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Abstract—This paper proposes an innovative methodology to 

evaluate the noise and visual pollution generated by UAM 

activities, with a particular focus on how these impacts vary 

across different population segments (e.g., differentiating by age 

and gender). We present the outcomes of a novel simulation 

toolset that models drone-generated noise and visual pollution, 

integrating these data with dynamic population distribution 

maps derived from the combination of mobile network data and 

GPS data from personal mobile devices. The analysis focuses on 

three case studies in the city of Madrid: the impact of a drone 

flying over residential and downtown areas during the cruise 

phase; the effects of take-off in a residential neighbourhood; and 

the cumulative effects of multiple flights. These results offer 

valuable insights into the local environmental impacts of UAM 

and are expected to contribute to the development of more 

targeted U-space regulations and social acceptance strategies. 

Keywords-UAM, environment, visual pollution, noise, mobile 

network data  

I. INTRODUCTION 

The development of U-space is crucial for enabling urban 

air mobility (UAM) and unlocking the drone economy, 

offering benefits such as enhanced medical transport, goods 

delivery, and job creation. However, relevant challenges are 

still to be solved, particularly regarding drone operations over 

densely populated areas. The European Union Aviation Safety 

Agency (EASA) has conducted a comprehensive study on the 

societal acceptance of UAM across the EU [1]. When asking 

EU citizens about their concerns regarding UAM operations, 

safety and noise come first, but the range of concerns is much 

broader and includes other impacts such as visual pollution, 

induced stress due to traffic movements above one’s head, 

security, privacy, and the occupation by take-off and landing 

facilities of urban spaces that would be better used for living or 

recreation. 

The efforts to characterise and quantify UAM’s impact on 

the quality of public spaces are still scarce [2], mainly 

assessing public perception on UAM through surveys and 

questionnaires [3]. The SESAR 2020 PJ19.04 project has 

begun to develop indicators to assess UAM's environmental 

impact [4], but these indicators are still too broad to capture 

UAM’s diverse effects on different urban contexts. Noise and 

visual pollution are the two most addressed negative effects, 

related to the implementation of UAVs and eVTOLs as part of 

UAM [5]. More advanced tools are needed to understand the 

interaction between UAM operations, environmental impacts, 

and citizens' use of public spaces. For example, using census 

data implies the unrealistic assumption that people spend 24 

hours at their residence area and ignores the dynamics of 

daytime activity, including routine travel and more occasional 

trips to perform activities at different locations, overlooking the 

fact that some residents spend a long time far from the area 

which is supposed to represent their exposure, which can lead 

to significant biases in the estimation of exposure [6]. 

The MUSE project [7] aims to address this gap by creating 

a set of performance indicators (PIs), methods, and tools to 

assess UAM’s social and environmental impacts on urban life, 

which are expected to serve as an enabler of a future U-space 

service aimed at optimising the social and environmental 

performance of UAM operations. This paper presents the 

methodology developed by MUSE for measuring the 

environmental impact of UAM, detailing the models and 

workflow used. The methodology is demonstrated and 

evaluated through two test scenarios in the city of Madrid. The 

first scenario compares the impact of drone flights during the 

cruise phase over residential and downtown areas, while the 

second evaluates the effects of take-off operations in a 

residential neighbourhood. 

The rest of the paper is structured as follows: Section II 

describes the methodology followed to assess the 

environmental impact of UAM, describing its main steps 

(trajectory generation, noise modelling, visual pollution 

modelling, dynamic population mapping and population 

exposure and indicators calculation), Section III describes the 

case studies analysed in the paper in Section IV, which 

provides the results analysed in the paper, and finally Section V 

provides the conclusions.  



 

Figure 1. Methodology workflow. 
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II. METHODOLOGY 

The methodology designed to assess the environmental 

impact of UAM operations is illustrated in Fig. 1. This 

approach consists of the following sequentially connected 

modules: (i) trajectory generation, to accurately model 4D 

drone trajectories in urban areas in the absence of historical 

trajectory data; (ii) noise modelling, to assess noise emissions 

along these trajectories and their propagation across various 

parts of the city; (iii) visual pollution modelling, to evaluate the 

visual impact of the trajectories; (iv) dynamic population 

mapping, to track the spatial distribution of the population at 

any given time; and (v) population exposure and indicator 

calculation, which involves modelling population exposure by 

integrating population distributions with noise and visual 

footprints and calculating PIs. 

A. Trajectory generation 

In the absence of real drone traffic over cities, it is 

necessary to recreate realistic trajectories to assess their 

environmental impact. To achieve this, we use GEMMA, a 

trajectory generation engine developed by the Technical 

University of Catalonia, which is designed to create realistic 

flight missions in various environments, ranging from simple 

point-to-point flights to complex operations such as scans and 

loitering. The software is highly configurable, enabling users to 

incorporate various operational layers, including flight schemes 

(e.g., visual line of sight, extended line of sight, beyond line of 

sight), airspace restrictions (e.g., no-fly zones, flight altitudes, 

geofencing), performance data of the aircraft in the operator's 

fleet, operator types, and geographical settings. GEMMA has 

been utilised to validate urban air mobility capacity limits and 

test strategic conflict detection services [8]. The trajectory 

generation leverages drones’ performances obtained from the 

BlueSky simulator [9] to define the speed and city 3D models 

for determining flight altitude with respect to terrain and 

obstacles. 

B. Noise modelling 

The noise module consists of three integrated tools: (i) 

DynaPyVTOL for flight mechanics, (ii) CARMEN for noise 

source calculation, and (iii) NoiseModelling for noise 

propagation. DynaPyVTOL and CARMEN are proprietary 

tools developed by ONERA, while NoiseModelling is 

open-source software.  

These tools are used sequentially. First, DynaPyVTOL 

processes data from the trajectory generation engine 

(GEMMA), providing dynamic information on vehicle and 

propeller behaviour, including flight trajectory, 3D vehicle 

orientation, and parameters such as propeller thrust, torque, and 

RPM. This data is then fed into CARMEN, which calculates 

noise emissions at each time step, represented as emission 

spheres [10][11]. Finally, NoiseModelling aggregates these 

noise emissions, calculates their propagation in accordance 

with CNOSSOS-EU directives [12] for rail and road noise, and 

applies advanced ray-tracing methods [13], to generate noise 

maps. These maps provide relevant metrics for computing 

noise-related indicators. 

C. Visual pollution modelling 

Visual pollution is the compounded effect of disorder and 

excess of various objects in a landscape which population finds 

unattractive, ugly, intrusive or disturbing [14][15]. In order to 

calculate it, this module leverages standard GIS software 

functionalities to analyse landscape visibility using raster data, 

combined with geometric analysis of drone visibility from the 

ground along their flight paths. The raster data used, 

specifically the Digital Surface Model (DSM), includes terrain 

elevations as well as buildings and other structures that affect 

visibility. Trajectory and drone size data are incorporated to 

determine the areas where drones are observable and assess the 

visual impact on citizens. 

To quantify visual pollution, we use the visual pollution 

concentration (VPC), a metric that assesses the intensity or 

density of visual pollution in a given area. Two methods are 

explored to calculate the VPC: 

• AirMOUR: the visual pollution concentration is 

calculated based on the formula derived by the project 

AirMOUR [5]: 

𝑉𝑃𝐶 = 47.76 
𝑁0.65

𝐷0.67  + 1.37, () 

where N is the number of unmanned aircraft (UAs) 

visible by the observer, and D represents the distance 

from the observer to the closest UA. This formula 

estimates the intensity of visual pollution based on the 

number and proximity of UAs, but neglecting their 

size. 

• Visual area: the visual area occupied by the drone is 

compared to the observer's visible field of view that is 

free of urban objects (i.e., open sky). This approach 

considers both the drone's dimensions (width and 

length) and its distance from the observer. The area 

occupied by the drone, Ω(drone), is calculated using 

trigonometric formulas that take into account the 

distance at which the drone is, R, its width and length 

for an estimation of the area (a). Then, the visual 

pollution concentration is defined as 

𝑉𝑃𝐶 = 𝐶𝐹
∑ Ω(𝑑𝑟𝑜𝑛𝑒𝑖)𝑁

𝑖

Ω(𝑜𝑝𝑒𝑛 𝑠𝑘𝑦)
=  𝐶𝐹

∑ tan−1(𝑎𝑖/𝑅𝑖
2)𝑁

𝑖

4𝜋−Ω(𝑢𝑟𝑏𝑎𝑛)
. () 
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This metric is normalised considering the visible area 

occupied by a drone with 1m2 area located at 100m 

from the observer and the solid angle of open sky with 

no buildings (2 π), i.e., 𝐶𝐹 = 2𝜋/ tan−1(1/1002). 

D. Population mapping 

The analysis of population exposure to UAM noise and 

visual pollution requires precise, detailed information on the 

population’s presence across the city at different times. To 

obtain this information, this module leverages anonymised 

mobile network data (MND). MND are processed using 

Nommon’s Population Insights software [16], a state-of-the-art 

platform that processes MND and integrates it with additional 

data layers (e.g., land use, points of interest, transport 

networks, and sociodemographic statistics) to create dynamic 

population maps, floating population statistics, and 

customisable presence and activity indicators. These indicators 

can be segmented by factors such as sociodemographic profile, 

activity type (e.g., home, work, education, pass-through 

traffic), length of stay, and visit frequency. 

However, MND has limitations in terms of geographical 

resolution, and both noise and visual pollution impacts vary 

significantly with distance, requiring much finer resolution. To 

address this, we combined the information extracted from 

MND with GPS data from mobile apps to allocate people into 

smaller areas, following the approach proposed in [17]. The 

process uses historical GPS data to calculate the probability of 

individuals being present in different parts of a square grid at 

various times of the day. This probability heat map is then 

applied to the total number of people estimated from MND, 

achieving a resolution of a 15-meter grid.  

E. Exposure and indicators calculation 

The noise and visual pollution maps calculated are merged 

with population presence, segmented by sociodemographic 

profiles, to capture the interplay between the UAM’s concept 

of operations (e.g., geofencing, route design, allowed traffic 

density), drones’ visual and noise footprint, and citizens’ 

spatial behaviour and use of public space. 

The specific calculations vary depending on the indicators 

to be computed. In this paper, we present the results for the 

following indicators, included in the MUSE U-space 

Environmental and Social Performance Framework D3.1 [18]. 

TABLE I.  PERFORMANCE INDICATORS 

PIs Unit Measurement mechanism 

NO-1: Area based 
people exposure to 

noise (L_Aeq) 

person 

The amount of people exposed to an 

equivalent noise level higher than a 

certain threshold in dBAa, for a fixed 
period of time, within an area. 

NO-2: Area based 

people exposure to 

Day-evening-night 
noise level 

(L_DEN) 

person 

The amount of people exposed to 

day-evening-night noise level 

(L_DEN) higher than a certain 
threshold in dBA, over a whole day 

(24 hours), within an area. 

PIs Unit Measurement mechanism 

NO-5: Area based 
people exposure 

duration to noise 

D.person 

A certain duration D of noise levels 

exceeding a certain threshold in dBA 
multiplied by the number of people 

exposed, over a fixed period of time, 

within an area. 

VP-1: Trajectory-

based people 

exposed 

person 

The amount of people exposed to a 

single drone operation, i.e., sum of 
individual persons that are able to see 

the drone. 

VP-2: Trajectory-

based people 
exposed by 

concentration 

threshold 

person 

The amount of people exposed to a 

visual pollution concentration higher 

than a threshold, for a single drone 
operation. 

VP-4: Trajectory 
based visual 

exposure 

person.vp.h 
Total visual pollution exposure 
perceived by the people exposed to a 

single drone operation. 

a. dBA, are decibel scale readings that have been adjusted in an attempt to take into account the 

varying sensitivity of the human ear to different frequencies of sound. 

III. CASE STUDIES 

The proposed methodology has been evaluated using a 

series of test case studies with the aim of assessing its 

usefulness to evaluate the environmental impact of different 

types of UAM operations. For this purpose, three different 

cases, all located in Madrid, have been considered: 

• Cruise flight: the impact of a single drone flying over a 

defined area has been analysed. The cruise flight takes 

place in the city centre of Madrid, from South to North, 

crossing residential, commercial, and downtown areas 

with a high density of pedestrians. The study focuses on 

an area around the congested Gran Via street and Puerta 

del Sol square. The cruise altitude is set at 105 meters 

above the elevation of the destination hospital rooftop, 

which stands at 704 meters in the ETRS89 reference. 

The indicators discussed for this case are: NO5, VP1, 

VP2, and VP4, see TABLE I.  

• Take-off flight: the impact of a single drone during 

take-off from a specific vertiport has been assessed. The 

take-off flight is located in the residential district of 

Arganzuela. The mission starts at 13 meters above the 

ground and climbs to 200 meters during this phase, 

while adjusting its trajectory. The indicators discussed 

for this case are: NO1, VP1, and VP4. 

• Traffic: the impact of multiple flights taking off and 

flying over the defined area throughout a study day has 

been analysed. Specifically, we consider six flights with 

the same origin and destination as the cruise flight 

previously presented, distributed throughout the day, 

and one take-off flight similar to the previous case. This 

case was considered to represent the NO2 indicator, 

which specifically addresses the combined effects of 

noise during the day, evening, and night. 

For all these cases, MND and GPS data have been used to 

precisely map the population exposed to the considered UAM 

operations. MND data from March 2017 was used. To train the 
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Figure 2. Duration of noise exceeding 5 dB produced by the cruise flight. 

 

 

Figure 3. NO5, area-based people exposure duration to noise. 

 

  

Figure 4. VPC maps at an instant of the flight when the drone is over 

Gran Vía: a) AiRMOUR metric, b) visual area metric. 

 

population distribution algorithms that refine the precision of 

the MND data, we used GPS data from February, July, August, 

October, and November 2023, as well as from January, April, 

and May 2024. It is important to note that larger time periods 

are required for GPS data due to the fact that the sample size is 

significantly smaller than that provided by MND. 

IV. RESULTS 

This section presents the results of the PIs calculated for 

each of the test case studies analysed. The noise results 

provided here are illustrative rather than final, as their primary 

purpose is to validate the correct operation of the toolset and 

the integration of its individual components. More accurate 

drone noise models will be used in subsequent stages of the 

project to refine these results.   

A. Cruise flight 

1) Noise 

Fig. 2 shows, in different colours, the duration (in seconds) 

of noise exceeding a theoretical 5 dB threshold produced 

during the cruise flight of a single drone. This map enables the 

calculation of the duration of people’s exposure to noise in 

specific areas (NO5). The map illustrates the aggregation of 

noise produced along the drone's flight path. As expected, the 

effect diminishes with increasing distance from the drone's 

trajectory. 

Fig. 3 shows the results for the NO5 indicator, which 

weights the previous noise map with the population presence 

data. TABLE II. presents the results disaggregated by gender 

and age. While there are no significant differences in the 

impact on men and women, a notable insight from the data is 

the disparity between the impact on age groups 25-44 and 

45-64. Official statistics for Madrid show that both groups have 

roughly equal numbers (999,195 and 996,371 people, 

respectively, at the beginning of 2024). This difference 

underscores the added value of this methodology for 

distinguishing the impact of UAM operations on different 

population groups depending on where and when they take 

place. 

TABLE II.  NO5 SEGMENTATION - CRUISE FLIGHT 
 

2) Visual pollution 

Fig. 4 displays the visual pollution concentration maps for 

the drone as it flies over one of the main streets of the city, 

Gran Vía. These maps reveal that the affected area is 

consistent, but the magnitude of the VPC varies due to the 

different formulas. AiRMOUR’s metric provides values 

ranging from 0 to 2, while the visible area affected ranges from 

0 to 0.03. Both metrics effectively demonstrate a similar 

decrease with distance, as expected. In AiRMOUR, this 

relationship is explicitly included in formula (2), while for the 

visible area, it is represented by the reduction in the area 

covered by the drone. As noted in the methodology, the visual 

pollution concentration takes into account shadowed areas 

where the drone is not visible. This effect is observable behind 

buildings, where visibility is restricted. For example, note the 

cutoffs on the left side of the image where the drone’s visibility 

is obstructed by the building corners on this main street. 

Fig. 5 shows the results for the VP1 indicator, which 

represents the number of people exposed to a single drone 

operation or, in other words, the number of people who are 

able to see the drone. The areas with higher numbers of 

affected people are marked in red on the map.  

The distribution of these spots depends on the population 

distribution itself, so a higher concentration is not necessarily 

found directly below the drone's trajectory. However, it is more 

 Age groups 

Gender 0-24 25-44 45-64 >65 Total 

Female 264 214 418 137 314 046 286 384 1 282 780 

Male 232 241 511 966 438 575 190 017 1 372 799 

Total 496 455 930 103 752 621 476 401 2 655 579 
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likely that the visible area is concentrated near the drone's 

flight path, with fewer visible areas and more shadows as 

distance from the flight path increases. The same segmentation 

is provided as before, by gender and age groups, in TABLE III. 

According to the data, a total of 45,125 people would be 

affected by the drone’s presence in the sky. This metric 

represents an upper limit for the visual impact, as it does not 

consider the proximity to the drone or a minimum threshold to 

determine which individuals are actually negatively affected by 

the drone’s visibility. 

TABLE III.  VP1 SEGMENTATION CRUISE FLIGHT 

 Age groups 

Gender 0-24 25-44 45-64 >65 Total 

Female 3 955 6 051 4 635 4 343 18 983 

Male 3 479 7 825 6 667 2 798 20 769 

Total 7 433 13 876 11 303 7 141 45 125 
 

Fig. 6 presents the results for the VP2 indicator with the 

VPC based on visible area (the map considering AiRMOUR’s 

VPC is virtually identical). The VP2 indicator shows the 

number of people affected based on a defined threshold. For 

the visible area VPC, the threshold is π/100, while for 

AiRMOUR it is 0.9, with both thresholds selected to yield 

similar affected areas. 

Despite the very low exposure thresholds chosen for visual 

pollution concentration, the number of affected people 

decreases significantly compared to the VP1 results, with a 

total of 750 people affected according to AiRMOUR’s metric 

and 659 people affected using the visible area metric. 

TABLE IV. shows the differences in the affected 

population depending on the selected threshold for each of the 

VPC metrics. The threshold for the VPC based on the visible 

area is more restrictive in this case, excluding 91 people from 

the metric. It is important to note that these thresholds are 

configurable, allowing for adjustment of the restriction level. 

 

TABLE IV.  VP2 SEGMENTATION CRUISE FLIGHT 

 Age groups 

Metric / 

gender 
0-24 25-44 45-64 >65 Total 

AiRMOUR 0 91 511 147 750 

  Female 0 91 256 0 347 

  Male 0 0 255 147 402 

Visible 

area 
0 0 511 147 659 

  Female 0 0 256 0 256 

  Male 0 0 255 147 402 
 

Unlike the previous indicators, VP4 not only indicates the 

number of people affected, but also provides a comprehensive 

measure of exposure, accounting for both the severity of visual 

pollution concentration and the duration of exposure for the 

affected population. Fig. 7 shows that higher VP4 values are 

concentrated along the trajectory, where visual pollution levels 

are higher. Additionally, high values are observed in areas with 

larger populations or where people are exposed for longer 

periods. 

 
Figure 6. VP2, number of people affected by the flight for a 

VPC threshold π/100. 

 
Figure 7. VP4, visual pollution exposure perceived by the people 

exposed to the flight, [person.vp.h]. 

 

 
Figure 5. VP1, number of people affected by the flight. 
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TABLE V. shows again the segmentation of the results by 

age group and gender, considering the two VPC metrics. 

TABLE V.  VP4 SEGMENTATION CRUISE FLIGHT 

 Age groups 

Metric / 

gender 
0-24 25-44 45-64 >65 Total 

AiRMOUR 893 583 1 793 079 1 470 031 898 263 5 740 002 

  Female 495 469 749 823 616 352 557 364 2 419 009 

  Male 398 114 1 043 256 853 679 340 899 2 635 948 

Visible 

area 
4 322 8 989 7 725 4 435 28 568 

  Female 2 463 3 459 3 123 2 813 11 858 

  Male 1 859 5 530 4 601 1 622 13 612 

 

B. Take-off flight 

1) Noise 

Fig. 8 shows the equivalent noise level map in dBA over 15 

min, produced by a single take-off flight. This calculation, 

again, serves for illustration purposes only. Single missions 

should be preferably evaluated through the SEL noise metric 

included in NO3 [18]. The time duration of integration for the 

NO1 metric can and will be adjusted in future iterations. 

Fig. 9 shows the number of people affected by a noise level 

greater than 1 dBA, based on the previous data. It is evident 

that the affected population is concentrated near the flight path, 

with no impact beyond 200 meters. 

Based on the noise and population presence data, it is 

estimated that a total of 9,430 people are affected by the noise 

from this flight. Again, the reader should note that the dB 

threshold used is extremely low, for the same reasons 

previously explained. Additionally, in the future this 

calculation will be refined to account for background noise, 

primarily from road traffic. The Madrid City Council provides 

strategic noise maps, which will be used to assess whether the 

noise will be significant at different times of the day (morning, 

afternoon, and night). 

2) Visual pollution 

Fig. 10 presents the results for the VP1 indicator, which 

represents the number of people exposed to a single drone 

operation during take-off.   It can be observed that the affected 

population is concentrated around the flight path as well as in a 

southern area with higher population density. According to 

these results, a total number of 17,031 people are able to see 

the flight. 

Fig. 11 illustrates again the VPC values for both metrics 

considered. In this case, where the flight is taking off, the 

AiRMOUR metric reaches a value of 3, which is 1.5 times 

higher than in the previous case of cruising flight, while the 

visible area metric reaches 0.183, six times higher than in the 

cruise case. Due to the difference in altitude, the visible area 

metric is significantly affected by the drone's proximity to the 

observer. Although not tested in this study, based on VPC 

equations (1) and (2), the visible area metric would also 

increase for larger drones, such as air taxis, which occupy a 

larger visible area for the observer. This effect is not 

considered by the AiRMOUR metric, which accounts for the 

number of visible drones, regardless of their size. 

 
Figure 9. NO1, Area based people exposure to noise (L_Aeq). 

 
Figure 8. Equivalent noise level map (dBA) produced by take-off flight. 

 

  
Figure 11. Visual pollution maps at an instant of the flight at 65m from 

the ground shortly after take-off: a) AiRMOUR metric, b) visible area 

metric. 

 
Figure 10. VP1, number of people affected by the flight. 
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Finally, Fig. 12 shows the VP4 indicator, which measures 

the total visual pollution exposure. As expected from the VPC 

maps, the highest values are concentrated around the take-off 

site. 

C. Traffic 

This case combines the cumulative effects of multiple 

flights, weighted throughout the day according to their 

respective time periods: day, evening, or night. Fig. 13 displays 

the maps of the equivalent noise levels (in dBA). 

 

The map in Fig. 13 is used to calculate the number of 

people exposed to drones without applying a noise level 

threshold for detecting affected individuals, in order to provide 

the most conservative results possible. 

The effects are combined with those previously presented: 

the areas with the highest concentration of affected people are 

in the city's congested areas, such as Gran Vía and its 

surroundings, which can be found at the top of Fig. 14, as well 

as around the take-off site, located at the bottom of the image. 

The number of affected people can be segmented by age 

and gender, similar to previous analyses. TABLE VI.  

summarises the results obtained. 

TABLE VI.  NO2 SEGMENTATION TRAFFIC CASE 

 Age groups 

Gender 0-24 25-44 45-64 >65 Total 

Female 6 515 8 363 8 994 9 412 33 284 

Male 7 342 14 047 10 974 3 859 36 222 

Total 13 858 22 409 19 968 13 271 69 506 

 

V. CONCLUSIONS 

The results presented in this paper show the utility of the 

proposed methodology for the purpose of understanding the 

interaction between UAM operations, environmental impacts, 

and citizens' use of public spaces. The main contribution of the 

proposed approach is to characterise population exposure to 

drones' impact in a dynamic and highly disaggregated manner. 

The population mapping tools provide differentiation per 

gender and age groups, information which is very difficult or 

impossible to achieve with other methods. In addition to gender 

and age, future work could also include other relevant factors 

such as occupational status, income level, land use, level of 

urbanisation, or purpose of flying, all of them closely related to 

public acceptance of drones. 

These preliminary results illustrate the potential of the 

proposed methodology to make more informed decisions when 

developing U-space regulations aimed at improving citizens’ 

quality of life. The methodology described in this paper is 

expected to be the basis for a future U-space service aimed at 

optimising the social and environmental performance of UAM 

operations. Upcoming work will aim to achieve a functional 

toolset that enables the analysis of the complete set of case 

studies envisioned by the MUSE project.  

 
Figure 12. VP4, visual pollution exposure perceived by the people 

exposed to the flight, [person.vp.h]. 

 
Figure 13. LDEN, Day-evening-night noise level map (24 hours). 

 
Figure 14. NO2, Area based people exposure to Day-evening-night 

noise level (LDEN). 
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