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Abstract—Effective air traffic flow and capacity management
(ATFCM) relies on accurate predictions of both traffic demand
and capacity. This paper focuses on the former because it presents
the greatest uncertainty. Traffic demand predictions are typically
based on flight plans submitted by airspace users to the Network
Manager. However, to optimise their flights with the most up-
to-date information, many users delay submitting their flight
plans until just a few hours before departure. This delay leads
to the implementation of ATFCM measures with incomplete
traffic information. Currently, missing flight plans are estimated
using the PREDICT system, which performs its task effectively.
However, it operates based on straightforward rules and does
not account for factors such as air traffic flow management
regulations, convective weather activity, or the business strategies
of airspace users. Prior efforts to improve PREDICT have utilised
complex, city-pair-specific data-driven models that encountered
practical constraints due to insufficient training data. Moreover,
these models were only capable of predicting the most likely
flight plans from those observed in the past, without ensuring
their validity in the current environment. The main goal of this
paper is to presents an alternative methodology, which consists
of modelling the decision-making processes of flight dispatchers
when submitting flight plans, leveraging historical data and
learning-to-rank techniques. Preliminary results are presented,
along with a discussion of key challenges encountered and lessons
learned, offering insights for future research directions.
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I. INTRODUCTION

Air traffic flow and capacity management (ATFCM) is a
crucial element in ensuring the safe and efficient utilisation
of airspace and airport resources. It involves monitoring and
balancing traffic demand with the available capacity of airports
and airspace. When predicted traffic demand exceeds the de-
clared capacity, measures such as delaying departures through
ATFCM regulations are implemented to prevent congestion.

The ability to accurately predict traffic demand – how many
aircraft will be using a particular airspace or airport at any
given time – is fundamental to effective ATFCM. This predic-
tion largely depends on the flight plans submitted by airspace
users to the Network Manager (NM), which provide essential
data on expected routes (including waypoints, airways and
flight levels), departure and arrival times, and aircraft types.

However, a significant challenge arises due to the timing
mismatch between when ATFCM measures need to be imple-
mented and when these flight plans are actually submitted. To
be effective, ATFCM measures must be planned and executed
well in advance, often hours or even a day before peak traffic

periods. Conversely, flight plans are typically submitted much
closer to the time of departure, sometimes just a few hours
before the flight. This timing gap could lead to ATFCM
measures that are based on incomplete traffic demand infor-
mation. This mismatch could result in either overestimating or
underestimating actual demand. Overestimation may lead to
unnecessary ATFCM measures, causing avoidable delays and
inefficiencies. Conversely, underestimation can lead to last-
minute congestion, resulting in reactive measures that are often
less effective and more disruptive for airspace users.

Addressing this timing mismatch is essential for enhancing
the accuracy of traffic demand predictions and, by extension,
the overall efficiency and effectiveness of ATFCM measures.
This paper addresses this challenge by proposing a method
that utilises historical data and learning-to-rank methods to
estimate traffic demand based on typical patterns, even before
flight plans are submitted. Although predicting traffic demand
before the submission of flight plans based on historical data is
not new, the current approaches have well-known limitations.

For instance, the NM currently predicts traffic demand
as early as D-6 using the PREDICT tool, which relies on
predefined rules to forecast flight plans, such as using the
same flight plan filed by the airline for the same city-pair seven
days prior. While generally accurate, these rules may overlook
factors such as weather, the response of airspace users to
ATFCM regulations, and the business strategies employed by
flight dispatchers using their planning tools.

Sophisticated models based on machine learning, as found
in the literature, also come with shortcomings. For example,
many models are designed to operate on a single city-pair,
requiring the training of a separate model for each city-
pair. This approach is impractical from a machine learning
operations perspective. Additionally, the data available to
train each individual model is often insufficient. Furthermore,
these models typically generate a flight plan directly from a
catalogue of previously observed flight plans or “clusters”,
without ensuring that the selected plan is valid1. This raises
concerns about what happens if none of the historical flight
plans are valid or if the network structure has changed.

1Here, the term ”valid” refers to Integrated Initial Flight Plan Processing
System (IFPS)-compliant. The IFPS system validates each flight plan against
the relevant Aeronautical Information Regulation and Control (AIRAC) data
and route availability document (RAD) restrictions and if valid distributes the
flight plan to the relevant actors, including concerned air traffic service units.



In this paper, we propose to monitor all flight plan sub-
missions and changes. Each time a flight plan is submitted or
altered, we generate several valid flight plan proposals that
were available to the airspace user at that exact moment,
as determined by the NM. We then extract key performance
indicators (KPIs) for each proposal, such as fuel consumption,
flight duration, distance, route charges, and ATFCM delay.
The flight plan chosen by the airspace user is labelled as the
preferred option, while the generated proposals are labelled
as less preferred. A machine learning model is then trained to
rank these flight plans based on their KPIs, taking into account
the specific context (e.g., airspace user, city-pair, aircraft type)
and other general features that allow for the establishment of
a single model applicable to several city-pairs.

II. BACKGROUND

The following subsections provide foundational background
on flight planning, pre-tactical flight plan predictions, and
ranking algorithms, respectively.

A. Flight planning
Flights departing from, arriving in, or overflying any country

within the NM’s area of operations are required to submit a
flight plan. According to the International Civil Aviation Or-
ganisation (ICAO) [1], flight plans should be submitted at least
3 hours before the estimated off-block time (EOBT). Indeed,
the NM’s guidance document All Together Now 2024 [2] high-
lights the importance of filing as early as possible, ideally no
later than 4 hours before EOBT, to ensure efficient operations.

When airspace users determine a flight plan, they must
balance several KPIs. While the most direct route (i.e., shortest
distance) is often preferred, considerations such as weather,
military activity, ATFCM regulations, and route charges may
lead to alternative choices. For instance, avoiding regulated
airspace might reduce delays but increase the distance. Simi-
larly, to overfly cheaper airspace, airspace users may choose
to fly longer distances. Ultimately, airspace users seek to
maximise revenue by selecting flight routes that best align
with their business objectives, which remain undisclosed.

In order to address these complicated trade-offs, many air-
lines use advanced flight planning software to generate optimal
flight routes automatically, like Lido (Lufthansa Systems),
Jeppesen JetPlanner or SITA Flight Folder, among others.
These systems analyse various routes, predict fuel usage, es-
timate costs, and ensure compliance with all relevant airspace
restrictions. Despite the reliance on automated systems, human
oversight remains crucial in flight planning. Pilots, dispatchers,
and other airline personnel review the automatically generated
plans and may make changes based on real-time information,
operational considerations, or specific airline policies.

B. Pre-tactical flight route predictions
In the NM system, two essential datasets – the forecast

dataset and the operational dataset – play a critical role.
The forecast dataset is developed and refined during the pre-

tactical phase, starting six days before the day of operations
(D-6) and continuing until the day before (D-1).

This dataset contains only flights forecasted by PREDICT,
which are constructed using a variety of data sources, includ-
ing wind predictions, North Atlantic (NAT) traffic forecasts,
airport slots, airline schedules, and traffic patterns from similar
days in the past, typically from one week earlier2. The purpose
of this dataset is to provide a detailed and accurate projection
of traffic demand, which guides the preparation of regulations
and other tactical updates. These plans are maintained within
the forecast dataset until they are transferred to the operational
dataset on D-1, around 16:00 UTC. Even after this transfer, the
forecast dataset remains accessible until the end of the day of
operations (D), though it no longer evolves after the handover.

The operational dataset, on the other hand, becomes ac-
tive from D-1 and continues to be used throughout the day
of operations. It is the primary dataset for real-time traffic
management. Flight routes can be submitted by airspace users
several days in advance, and these are integrated into the
operational dataset approximately 24 hours before the EOBT.
Unlike the forecast dataset, which is static after D-1, the
operational dataset is dynamic, continuously updating as live
flight plans are filed and adjusted. A key distinction between
these two datasets lies in their purposes: the forecast dataset is
exclusively for predictive modelling and planning, containing
only anticipated flights without official flight plan identifiers,
while the operational dataset includes all filed flight plans.

C. Ranking Algorithms

The goal of ranking algorithms is to order items – such
as documents, products, web pages, or routes – according to
their relevance to a query. They are widely used in applications
like search engines and recommendation systems, where the
effectiveness of the ranking directly impacts user satisfaction.

The performance of a ranking algorithm is evaluated using
metrics that quantify how well the algorithm orders items,
particularly how effectively it places the most relevant items at
the top of the list.During the training, a loss function measures
the difference between the predicted ranking generated by the
algorithm and the ideal ranking. The primary objective during
training is to minimise this difference, thereby improving the
quality of the rankings. Pairwise and groupwise methods are
two common approaches to constructing these loss functions,
each focusing on different aspects of the ranking order.

In the pairwise approach, the loss function focuses on the
relative ordering of pairs of items. The key idea is to ensure
that for any two items, if one item is more relevant than
the other, it should be ranked higher. Thus, this approach
evaluates the ranking by comparing pairs of items, aiming to
minimise the number of incorrectly ordered pairs. In contrast,
the groupwise approach evaluates the ranking of an entire list
of items as a whole, rather than just focusing on individual
pairs. The goal is to optimise the overall order, considering
all items together. This method often uses metrics that account
for the position of each item in the list, giving more weight
to the correct ranking of items at the top.

2For special events like holidays or strikes, the NM pre-tactical team may
choose a different reference day to create a more accurate forecast.
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III. LITERATURE REVIEW AND CONTRIBUTION

Improving pre-tactical traffic demand predictions has been a
longstanding focus of research, with various machine learning
models proposed over the past decade. For instance, [3] intro-
duced machine learning models aimed at predicting flight plan
choices during the pre-tactical phase. Their approach involved
clustering historical flight routes for each city-pair and then
predicting the most likely cluster using an individual model.
Although effective, this method required separate models for
each city-pair, leading to scalability challenges. The authors
employed multinomial regression and decision tree models,
framing the problem as a multi-class classification task. This
modelling choice limited the ability to generalise because
classification tasks require a fixed number of outputs.

Building on this foundation, [4], [5] developed machine
learning models to predict pre-tactical flight plans and re-
quested flight levels, demonstrating improved accuracy over
the PREDICT system. However, scalability challenges per-
sisted. Although they tested a broader range of models, the
core approach remained the same: framing the city-pair route
choice problem as a multi-class classification task.

Further extending this research, [6] introduced a model that
predicts airline route preferences by considering factors such
as fuel consumption, route charges, flight duration, and other
KPIs, enabling adaptation to new, unobserved routes. This
approach improved generalisation. However, the authors con-
tinued to rely on multi-class classification models, leaving their
claims on generalisation across different city-pairs unverified,
as the models’ outputs remained fixed in number and meaning.

In our work, we propose a methodology to address several
key challenges that have posed difficulties for previous meth-
ods in enhancing flight plan predictions during the pre-tactical
phase. A major challenge has been the impracticality of
building separate models for each city-pair, which complicates
machine learning operations and limits the data available for
training each model. To overcome this, we propose re-framing
the route choice problem as a ranking problem, enabling the
development of a universal model that can be applied across
all city-pairs. The rationale, as supported by [6], is that the
KPIs used in decision-making for flight planning, such as fuel
usage, are generally consistent across different city-pairs.

Another significant challenge is that many existing models
predict a specific flight plan without ensuring its validity on the
day of operations, considering dynamic factors like restricted
airspace, and other operational constraints. This can result
in scenarios where none of the flight routes represented by
the classifier’s outputs are valid. To address this, our ranking
models shifts the focus from predicting a specific flight plan
to learning the score (or airspace user preference) assigned
to a flight plan based on generic, city-pair-independent KPIs.
This approach aligns more closely with the decision-making
process of flight dispatchers, who evaluate these KPIs when
selecting a flight plan. By treating flight plans as inputs rather
than outputs, we ensure that all flight routes fed into our model
are valid, as they are sourced from the NM.

Previous models have encountered significant challenges
when attempting to incorporate wind. Creating a detailed wind
map requires sophisticated approaches, often necessitating the
use of complex neural network architectures. From an oper-
ational perspective, however, the primary concern for flight
dispatchers is not the wind itself, but rather its impact on flight
attributes such as flight duration and fuel consumption. Instead
of directly modelling the wind across a flight route, it is more
efficient to focus on the KPIs that inherently reflect the wind’s
influence. Thus, we argue that it is unnecessary to explicitly
include wind data as a feature in the model. Instead, the model
should directly capture the relationship between the flight route
and these KPIs. By doing so, we can effectively account for
the impact of wind without the need for the complex and
computationally demanding task of wind data integration.

Finally, an essential aspect of training a machine learning
model is ensuring that the inputs adequately explain the
outputs. In the context of flight planning, this means that
the inputs must accurately reflect the information evaluated
by flight dispatchers and their decision-support tools when
submitting a flight plan. This consideration has often been
overlooked in previous research. To address this, we propose
closely monitoring flight plan submissions and changes, using
the information available at the time of submission. This
approach increases the likelihood of modelling the same
decision-making process as the flight dispatcher, thereby cap-
turing the cause-and-effect relationship in the ranking model.

IV. DATASET

The dataset used to train the ranker was constructed using
NM business-to-business (B2B) services, specifically utilising
the publish/subscribe (P/S) and request/reply (R/R) systems.
In the P/S system, clients subscribe to specific topics and
receive notifications whenever new information is published.
Conversely, the R/R service allows a client to make a request to
a server, which then responds with the requested information.

For this study, we subscribed to the initial flight plan (IFP)
and change (ICH) messages, ensuring immediate notification
whenever a flight plan was submitted to NM or modified.
From these messages, we extracted the flight keys – including
the aerodromes of departure and destination, callsign, and
EOBT – which uniquely identify each flight. Additionally,
we retrieved the corresponding original ICAO route, detailed
in field 15 of the flight plan. This field includes a sequence
of waypoints and airways, along with altitude and speed
instructions. For instance, a flight from Madrid to Paris might
be filed with the route N0480F360 DCT TERTO UN857
GOLDA UN858 SOPET UN872 BAMES. In this example,
N0480F360 specifies a speed of 480 knots at flight level
360 (FL360); DCT indicates a direct route between waypoints;
UN857, UN858, and UN872 refer to airways; while TERTO,
GOLDA, SOPET, and BAMES are the specific waypoints.

Then, we prepared a RoutingAssistanceRequest,
which returns a list of valid routes for a given flight, along
with computed KPIs such as fuel consumption, route charges,
and flow-related what-if impacts (e.g., ATFCM delay).
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It is worth noting that this service takes into account the
most recent weather forecasts and utilises accurate trajec-
tory prediction tools to compute fuel consumption and flight
duration for a given route and aircraft type. This service
can be invoked in two ways: (1) to evaluate proposals for
an existing flight, where only the flight keys are required
(as the flight is already in the system), or (2) to evaluate
proposals for a new flight, where a complete flight plan must
be specified, including the flight keys, aircraft type, and route.
For the creation of the training dataset, we utilised the former
approach, as the receipt of a message indicates that a flight
with the specified flight keys is already present in the system.

The service, in its basic form, requires the flight keys of the
existing flight, the number of proposed routes to generate, and
a reference to determine the flight levels: ORIGINAL (using
the flight levels from the original ICAO route), HIGHEST
(using the highest reached flight level), and LONGEST (using
the longest flown flight level). The proposed routes can be
generated from city-pair statistics, including the set of routes
flown in the last 12 AIRAC cycles, flights currently in the
system, and a path generator that dynamically creates proposed
routes by exploring the network of air routes, free-route
areas, and direct segments. In the current implementation, we
configures the service to only propose historical routes from
city-pair statistics. The number of proposed routes is another
configurable parameter of the service, set to 10 by default.
However, depending on the reference flight level, fewer than
the requested number of proposals may be returned.

Algorithm 1 outlines the steps followed to create the dataset
using the aforementioned P/S and R/R NM B2B services.

Algorithm 1 Training dataset creation using NM B2B services

Require: Maximum number of proposed per flight Nmax
1: X ← {}
2: Subscribe to IFP and ICH messages
3: while a message is received do
4: flight ← flight keys of the message
5: originalRoute← Route of the message
6: proposedRoutes← {}
7: for referenceRequestFlightLevels in
{ORIGINAL, LONGEST, HIGHEST} do

8: n← Nmax − |proposedRoutes|
9: proposedRoutes ← proposedRoutes ∪
RoutingAssistanceRequest(flight,

10: referenceRequestFlightLevel, n)
11: end for
12: X ← X∪{(originalRoute,proposedRoutes)}
13: end while

In this dataset, each observation corresponds to an IFP or
ICH message and includes the original ICAO route along with
up to Nmax proposed ICAO routes. For each route, whether
original or proposed, the RoutingAssistanceRequest
provides the KPIs and flow impacts, which serve as features
for the ranker discussed in the following section. The default
parameter of 10 proposed routes was selected.

We started data collection on June 17th, 2024, targeting
flights departing from or arriving at the top-50 busiest airports
in Europe, covering up to 2.5K city pairs3. The results in
this paper are based on data collected up until the 13th of
September, 2024, comprising around 1M observations.

The advantages of using NM B2B services to generate the
training dataset, compared to existing datasets based primarily
on EUROCONTROL’s Data Demand Repository (DDR), are
significant. First, our approach leverages NM’s consolidated
trajectory prediction tools to extract KPIs directly from routes.
By making requests immediately after receiving the messages,
we maximise the likelihood of using the exact same weather
forecasts seen by the emitter. This is crucial, as we anticipate
that flight planning tools utilise comparable tools and weather
data. Consequently, the KPIs available to flight planners or
dispatchers just before issuing an IFP or CHG message should
closely match those in our dataset. This accuracy extends to
flow-impact metrics such as ATFCM delay and regulations.

Second, the alternatives generated by NM are valid at the
exact moment of the event. Unlike previous approaches that
might include alternatives that were not selected just because
they were invalid at the time, we use NM-compliant routes.

Third, our model is independent of specific environment
data (such as routes, waypoints, and sectors), relying solely
on the KPIs of potential routes. This ensures that our model
remains valid even if the environment changes – such as the
introduction of new waypoints or airways. In such cases, we
simply need to obtain updated route proposals from NM along
with their corresponding KPIs to generate an accurate ranking.

Lastly, our approach allows for rapid integration into
operational systems. Specifically, we only need access to
the RoutingAssistanceRequest to obtain the available
routes and corresponding KPIs and provide NM with the
predicted ranking of valid routes for each flight.

V. MODEL

This section presents the ranking model proposed in this
paper. Specifically, Section V-A outlines the input features
utilised in the model, Section V-B details the output generated
by the model, and Section V-C provides a comprehensive
explanation of the implementation of the ranker. It is important
to note that this project is ongoing, and the designs presented
here are preliminary. Future work will explore additional input
features, models (e.g., neural networks), and/or loss functions.

A. Input features (predictors)
Feature engineering was applied to the dataset presented

in the preceding section to compute the input features (i.e.,
predictors) for each route used by the model to predict the
corresponding score and generate the rankings of each obser-
vation (or message). The features are grouped into various sets
and tagged according to their respective topics. A summary of
the sets and associated features is provided in Table I.

3NM B2B services requires dedicated certificates. Furthermore, the
RoutingAssistanceRequest is a computationally expensive service,
capped at 30 requests/min. One certificate may be adequate to cover hundreds
of city pairs, but more certificates would be needed for the entire network.
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TABLE I. INPUT FEATURES (PREDICTORS) OF EACH ROUTE, CATEGORISED BY TAG AND TYPE.

Tag Name Type

Flight attributes
Aircraft type (identifier)

CategoricalCity-pair (identifier)
Airline (identifier)

KPIs of the route

Duration (min)

NumericalLength (NM)
Fuel consumption (kg)
Route charges (Euros)

Flow-related (ATFCM) impact

Delay (min) NumericalNumber of regulations (#)
Protected location of MPR (identifier) CategoricalType of location of MPR (identifier)

Calendar
Hour

CategoricalDay of week
Month. This feature was not used in the experiment.

Convection risk from the most recent CBCF
Medium risk (%)

NumericalHigh risk (%)
Very high risk (%)

Distance w.r.t the lateral and vertical profiles

Mean lateral and vertical embedding distance by:

Numerical■ City-pair and airline
■ City-pair, airline and aircraft type
■ Callsign

Similarity w.r.t the set of waypoints

Mean precision and recall similarity by:

Numerical■ City-pair and airline
■ City-pair, airline and aircraft type
■ Callsign

The first set of features is designed to provide context for the
model, specifically including the airline, the city-pair, and the
aircraft type. It is important to note that we also experimented
with splitting the city-pair feature into separate fields for the
departure and destination aerodromes. However, this approach
degraded the quality of the model.

The second set of features encompasses KPIs related to
the route, including duration, length, fuel consumption, and
route charges. It is important to note that both duration and
fuel consumption implicitly account for the most recent wind
forecast available before the message was submitted. We
expect this set of features to be highly relevant to the model.

The third set of features provides information about the
flow-related ATFCM impact on the flight. This includes the
ATFCM delay, the number of regulations affecting the flight,
and details about the most penalising regulation (MPR), such
as its protected location and type (e.g., airspace, aerodrome).
The rationale for including these features is that some airlines
may choose to avoid regulated airspace if the delay is high.

The fourth set of features includes calendar information
such as the hour of the day, the day of the week, and the
month of the year. This data is apparently important because
airspace users may have varying preferences and operational
patterns depending on the season or time of day. Due to the
relatively small size of the dataset at the moment of writing
this paper, however, the month feature was omitted.

The fifth set focuses on convective weather, specifically
the Cross-Border Convection Forecast (CBCF) generated by
EUMETNET (the European Meteorological Network). This
forecast is a collaborative effort that supplies information

about convective weather across European airspace to NM and
participating air navigation service providers. During 2024,
CBCFs were issued twice daily, at 7AM and 10PM, and
included polygons that represent different levels of convection
risk. These forecasts are valid for the following day, covering
the period from 6AM to 9PM in 3-hour intervals. These
features indicate the percentage of route affected by each risk
level. For instance, a medium risk with value 0.9 indicates that
90% of the route is crossing medium risk polygons.

The sixth feature set represents the distance between a given
route and all routes filed during the current and previous
AIRAC. This set is still under development, and we are explor-
ing the benefit of including complementary metrics, such as
Fréchet distance. In the current implementation, each route’s
sequence of waypoints (i.e., the lateral profile) is transformed
into an embedding – a fixed-size vector of numerical values
that captures the route’s shape. To foster generalisation, the
lateral embedding is designed to be independent of spatial
position, direction, and length.

The transformation process involves several steps: First, the
route is rotated so that the direct path from the origin to the
destination serves as the reference axis. Then, it is translated so
that the origin airport aligns with the origin of the coordinate
system. Finally, the route is scaled according to the great circle
distance. After these transformations, the route is interpolated
at n equidistant points, and the resulting x and y coordinates
form the embedding. This process is illustrated in Fig. 1.

A similar yet simpler process is applied to the vertical
profile (i.e., the sequence of flight levels). In this case, the
altitude is interpolated at n equidistant points along the route.
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Figure 1. The steps to generate a 2D route embedding: (1) rotate, (2) translate,
(3) scale, and (4) interpolate.

In the current implementation, n = 15 was chosen to
generate both lateral and vertical embeddings. Each distance
metric is computed as the average Euclidean distance between
the lateral or vertical embedding of the given route and those of
last filed flight plans during the current and previous AIRACs,
for the same city-pair by the same airline, airline-aircraft type
combination, and callsign. As a result, this approach yields
a total of six distance-based features: three based on lateral
embeddings and three based on vertical embedding.

The final set of features is inspired by classification similar-
ity metrics. The similarity between two routes – current and
historical – is measured in terms of precision and recall:

precision =
# of common waypoints

# of waypoints in the current route
,

recall =
# of common waypoints

# of waypoints in the historical route
.

For example, consider the set of waypoints of an historical
route: TERTO GOLDA SOPET BAMES. If the set of way-
points of the current route were TERTO TEDKA BAMES,
the precision and recall would be 2/3 and 2/4, respectively.
Similarity metrics consists of the average precision and recall
between the route and those of last filed flight plans during the
current and previous AIRACs for the same city-pair, by the
same airline, airline-aircraft type combination, and callsign.
This approach generates a total of six similarity-based features:
three for recall and three for precision.

B. Target (output)

We unfortunately lack explicit preference scores for the
routes. Instead, we have only the information about which
route was selected (the original) and which were proposed
alternatives. We use the selection itself as a proxy for score.
For each observation (i.e., message), the selected route is
labelled as the preferred option (1), while all alternative
proposed routes are labelled as less preferred (0). In other
words, each observation contains one route with a score of 1,
and the remaining routes are assigned a score of 0.

C. Implementation

In this study, we employed the CatBoost Ranker as our
base model [7], chosen for several compelling reasons. First,
CatBoost is particularly well-suited for datasets with high-
cardinality categorical features, such as those found in our
data, which includes city-pairs, aircraft types, and other cat-
egorical attributes. Its ability to handle such features without
extensive pre-processing is a significant advantage.

Furthermore, CatBoost is inherently robust against over-
fitting, which is crucial for ensuring the generalisation capa-
bilities of the model, especially when working with complex
and dynamic data like flight routes. Furthermore, the relatively
low number of major hyper-parameters that require tuning
simplifies the model optimisation process.

Finally, CatBoost stands out as one of the most advanced
tree-based models for ranking tasks, offering a wide range
of loss functions that provide flexibility for various applica-
tions [8], [9]. In the current implementation, the model is
trained to minimise the PairLogit loss, a widely used objective
for ranking tasks. For each pair of items (i, j), the model
predicts scores si and sj , which are used to estimate the
probability that item i should be ranked higher than item j.
The probability is modelled using the logistic function:

P (i > j) =
1

1 + e−(si−sj)
.

The PairLogit loss function then minimises the negative log-
likelihood of these pairwise comparisons, defined as:

LPairLogit = −
∑
(i,j)

log (P (i > j)) =
∑
(i,j)

log
(
1 + e−(si−sj)

)
.

However, CatBoost is not without its limitations. As part of
future work, we plan to compare our current CatBoost-based
model with a neural network approach. Neural networks offer
greater flexibility, particularly when it comes to defining more
complex or customised loss functions. Additionally, a neural
network model might enable a more seamless and transparent
integration of embeddings and textual route features.

VI. RESULTS

VII. PERFORMANCE EVALUATION

This section details the performance of the proposed ranker,
which was trained on data collected from June 17th, 2024, to
August 31st, 2024. The model’s performance is assessed using
a test set that spans the remaining days until September 13th,
2024. This test set, referred to as the tactical test set, includes
observations similar to those used during training, where the
user route is considered the ground truth and alternatives were
generated with the RoutingAssistanceRequest.

Additionally, we compare the performance of our model
with that of PREDICT during the pre-tactical phase using a
dedicated test set. This test set was generated by initially call-
ing PREDICT at midnight on D-1. For each predicted flight,
the RoutingAssistanceRequest service was invoked to
obtain 10 alternative proposed routes.
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TABLE II. AVERAGE DISTANCE, SIMILARITY AND CLUSTER MATCH METRICS IN THE TACTICAL (T) AND PRE-TACTICAL (P) TEST SETS.

Metric Lateral embedding distance Vertical embedding distance Precision Recall Lateral cluster match Vertical cluster match
Test set T P T P T P T P T P T P

Fastest 0.13 0.06 14.30 13.31 0.52 0.53 0.50 0.51 0.65 0.69 0.85 0.31
Shortest 0.09 0.06 8.37 11.44 0.58 0.53 0.57 0.50 0.71 0.68 0.89 0.32
Lowest fuel 0.09 0.07 19.03 14.03 0.57 0.51 0.55 0.48 0.69 0.65 0.80 0.30
Lowest charges 0.11 0.11 5.37 11.20 0.58 0.47 0.56 0.45 0.71 0.60 0.92 0.31

PREDICT - 0.05 - 7.57 - 0.58 - 0.55 - 0.76 - 0.32
Highest Rank 0.04 0.04 6.06 10.33 0.70 0.59 0.68 0.56 0.87 0.77 0.93 0.32

For each observation in the pre-tactical test set, the model
is tasked with ranking up to 11 routes: the route predicted by
PREDICT and up to 10 alternative routes. The last filed flight
plan is used as the ground truth for the PREDICT test set. It
is worth noting that this evaluation may not be entirely fair
and exhaustive, as PREDICT is designed to forecast the first
filed flight plan rather than the last. Consequently, the results
obtained from the PREDICT test set should be interpreted with
caution. Extensions of this work will involve an evaluation
using the first filed flight plans as the ground truth.

In the pre-tactical test set, it is possible that none of the
up to 11 candidate routes may perfectly match the ground
truth, laterally and/or vertically. To address this, we applied
the DBSCAN algorithm to independently cluster the vertical
and lateral embeddings of the routes for each observation. We
then assess whether a predicted route belongs to the same
lateral or vertical cluster as the ground truth. Additionally, we
will report the average lateral and vertical embedding distances
between the predicted route and the ground truth, as well as
the average precision and recall based on the waypoint sets.

In addition to comparing with PREDICT, we have defined
several dummy baselines for comparison purposes. These
baselines select the route with the lowest value for each KPI as
the predicted route, providing a reference point for evaluation.

Since the dataset covers only three months, the experiment
presented herein focuses on the top 250 most frequently used
city-pairs for both training and evaluation, regardless of their
performance quality. This approach ensures that the model
encounters a diverse range of scenarios for each city-pair
during training, which is crucial for achieving generalisation.

A. Aggregated performance metrics

Table II provides a comparative analysis of various route
prediction models, including the proposed ranker, PREDICT,
and several baseline models, evaluated across multiple metrics
in both tactical and pre-tactical test sets. It is worth noting that
the number of flights in these two test sets may differ, which
makes a direct comparison difficult if not impossible.

The baseline models based on individual KPIs consistently
underperform compared to both PREDICT and the ranker.
These baseline models generally exhibit higher lateral and ver-
tical embedding distances, lower precision and recall scores,
and poorer cluster matching rates, reflecting their limitations
in accurately predicting the users’ preferred routes.

The proposed ranker demonstrates modest but clear im-
provements over PREDICT in several important metrics.

Specifically, it achieves lower lateral embedding distances
and higher precision and recall values, indicating that it
more accurately predicts routes based on waypoint overlap.
However, one area where the ranker falls short is in the
vertical embedding distance, where it shows a significantly
higher average distance than PREDICT. Despite this, the
improvements in lateral performance suggest that the ranker
provides meaningful enhancements in some aspects of route
prediction, though the gains are incremental at this stage.

A notable takeaway from Table II is the pronounced dif-
ficulty all models face in predicting the vertical profile of
routes, particularly in the pre-tactical test set. Both the ranker
and PREDICT struggle with vertical distance metrics, which
suggests that the vertical component of route prediction is
a persistent challenge that requires further attention. Note,
however, that by vertical profile we are not referring solely
to the precise sequence of flight levels, but also to the specific
locations where step climbs are performed, which naturally
adds an additional layer of complexity to the prediction task.

B. Model explainability

Figure 2 displays the Shapley values in the observations
of the test set. In short, the Shapley values represent the
average marginal contribution of each feature in the model
across all possible combinations of features. This means that
the Shapley value for a given feature is the average difference
in the model’s prediction when that feature is included versus
when it is not, considering all possible subsets of the other
features. This provides a measure of the importance of each
feature in the model’s predictions. For more information on
Shapley values, please see [10] and the references therein.

In this kind of figure, the y-axis indicates the name of the
features, in order of mean absolute Shapley value from the top
to the bottom. Each dot in the x-axis shows the Shapley value
of the associated feature on the prediction for one observation,
and the colour indicates the magnitude of that feature.

Figure 2 confirms that the model has successfully learned
patterns that align with expectations, reflecting an understand-
ing of route prediction factors that would resonate with human
judgement. Notably, city-pair and fuel consumption emerge
as the most important features, with higher fuel consumption
consistently leading to lower predicted scores. Several route
similarity and distance metrics also rank high in importance,
where greater similarity boosts prediction scores, while higher
distance metrics lead to lower scores, as expected.
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Figure 2. Shapley values in the routes of the tactical test set.

ATFCM and weather-related features appear towards the
bottom of the ranking. This, however, does not imply that
they are unimportant; rather, many flights are not impacted
by convective areas or ATFCM regulations. Since this figure
shows only the average Shapely value, their actual relevance
may be underrepresented. A more detailed analysis focused
on flights affected by ATFCM regulations or adverse weather
might reveal an increase in the importance of these factors.

VIII. CONCLUSION

This paper addresses a gap in the literature on route
prediction by identifying limitations in existing methods –
namely model maintenance, generalisation and validity of the
proposed routes – and proposing a learning-to-rank approach.
While the primary objective of this approach is to enhance pre-
tactical flight predictions, it has potential applications in the
tactical phase as well. For instance, when ATFCM regulations
are activated, the ranker could be asked to rank the current and
alternative (valid) routes considering ATFCM delays in order
to identify possible route changes before they happen.

While the primary focus of this paper is on methodological
advancements, we also present preliminary results from initial
experiments. Although these results do not yet demonstrate
substantial improvements over PREDICT, they highlight the
feasibility and solidity of our approach. We believe that with
further development in model implementation, input feature
refinement, and the use of a larger dataset, there is significant
potential for improvement. Instead of detailing the exten-
sive list of possible enhancements in this section, we have
discussed various ideas throughout the paper. This approach
provides a clear perspective and direct links on how the model
will be improved in the near future.
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