network, high-
lighting an aggregate relationship between taxiing-out traffic,
arrival landing rates, and runway throughput to inform off-
block control or departure metering strategies. However, for
Singapore Changi Airport, we found little to no correlation
between taxiing-out traffic, arrival landing rates, and runway
throughput, suggesting that the relationships observed by Yang
et al. may not be universally applicable. Wang et al. [13]
claimed to use the MFD to model departing traffic for taxi-
out time prediction. However, the aggregate curve they refer to
(in Figure 2 of their paper) as the MFD—relating the takeoff
rate to the number of departing aircraft on the ground—while
valuable, overlooks key flow-density-speed relationships that
are the focus of this paper.

In contrast, this study presents a comprehensive method
for constructing an airside MFD using 3D aircraft trajectory
data (location in latitude/longitude and time stamps), offering
new insights into the relationships between airside traffic
variables like flow, density, and speed (refer Figure 1). Addi-
tionally, it investigates the spatial-temporal factors contributing
to congestion, providing a more nuanced understanding of
congestion dynamics. The proposed contributions of this study
are as follows.

1) This study presents a methodology for constructing an
airside MFD using three-dimensional aircraft trajectory
data. The approach includes data filtering and pre-
processing steps, such as map matching, to derive key
airside traffic variables—flow, density, and speed—using
A-SMGCS data from Singapore Changi Airport.

2) This study examines the impact of traffic demand (high
vs low) and mode of runway operations (segregate vs
mix) on airside network flow. This analysis contributes
to understanding congestion formation and dissipation
in the temporal domain.

3) This study presents a Generalized Macroscopic Fun-
damental Diagram (GMFD) to quantify the impact of
inhomogeneity on airside network flow. A detailed in-
vestigation into the relationship between network density

and inhomogeneity provides insights into how traffic
tends to concentrate on a few taxi routes, especially
during periods of congestion.

Figure 1. The concept diagram illustrates the methodology for constructing an
MFD for an airside network. The MFD, which characterizes the relationships
between key macroscopic traffic variables, enables investigation of spatial-
temporal factors contributing to congestion. This approach provides insights
into airside traffic dynamics, aiding in optimizing the airside network capacity
utilization.

II. DATA

This section introduces the A-SMGCS data and Changi
Airport’s airside network, followed by data filtering and pre-
processing steps, including map-matching to align aircraft
trajectory data with the airside network.

A. Description and Data Filtering

1) A-SMGCS data: In this paper, A-SMGCS data spanning
from February 2018 to April 2018, excluding March 30th and
31st, has been utilized, covering a total of 87 days. The dataset
provides detailed information related to the surface movement
of aircraft in Changi’s airside network. Key elements of this
dataset include the date of operation, flight call sign, and
aircraft type. Additionally, it captures time stamps at one-
second intervals, along with corresponding location stamps in
latitude and longitude. The dataset also includes the assigned
gate or stand for each aircraft, as well as the mean flight level
or altitude.

To ensure the accuracy and relevance of the analysis,
data filtering was performed. En-route or airborne part of
the trajectories, identified by data points above the airport’s
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Figure 2. (Left) Singapore Changi Airport airside network, with blue edges
representing taxiways and black edges representing runways. Runways 02L
and 02C handle north-bound traffic, while runways 20C and 20R handle south-
bound traffic. (Right) Red edges indicate the links where aircraft movements
have been recorded in the dataset.

elevation level, were excluded to focus solely on ground op-
erations. Ground vehicle trajectories were also removed from
the analysis, as their movements, unlike arriving and departing
aircraft, lack predefined itineraries in flight plans. Additionally,
incomplete aircraft ground trajectories, defined as those with
fewer than 10 data points, were excluded in the analysis. The
87-day A-SMGCS dataset included 89,362 trajectory records.
After applying data processing and filtering, including the
removal of erroneous trajectories identified during the map-
matching process, over 96% of the total trajectories (85,883
valid trajectories) were retained for analysis in this study.

2) Changi Airport Airside Network: The airside network is
represented as a node-link graph G(N,E), where the edges
E correspond to taxiways and runways, and the nodes N
represent their connecting points (as shown in Figure 2 (Left)).
In this study, the graph G(N,E) was generated using python-
based OSMNX module [14], based on publicly available
OpenStreetMap data. For Singapore Changi Airport, the in-
frastructure data was extracted using the ’aeroway’ tag, while
tags such as ’aerodrome,’ ’apron,’ and ’terminal’ were filtered
out. The graph is further refined by removing nodes that
did not represent intersections or dead-ends. The resulting
airside graph consists of 1058 nodes and 1,435 edges, with the
average, minimum, and maximum edge lengths being 79.13
meters, 1.25 meters, and 916.97 meters, respectively. In the
subsequent analyses, the links with aircraft movement history
were identified and filtered. These links, as shown in Figure 2
(Right) in red, represent the network used for extracting the
relevant variables (refer section III-A) for further analysis.

B. Data Preprocessing: Map-Matching

The A-SMGCS system tracks aircraft movements, including
position and velocity, at one-second intervals. This high-
frequency data results in a large volume of information, along
with noise [15]. To address this challenge, the tracking data

Figure 3. The spatial map-matching illustrates the conversion of yellow
trajectory points from a departing flight into a red taxiway path on the airside
graph.

is map-matched with the airport taxiway network using the
method described in [15], [16]. The map-matching process
is carried out in two key steps: spatial map-matching and
temporal map-matching. As shown in Figure 3, spatial map-
matching aligns the aircraft’s recorded positions with the
corresponding taxiway segments in the airside network. This
step generates a sequence of taxi segments representing the
aircraft’s movement, while also filtering out spatial noise in the
tracking data. The temporal map-matching step supplants this
network-based representation with time and speed information
of the aircraft. Each aircraft in a taxi segment is assigned a
start and end time, reflecting when the aircraft enters and exits
the taxi segment, providing a more comprehensive view of the
movement. The method also records timestamps at various
points along the taxi segment, along with the corresponding
distance the aircraft has traveled. This approach avoids the
assumption of a constant speed across the entire taxi segment,
allowing for more precise trajectory analysis.

III. MACROSCOPIC FUNDAMENTAL DIAGRAM FOR
AIRPORT AIRSIDE NETWORK

This section outlines the methodology for constructing
an MFD for an airport airside network using key traf-
fic variables—flow, density, and speed—derived from three-
dimensional aircraft trajectory data, followed by an analysis
of congestion dynamics and a detailed examination of the
flow-density relationship to illustrate the transition between
uncongested and congested traffic states.

A. Macroscopic Traffic Variables: Flow, Density, and Speed

This section discusses the calculation of density, flow, and
speed, which are essential for constructing an MFD. The
network-level MFD can be expressed using three-dimensional
aircraft trajectory data [17], as follows:

Q(w) =
d(w)

Lxy ×∆t
(1)
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K(w) =
t(w)

Lxy ×∆t
(2)

V (w) =
Q(w)

K(w)
=

d(w)

t(w)
(3)

where, w is a 3D region encompassing the airport network
(in the x-y plane) and time (in the (z)-dimension) during
which aircraft taxi. Q(w) and K(w) refer to the average
flow and density of w, while d(w) and t(w) are the total
distance traveled and the total time spent by aircraft in w,
respectively. Moreover, Lxy shows the total length of network
on x-y plane corresponding to w and ∆t is the height of w in
time. For the time duration ∆t, the analysis in this study has
been standardized to 15-minute intervals. The standardization
ensures that all variables are derived using the same temporal
framework for accurate comparison. The interested reader may
refer [18] for more details.

B. Characterization of Congestion using Macroscopic Funda-
mental Diagram

MFD captures the relationships between flow-density,
speed-density, and speed-flow. Figure 4 illustrates all three rep-
resentations of the MFD, which are similar to the Greenshields
fundamental diagrams [19]. In the flow-density plane (refer
Figure 4(Top)), flow increases with density up to a critical
density beyond which the airside network transitions into the
congestion branch, resulting in decreased flow as density rises.
The speed-flow plane (refer Figure 4(Middle)) reveals two
distinct branches: one representing uncongested conditions
characterized by high speeds and high flows, and the other
indicating congested conditions with lower speeds and reduced
flows. This duality in the speed-flow relationship highlights
the complexity of traffic dynamics, emphasizing how different
traffic states can coexist under varying conditions. In the
speed-density plane (refer Figure 4(Bottom)), high speeds are
observed at low densities, with speed gradually decreasing
as density increases. The Q and K values are significantly
lower (scaled down) in Figure 4 than those observed in road
transportation due to the large Lxy ( 64.3km) of the Changi
airside network (refer equations 1 and 2).

An airside traffic state can be characterized by its density,
flow, and speed. According to equation (3), specifying any
two of these variables is sufficient to determine the third.
Moreover, if a unique relationship between the variables
existed, the MFD would allow one variable to determine the
entire state. However, the scatter observed in Figure 4 suggests
this relationship is not strictly unique.

C. In-Depth Analysis of Flow-Density Relationship

Let us examine two extreme scenarios in the relationship
between average network flow and density, as illustrated in
Figure 5, which follows the parabolic form of Greenshields’
fundamental diagram. In the first scenario, there are no aircraft
present on the airside (surface) network. Consequently, with a
density of 0, the flow is also 0, as indicated by equation (3). In
contrast, in the second scenario, the density in the airside net-
work is so high that the speed drops to 0—an occurrence that

Figure 4. Macroscopic Fundamental Diagram for the airside network in
different planes. (Top) Flow vs. density: Flow increases with density up to a
critical point, after which a further increase in density leads to congestion and
declining flow. (Middle) Speed vs. flow: Two branches—one with high speeds
and flows under uncongested conditions, and another with lower speeds and
reduced flows during congestion—illustrate the complexity of traffic dynamics
and coexistence of different traffic states. (Bottom) Speed vs. density: Higher
speeds are observed at low densities, while congestion reduces speeds as
density increases.

is theoretically possible but rarely observed in practice—due to
gridlock throughout the network. Again, applying equation (3),
we find that the flow in this case is also 0. Between these two
extremes exist various traffic states where the flow is greater
than zero. Assuming a continuous relationship between flow
and density, the peak of the curve represents the network flow
capacity, while the density corresponding to this capacity is
termed the critical density. Both critical density and network
capacity are essential traffic control parameters that influence
the shape of the MFD. As illustrated in Figure 5, these pa-
rameters delineate the boundary between the uncongested and
congested branches of the MFD curves, reflecting the optimal
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performance of the network. In the uncongested branch, traffic
flow increases as density increases. In the congested branch,
however, traffic flow decreases as density increases.

Figure 5. Flow-density relationship for the Singapore Changi Airport airside
network. The curve shows two distinct branches: the non-congestion branch,
where flow increases with density, upto the network flow capacity, marked at
Qc = 2.2 aircraft/h, and the congestion branch, where flow decreases beyond
a critical density (Kc = 0.125 aircraft/km). In total, 44 data points (15-minute
intervals), shown in red, fall within the congested branch, representing 11
hours out of 2077 hours of airside operations. This transition between branches
illustrates how increasing density eventually leads to reduced overall flow as
congestion builds.

IV. INVESTIGATION INTO THE UNDERLYING FACTORS OF
AIRSIDE CONGESTION

This section defines the underlying factors contributing to
airside congestion, focusing on temporal factors such as traffic
demand and runway operation modes, as well as spatial factors
including traffic inhomogeneity and flow directionality.

A. Temporal Congestion Factors

Figure 6. Average traffic demand (arrivals and departures) by time of day,
represented in UTC. The blue horizontal dashed line at 40 aircraft movements
per hour distinguishes high demand (above 40) from low demand (40 or
below) periods.

1) Demand: Figure 6 represents the average hourly demand
at Singapore Changi Airport (based on 87 days of A-SMGCS
data). It is evident that demand fluctuates throughout the day,
with certain hours experiencing greater aircraft movements.
Considering that the average hourly demand at Changi Airport

is 42 aircraft movements per hour (approximately 10 move-
ments every 15 minutes), we have established a threshold of
40 aircraft movements per hour to differentiate between high
and low demand periods. This threshold effectively categorizes
demand levels, with values above 40 indicating high demand
and those at 40 or below reflecting low demand.

2) Runway Operation Mode: Mix mode runway operations
at a two-runway airport like Singapore Changi Airport refer
to using a single runway for both arrivals and departures,
while the other runway may also be active but in various
operational modes (e.g., dedicated for arrivals, departures,
or mix as well). This setup optimizes runway capacity by
dynamically adjusting operations to meet varying demand
for arrivals and departures, improving efficiency during peak
periods or traffic surges [20]. To identify (15-minute) periods
of mix-mode runway operations using aircraft trajectory data,
we set a threshold of more than one arrival and one departure
movement on the same runway (could be either runway).

B. Spatial Congestion Factors

1) Inhomogeneity: Homogeneous traffic conditions imply
that aircraft are evenly spread throughout the network, while
inhomogeneous conditions occur when traffic concentrates
around specific bottlenecks, such as near runways or key
taxiways. We use the standard deviation of density as measure
of inhomogeneity, denoted as γ(w) [21]:

γ(w) =

√∑
i (ki(w)−K(w))2

N
(4)

ki(w) =
ti(w)

Li ×∆t
(5)

where, ki(w) denotes the density of each link i in w, ti(w)
denotes the total time which aircraft spent traveling on the link
i in w, N denotes the total count of links in the network and
Li is the physical length of link i.

2) Directionality: Flow directions at Singapore Changi
Airport can be categorized into North and South flows (refer
Figure 2). These flow directions are primarily influenced by
wind direction and magnitude, with North flows being the most
common at Changi. To assess the impact of flow direction on
average network flows, we assign a flow direction to each 15-
minute interval. If 50% or more of the aircraft take off or land
in the southbound direction during an interval, it is classified
as having a South flow; otherwise, it is categorized as having
a North flow.

V. ANALYTICAL METHODS FOR CONGESTION
INVESTIGATION

This section outlines the methodologies used to analyze
airside congestion, employing time-space diagrams to visu-
alize congestion patterns under varying traffic demands, the
Mann-Whitney U test to assess statistical significance in flow-
density distributions across different operational modes and
flow directions, and the GMFD to investigate the impact of
inhomogeneity on traffic flow.
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A. Temporal Congestion Analysis: Time-Space Diagrams

Time-space diagram analysis is employed to investigate
congestion patterns at Changi Airport across different traffic
demand levels. This well-established method visualizes aircraft
movement over time and distance, making it particularly
useful for understanding how congestion forms and evolves
under varying conditions. The analysis involves plotting the
trajectory of each aircraft in both time and space, which
allows for the identification of patterns such as flow continuity,
bottlenecks, and queuing. By examining traffic during both low
and high demand periods, distinct congestion behaviors can be
observed.

B. Statistical Test of Significance: Mann-Whitney U test

The Mann-Whitney U test will be employed to examine
the differences in flow-density distributions across different
operational modes (mix mode vs segregate mode) and different
flow directions (North vs South flow). The Mann-Whitney
U test is a non-parametric method used to compare the
distributions of two independent samples. Unlike the t-test,
it does not assume normality or equal variances, making it
a robust choice for various data distributions. The test ranks
all observations from both samples, calculates the U statistic
based on these ranks, and tests the null hypothesis that the
samples come from the same distribution. A significant U
value indicates a difference between the samples.

C. Spatial Congestion Analysis: Generalized Macroscopic
Fundamental Diagram (GMFD) and Inhomogeneity

We aim to study the extent to which inhomogeneity con-
tributes to a reduction in average flow. The GMFD [21] is
employed to investigate the impact of inhomogeneity on traffic
flow within Changi Airport’s airside network. The GMFD
extends the traditional MFD by incorporating inhomogeneity,
which refers to the uneven distribution of traffic across the
network.

In addition to assessing the impact of inhomogeneity, we
quantify the relationship between network density and inho-
mogeneity. This analysis will illustrate the relevance of the
potential problem of nucleation, where one part of the network
becomes congested and attracts further congestion, while other
parts remain in free-flow conditions [22].

VI. RESULTS

This section presents results, including an analysis of the
impact of traffic demand on congestion, statistical comparisons
between different runway operations and directionality, and an
investigation into the role of inhomogeneity in airside network
flow.

A. Temporal Congestion: Traffic Demand

MFD shape is significantly influenced by the level of traffic
demand (number of arrivals and departures) as illustrated in
Figure 7. During high demand, the MFD is displaced farther
from the origin compared to the MFD for low demand, indi-
cating higher initial flow and density values. This displacement

Figure 7. Effect of traffic demand on the shape of MFD. The MFD for
high demand periods starts farther from the origin than that for low demand.
Surprisingly, the low demand MFD exhibits a more distinct congestion branch.

suggests that when traffic demand is higher, there is a relatively
higher initial buildup of flow and density as more aircraft oc-
cupy the airside network. In contrast, the MFD corresponding
to low demand is closer to the origin, implying a lower initial
flow due to fewer aircraft movements. Interestingly, even with
reduced traffic levels, the low demand MFD exhibits a more
pronounced congestion branch. This suggests that the airside
network can still experience congestion with fewer aircraft,
warranting further analysis.

Figure 8. Time-space plots for low and high demand periods reveal that
low demand (Top) can still lead to congestion due to banked operations,
while evenly spaced high demand (Bottom) allows for higher flows without
overwhelming the airside network (see Figure 7).

A deeper analysis of the different demand periods (low
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Figure 9. The effect of average density and inhomogeneity on average
flow is depicted, with a color gradient ranging from low (green) to high
(red) flows. This gradient demonstrates that density is a crucial factor in
determining network flow. However, for a given network density, an increase
in inhomogeneity further reduces the flow, as evidenced by the lower flow
values associated with higher inhomogeneity levels.

and high), using the time-space diagrams (see Figure 8),
provides additional insights into traffic dynamics. During low
demand periods, there is evidence of demand banking, where
traffic is temporally stacked. This is common in hub airports,
where fluctuating demand can lead to large queues throughout
the day [15], [20], [23]. This could explain the pronounced
congestion observed in the low demand MFD, where periods
of low density are accompanied by short bursts of high density
aircraft movements. In contrast, during high demand periods,
the time-space diagram reveals a more continuous flow of
aircraft, although congestion still accumulates as the network
becomes saturated. These figures illustrate that both low and
high traffic demand can lead to congestion, but the underlying
mechanisms differ: low demand can experience sharp bursts of
congestion that dissipate during periods of low activity, while
high demand results in a more gradual buildup.

B. Statistical Analysis Results: Mann-Whitney U Test Results

We conducted a statistical analysis of average flow distri-
butions using the Mann-Whitney U test for both mixed and
segregate runway operations, as well as for North and South
directional flows. At a 95% confidence level (α = 0.05), the
analysis reveals that mix-mode operations exhibit significantly
higher flow values compared to segregate runway operations.
However, when comparing flow distributions between the
North and South directions, no significant difference was
found, implying that directional flows have similar perfor-
mance under current operational conditions.

C. Spatial Congestion: Relationship Between Inhomogeneity,
Density and Flow

The GMFD (refer Figure 9) shows the effect of inhomo-
geneity in the traffic on the average flow in the network.
The inhomogeneity has an influence on the average flow:
for the same average density, an increase in inhomogeneity
reduces the average flow. While average density is the pri-
mary influencing factor, the standard deviation of density also

significantly contributes to determining flow throughout the
airside network.

Figure 10. Relationship between average density and inhomogeneity: Inho-
mogeneity increases with average density. In the non-congestion phase, this
increase is gradual. The steeper slope in the congestion phase suggests that at
higher average densities, the network becomes inhomogeneous more quickly,
as traffic load tends to concentrate on a few similar taxi routes.

The relationship between inhomogeneity and average den-
sity is nearly linear, as shown in Figure 10. In both the non-
congestion and congestion phases, inhomogeneity increases
with average density. In the non-congestion phase, this in-
crease is gradual. The steeper slope in the congestion phase
suggests that at higher average densities, the network becomes
inhomogeneous more quickly, as traffic load tends to concen-
trate on a few similar taxi routes. This observation underscores
the critical need for ATCOs to more evenly assign taxi routes
across the airside, especially during periods of congestion,
ultimately leading to improved average flows and network
capacity utilization.

VII. DISCUSSION

This study investigates the spatial and temporal factors
contributing to congestion and offers insights into how con-
gestion patterns develop and evolve under varying operational
conditions. In the temporal domain, it was observed that even
during low-demand periods, departure and arrival banks con-
tributed to congestion. To address this common challenge at
hub airports, congestion pricing can be employed to effectively
distribute arrival and departure banks, resulting in a more
balanced flight schedule throughout the day. Additionally,
MFDs can be leveraged to implement effective departure
metering policies to alleviate congestion. In the spatial domain,
a detailed analysis highlighted the issue of nucleation, where
congestion in one part of the Changi airside network attracts
further congestion, while other areas remain in free-flow
conditions [22]. This finding underscores the importance of
assigning taxi routes more evenly across the airside, partic-
ularly during congested periods, to enhance overall flow and
maximize network capacity utilization.

The findings of this study provide valuable insights into air-
side network operations at Singapore Changi Airport, but the
extent to which these results are generalizable to other airports
warrants further discussion. The MFD and GMFD approaches
effectively capture flow-density relationships and the impact
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TABLE I. RESULTS FROM MANN-WHITNEY U TEST FOR AVERAGE FLOW DISTRIBUTIONS.

S.No. Type U Statistic P-value Conclusion
1 Mode: Segregate Vs Mix 6152929 0.004 Flow is significantly greater in mix mode at α = 0.05
2 Directionality: North Vs South 770441 0.492 Not significantly different at α = 0.05

of traffic inhomogeneity, but their specific characteristics are
influenced by factors such as airport layout, taxiway design,
and traffic patterns. Therefore, while the core principles of
MFD may apply broadly, the critical density values, flow
capacity, and congestion patterns observed at Changi may
differ in airports with varying infrastructure and operational
modes.

VIII. CONCLUSION

This study has validated the existence and applicability of
the MFD for analyzing airside network operations at Singapore
Changi Airport using A-SMGCS data. Our analysis reveals a
strong relationship between average flow, density, and speed,
providing valuable insights into airside traffic dynamics. We
examined the impact of operational factors such as traffic
demand levels and runway modes. Our findings suggest that
congestion can occur even during low demand periods if
the demand is temporally concentrated or banked. Moreover,
mix-mode runway operations result in significantly higher
flow compared to segregate modes. However, flow differences
between North and South directions were not significant.
Furthermore, the GMFD highlighted the importance of traf-
fic inhomogeneity. An uneven distribution of traffic reduces
overall flow, particularly during congestion. These results
emphasize the potential to improve airside capacity utilization
and mitigate congestion by evenly distributing airside traffic
across both temporal and spatial domains, i.e., minimizing
schedule banks and ensuring a balanced allocation of taxi
routes. This study’s key limitation is the exclusion of weather
conditions from the MFD analysis, despite their significant
impact on airside operations; future research should integrate
weather data.
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