SESAR Solution 02-01 SPR/INTEROP-OSED for V3 Part V - Performance Assessment Report

Deliverable ID:	D1.1.01
Dissemination Level:	PU
Project Acronym:	PJ02 EARTH
Grant:	731781
Call:	H2020-SESAR-2015-2
Topic:	INCREASED RUNWAY AND AIRPORT THROUGHPUT
Consortium coordinator:	EUROCONTROL
Edition date:	31st January 2020
Edition:	00.02.01

Authoring & Approval

Authors of the document				
Name/Beneficiary	Position/Title	Date		
Robert SAWYER/Think (on behalf of NATS)	PJ.02-01 Member/Validation Expert	20 th May 2019		
Aurora SIMONETTI/NATS	PJ.02-01 Solution leader	3 rd June 2019		
Valerio CAPPELLAZZO/EUROCONTROL	PJ.02-01 Member	20 th September 2019		
Mihai OGICA/EUROCONTROL	PJ.02-01 Member	20 th September 2019		
Frank HOLZAEPFEL/AT-ONE(DLR)	PJ.02-01 Member	2 nd October 2019		
Charles MORRIS/NATS	PJ.02-01 Member/Task leader	23 rd October 2019		
Sebastian KAUERTZ/AIRBUS	PJ.02-01 Member	28 th October 2019		
Jonathan TWIGGER/Think (on behalf of NATS)	PJ.02-01 Solution lead	31 st January 2020		

Reviewers internal to the project

Name/Beneficiary	Position/Title	Date
Charles MORRIS/NATS	PJ.02-01 Member/Task leader	18 th October 2019
Mihai OGICA/EUROCONTROL	PJ.02-01 Member	23 rd October 2019
Andrew BELSHAW/NATS	PJ.02-01 Member	24 th October 2019
Valerio CAPPELLAZZO/EUROCONTROL	PJ.02-01 Member	24 th October 2019
Wilfred ROUWHORST/AT- ONE(NLR0	PJ.02-01 Member	25 th October 2019
Grigory ROTSHTEYN/AT-ONE(DLR)	PJ.02-01 Member	30 th October 2019
Lucia SUHANYIOVA/ NATS	PJ.02-01 Member	1 st November 2019

Approved for submission to the SJU By - Representatives of beneficiaries involved in the project

Name/Beneficiary	Position/Title	Date
Jonathan TWIGGER/Think (on behalf of NATS)	PJ.02-01 Solution leader	11/11/19
Frederique AYACHE/EUROCONTROL	PJ.02-01 Deputy Project Manager	15/11/19
Claire PUGH/NATS	PJ.02-01 Member/Task leader	14/11/19
Valerio CAPPELLAZZO/EUROCONTROL	PJ.02-01 Member	13/11/19

Sebastian KAUERTZ/AIRBUS	PJ.02-01 Member	14/11/19
Frank HOLZAEPFEL/AT-ONE(DLR)	PJ.02-01 Member	12/11/19
Cedric RAHATOKA/THALES	PJ.02-01 Member	14/11/19
Pablo FUENTES DE FRUTOS/INDRA	PJ.02-01 Member	15/11/19
Alan GROSKREUTZ/CRIDA	PJ.02-01 Member	
Sebastian KAUCZOK/LEONARDO GmbH	PJ.02-01 Member	14/11/19
Francois NEGRE/DSNA	PJ.02-01 Member	13/11/19
Tim ROBINSON/SEAC(HAL)	PJ.02-01 Member	14/11/19
Wilfred ROUWHORST/AT- ONE(NLR)	PJ.02-01 Member	14/11/19
Christian KERN/AUSTROCONTROL	PJ.02-01 Member	15/11/19
Peter ERIKSEN/NAVIAIR	PJ.02-01 Member	

Each of the representatives listed above were approached for written approval of this document, however some were not received in time for submission.

Rejected By - Representatives of beneficiaries involved in the project

Name/Beneficiary	Position/Title	Date

Document History

	-			
Edition	Date	Status	Author	Justification
00.00.01	29/10/2018	DRAFT	Aurora Simonetti Charles Morris	Initial draft of the document
00.00.02	20/05/2019	DRAFT	Robert Sawyer	Update with Departure Concepts Results
00.00.03	28/05/2019	DRAFT	Robert Sawyer	Update with initial internal review
00.00.04	03/06/2019	DRAFT	Aurora Simonetti	Template aligned to template version 02.00.03
00.01.00	31/07/2019	INTERIM	Jonathan Twigger	Integration of ECTL, ENAIRE and HP Content
00.01.01	01/10/2019	DRAFT	Jonathan Twigger Valerio Cappellazzo Mihai Ogica	Updates to Safety KPA content Updates to Arrivals content Updated validation targets

				General improvements based on PCIT review
00.01.02	23/10/2019	DRAFT	Jonathan Twigger Charles Morris Frank Holzaepfel	General improvements based on NATS review DLR Contribution
00.02.00	15/11/2019	FINAL	Jonathan Twigger Sebastian Kauertz	AIRBUS Contribution Final updates based on formal review comments
00.02.01	31/01/2020	FINAL	Jonathan Twigger	Updates based on SJU quality checking

Copyright Statement © – 2020– EUROCONTROL, THALES AIR SYSTEMS SAS, NATS, ENAIRE, INDRA, LEONARDO GmbH, AIRBUS, AT-ONE, DSNA, SEAC2020. All rights reserved. Licensed to the SJU under conditions

PJO2 EARTH

INCREASED RUNWAY AND AIRPORT THROUGHPUT

This SESAR Solution 02-01 SPR-INTEROP/OSED Part V Performance Assessment Report (PAR) is part of a project that has received funding from the SESAR Joint Undertaking under grant agreement No 731781 under European Union's Horizon 2020 research and innovation programme.

Abstract

This document contains the Performance Assessment Report for the SESAR 2020 Wave 1 SESAR Solution 02-01 (Wake Turbulence Separation Optimisation) which consists of the extrapolation to ECAC wide level of the performance assessment results conducted according at V3 level of maturity for the concepts in PJ.02-01 scope and the process applied to obtain the results. Report covers the concepts that contribute to Wake Turbulence Separation Optimisation:

- Arrivals Concepts Solutions;
- Departures Concepts Solutions;
- Wake Risk Monitoring Concept Solution;
- Wake Decay Enhancing Concept Solution.

Table of Contents

	Abstra	ct	5
1	Exec	cutive Summary	. 9
2	Intro	oduction	20
	2.1	Purpose of the document	20
	2.2	Intended readership	20
	2.3	Inputs from other projects	21
	2.4	Glossary of terms	21
	2.5	Acronyms and Terminology	21
3	Solu	tion Scope	26
	3.1	Detailed Description of the Solution	26
	3.2	Detailed Description of relationship with other Solutions	29
4	Solu	tion Performance Assessment	31
	4.1	Assessment Sources and Summary of Validation Exercise Performance Results	31
	4.2	Conditions / Assumptions for Applicability	36
	4.3 4.3.1 4.3.2 4.3.3 4.3.4 4.3.5 4.3.6 4.3.6 4.4 4.4.1	Environment / Fuel Efficiency Airport Capacity (Runway Throughput Flights/Hour) Resilience (% Loss of Airport & Airspace Capacity Avoided) Predictability (Flight Duration Variability, against RBT) Human Performance Departures Concepts Solutions	. 38 . 57 . 69 . 76 . 84 . 87 90
	4.4.1	Environment / Fuel Efficiency	0
	4.4.3 4.4.4		
	4.4.5		
	4.4.6		
	4.5 4.5.1	Wake Risk Monitoring Concept Solution	
	4.6	Wake Decay Enhancing Concept Solution	28
	4.6.1	Safety	. 28
	4.6.2		
	4.6.3		
	4.6.4 4.6.5		
	4.7	Gap Analysis	
5	Refe	erences	

5.1	Reference Documents 3	9
Appendix	A Detailed Description and Issues of the OI Steps	! 1

List of Tables

Table 1: KPI Assessment Results Summary 14	ļ
Table 2 Mandatory PIs Assessment Summary 19)
Table 3: Acronyms and terminology 25	5
Table 4: Relationships with other Solutions)
Table 5: SESAR2020 Validation Exercises 32)
Table 6: Summary of Validation Results	5
Table 7: Applicable Operating Environments	7
Table 8: Deployment details	7
Table 9: Influence of Equipage on benefits	7
Table 10: mean fuel burn for arrival per RECAT-EU category and for traffic samples 1/3 and 2/4. (* Values for Cat-A and Cat-C are obtained from Cat-B values weighted by the difference in averaged MLW of the category	ł
Table 11: traffic mix based on RECAT-EU categories using the percentage of aircraft types reported in [23].	
Table 12: Summary of the fuel burn savings if operating the test scheme versus RECAT-EU TBS with FTD only (reference scenario) at maximum test case traffic pressure for the various separation schemes and modes and in various wind conditions	۱
Table 13: Summary of the maximum throughput evolution for the different OIs, for different traffic samples and in different wind conditions 72	
Table 14: Predictability benefit per flight phase, standard deviation improvement	7
Table 15 - Safety Criteria for the Departures Concepts 91	L
Table 16: Fuel burn reduction per flight phase	7
Table 17: Summary of differences between the cases for WDS-D in the context of PWS-D 12)
Table 18: Summary breakdown of potential gains by solution (gains measured in minutes and seconds per day) from additional capacity analysis	
Table 19: Predictability benefit per flight phase, standard deviation improvement)
Table 20: Gap Analysis Summary	5
Table 21: OI Steps allocated to the Solution 41	L

List of Figures

Figure 1: Possible relationships between two solutions from a deployment perspective	29
Figure 2: Fuel burn rates for various aircraft types in flight phases (Source: [23])	59
Figure 3: Averaged fuel burn rate in flight (Source: [23])	60
Figure 4: Averaged flying time for IFR flights (Source: [23])	61

1 Executive Summary

This document provides the Performance Assessment Report (PAR) for SESAR 2020 Wave 1 Solution 02-01 (Wake Turbulence Separation Optimisation).

The PAR is consolidating Solution performance validation results addressing KPIs/PIs and metrics from the SESAR2020 Performance Framework [3].

This Performance Assessment Report provides the results for the four concepts areas of the SESAR Solution 02-01.

Arrivals Concepts Solutions

- AO-0328: Optimised Runway Delivery on Final Approach (ORD);
- AO-0306: Wake Turbulence Separations (for arrivals) based on Static Aircraft Characteristics (PWS-A);
- AO-0310: Weather-dependent reductions of Wake Turbulence Separations for final approach (WDS-A).

Departures Concepts Solutions

- AO-0329: Optimised Separation Delivery for Departure (OSD);
- AO-0323: Wake Turbulence Separations (for departures) based on Static Aircraft Characteristics (PWS-D);
- AO-0304: Weather-dependent reductions of Wake Turbulence Separations for Departure (WDS-D).

Wake Risk Monitoring Concept Solution

• AO-0327 - Reduction of Wake Turbulence Risk through Wake Risk Monitoring.

Wake Decay Enhancing Concept Solution

• AO-0325 - Reduction of Wake Turbulence Risk considering Acceleration of Wake Vortex Decay in Ground Proximity.

Definition of Solution Scenarios:

Throughout the document, the arrivals and departures tools solutions will be referred to in simplified forms for convenience to the reader. These are:

- **ORD** (AO-0328);
- PWS-A PWS-A (A0-0306) and TBA (A0-0303) with ORD (AO-0328) tool support;
- WDS-A WDS-A (A0-0310) in the context of PWS-A (A0-0306) and TBA (A0-0303) with ORD (A0-0328) tool support;
- **OSD** (A0-0329);
- **PWS-D** TB PWS-D (A0-0323) with OSD (AO-0329) tool support;
- WDS-D WDS-D (A0-0304) in the context of TB PWS-D (A0-0323) with OSD (A0-0329) tool support.

Assessment Results Summary:

The following tables summarise the assessment outcomes per KPI (Table 1) and mandatory PI (Table 2) against Validation Targets in case of KPI from PJ.19 [18]. The impact of a Solution on the performances is described in the Benefit and Impact Mechanisms. All the KPIs and mandatory PIs from the Benefit Mechanisms expected to be impacted by the solution have been assessed via validation activities (RTS, FTS, expert judgment etc.).

There are three cases:

- 1. An assessment result of 0 with confidence level High, Medium or Low indicates that the Solution is expected to impact in a marginal way the KPI or mandatory PI;
- 2. An assessment result (positive or negative) different than 0 with confidence level High, Medium or Low indicates that the Solution is expected to impact the KPI or mandatory PI;
- 3. An assessment result of N/A (Not Applicable) with confidence level N/A indicates that the Solution is not expected to impact at all the KPI or mandatory PI consistently with the Benefit Mechanism.

KPI	Validation Targets – Network Level (ECAC Wide)	Performance Benefits Expectations at Network Level (ECAC Wide or Local depending on the KPI) ¹	Confidence in Results ²
FEFF1: Fuel Efficiency – Fuel burn per flight	26.7 kg	Arrivals Concepts SolutionsFlights Impacted = 9850000 (flights/year) x59.5% (high density airports contributions) x50% (arrivals contribution) = 2931038 flightsORD (AO-0328) tool support for RECAT-EU TBS= 7.2-21.7 kg reduction in fuel consumption perflight at ECAC level, compared to TBS (AO-0303)FTD Indicator only tool support for RECAT-EUTBS, with a Vienna airport traffic mix.PWS-A (AO-0306) & TBS (AO-0303) with ORD(AO-0328) tool support for PWS-A TBS = $3-16$ kg reduction in fuel consumption per flight atECAC level, compared to TBS (AO-0303) FTDIndicator only tool support for RECAT-EU TBS, with a Vienna airport traffic mix.WDS-A (AO-0310) & TBS (AO-0303) in the context of RECAT-EU TBS with ORD (AO-0328)tool support = $27.4-40.46$ kg reduction in fuel consumption per flight at ECAC level, compared to TBS (AO-0303) FTD Indicator only tool support for RECAT-EU TBS, with a Vienna airport traffic mix. Departures Concepts Solutions Flights Impacted = 9850000 (flights/year) x 59.5% (high density airports contributions) x 50% (departures contribution) = 2931038	Low ⁴

¹ Negative impacts are indicated in red.

² High – the results might change by +/-10%
Medium – the results might change by +/-25%
Low – the results might change by +/-50% or greater
N/A – not applicable, i.e., the KPI cannot be influenced by the Solution

⁴ Confidence in the results was impacted by anomalies in the measures across comparative exercise runs.

Founding Members

		flightsOSD (AO-0329) tool support for RECAT-EU TBS= 1.79 kg reduction in fuel consumption perflight at ECAC level, compared to RECAT-EU TBSwithout OSD tool support, with a Heathrowtraffic mix.PWS-D (AO-0323):- 10.53kg reduction in fuel consumption perflight at ECAC level, compared to ICAOwithout OSD tool support, with a Barcelonatraffic mix;- 2.28kg reduction in fuel consumption perflight at ECAC level, compared to RECAT-EUwithout OSD tool support, with a Barcelonatraffic mix;- 2.28kg reduction in fuel consumption perflight at ECAC level, compared to RECAT-EUwithout OSD tool support, with a Heathrowtraffic mix.WDS-D (AO-0304) in the context of PWS-D (AO-0323) = 2.23 kg reduction ³ in fuel consumptionper flight at ECAC level, compared to RECAT-EUwithout OSD tool support, with a Heathrowtraffic mix.	
CAP3: Airport Capacity – Peak Runway Throughput (Mixed mode).	2.6%	Arrivals Concepts SolutionsORD (AO-0328) – 7.9% increase in movements/hour, compared to TBS (AO-0303)FTD Indicator only tool support for RECAT-EU TBS, with a Vienna airport traffic mix.PWS-A (AO-0306) – 0.01% increase in movements/hour, compared to TBS (AO-0303)FTD Indicator only tool support for RECAT-EU TBS, with a Vienna airport traffic mix.WDS-A (AO-0310) in the context of RECAT-EU TBS, with a Vienna airport traffic mix.WDS-A (AO-0310) in the context of RECAT-EU TBS with ORD (AO-0328) tool support – 0.01% increase in movements/hour, compared to TBS (AO-0303) FTD Indicator only tool support for RECAT-EU TBS, with a Vienna airport traffic mix.	Low ⁴

³ This is an anomalous result as changes to the take-off order due to trying to induce WDS-D pairs resulted in a less efficient departure order and lost nearly all of the benefit gains of PWS-D. In theory, WDS-D in the context of PWS-D should be a delta increase to the benefits of PWS-D alone.

		 Departures Concepts Solutions OSD (AO-0329) – 1.0% increase in departure movements/hour, compared to RECAT-EU without OSD tools support, with a Heathrow traffic mix. PWS-D (AO-0323): 8.65% increase in departure movements/hour, compared to ICAO without OSD tool support, with a Barcelona traffic mix; 2.41% increase in departure movements/hour, compared to RECAT-EU without OSD tool support, with a Heathrow traffic mix. WDS-D (AO-0304) in the context of PWS-D (AO-0323) – 0.1% increase in departure movements/hour³, compared to RECAT-EU without OSD tool support, with a Heathrow traffic mix. 	
PRD1: Predictability – Variance of Difference in actual & Flight Plan or RBT durations	0.27% 5	Arrivals Concepts SolutionsNumber of flights impacts = 2931038 flightsORD (AO-0328) = $1.045 \text{ min}^2 (2.13\%)$ reduction in flight variance, compared to TBS(AO-0303) FTD Indicator only tool support forRECAT-EU TBS, with a Vienna airport traffic mix.PWS-A (AO-0306) = $1.579 \text{ min}^2 (3.22\%)$ reduction in flight variance, compared to TBS(AO-0303) FTD Indicator only tool support forRECAT-EU TBS, with a Vienna airport traffic mix.PWS-A (AO-0306) = $1.579 \text{ min}^2 (3.22\%)$ reduction in flight variance, compared to TBS(AO-0303) FTD Indicator only tool support forRECAT-EU TBS, with a Vienna airport traffic mix.WDS-A (AO-0310) = $1.412 \text{ min}^2 (2.88\%)$ reduction in flight varianceDepartures Concepts SolutionsNumber of flights impacts = 2931038 flightsOSD (AO-0329) = $1.22 \text{mins}^2 (2.5\%)$ reduction	Low ⁴

⁵ In Validation Targets [18] the unit for PRD1 is % Reduction in variance of block-to-block flight time.

in flight duration variability, compared to RECAT-EU without OSD tool support, with a Heathrow traffic mix.	
PWS-D (AO-0323):	
 <u>3.71mins^2 (7.57%) reduction</u> in flight duration variability, compared to ICAO without OSD tool support, with a Barcelona traffic mix; 	
- <u>0.92 mins^2 (1.87%) reduction</u> in flight duration variability, compared to RECAT-EU without OSD tool support, with a Heathrow traffic mix.	
WDS-D (AO-0304) in the context of PWS-D (AO-0323) = $0.91 \text{ mins}^2 (1.85\%) \text{ reduction}^3$ In flight duration variability, compared to RECAT-EU without OSD tool support, with a Heathrow traffic mix.	

Table 1: KPI Assessment Results Summary

Mandatory PI	Performance Benefits Expectations at Network Level (ECAC Wide or Local depending on the KPI) ⁶	Confidence in Results ⁷
FEFF2: CO2 Emissions.	Arrivals Concepts Solutions ORD (AO-0328) – 22.67-68.48 reduction Kg CO ₂ per flight, compared to TBS (AO-0303) FTD Indicator only tool support for RECAT-EU TBS, with a Vienna airport traffic mix. PWS-A (AO-0306) – 86.59-163.73 reduction Kg CO ₂ per flight, compared to TBS (AO-0303) FTD Indicator only tool support for RECAT-EU TBS, with a Vienna airport traffic mix.	Low ⁴
	WDS-A (AO-0310) in the context of RECAT-EU TBS with	

⁶ Negative impacts are indicated in red.

⁷ High – the results might change by +/-10%

Medium – the results might change by +/-25%

Low – the results might change by +/-50% or greater

N/A – not applicable, i.e., the KPI cannot be influenced by the Solution

	T	· · · · · · · · · · · · · · · · · · ·
	ORD (AO-0328) tool support $-$ 86.59-127.44 reduction Kg CO ₂ per flight, compared to TBS (AO-0303) FTD Indicator only tool support for RECAT-EU TBS, with a Vienna airport traffic mix.	
	Departures Concepts Solutions OSD (AO-0329) = 5.62 kg reduction in CO2 emissions per flight at ECAC level, compared to RECAT-EU without OSD tool support, with a Heathrow traffic mix.	
	 PWS-D (AO-0323): 33.18 kg reduction in CO2 emissions per flight at ECAC level, compared to ICAO without OSD tool support, with a Barcelona traffic mix; 7.17 kg reduction in CO2 emissions per flight at ECAC level, compared to RECAT-EU without OSD tool support, with a Heathrow traffic mix. WDS-D (AO-0304) in the context of PWS-D (AO-0323) 7.03 kg reduction³ in CO2 emissions per flight at ECAC level, compared to RECAT-EU without OSD tool support, with a Heathrow traffic mix. 	
	Arrivals Concepts Solutions ORD (AO-0328) – 0.16-0.45 reduction minutes per flight, compared to TBS (AO-0303) FTD Indicator only tool support for RECAT-EU TBS, with a Vienna airport traffic mix.	
	PWS-A (AO-0306) – 0.62-1.07 reduction minutes/flight, compared to TBS (AO-0303) FTD Indicator only tool support for RECAT-EU TBS, with a Vienna airport traffic mix.	
FEFF3: Reduction in average flight duration.	WDS-A (AO-0310) in the context of RECAT-EU TBS with ORD (AO-0328) tool support – 0.62-0.83 reduction minutes/flight, compared to TBS (AO-0303) FTD Indicator only tool support for RECAT-EU TBS, with a Vienna airport traffic mix.	Low ⁴
	Departures Concepts Solutions OSD (AO-0329) = 0.12 minutes reduction in flight duration (taxi-out time) per flight at ECAC level, compared to RECAT-EU without OSD tool support, with a Heathrow traffic mix.	
	 PWS-D (AO-0323): 0.7 minutes reduction in flight duration (taxi-out time) per flight at ECAC level, compared to ICAO without OSD tool support, with a Barcelona traffic 	

	 mix; 0.3 minutes reduction in flight duration (taxi-out time) per flight at ECAC level, compared to RECAT-EU without OSD tool support, with a Heathrow traffic mix. WDS-D (AO-0304) in the context of PWS-D (AO-0323) = 0.15 minutes reduction³ in flight duration (taxi-out time) per flight at ECAC level, compared to RECAT-EU 	
CAP3.1: Peak Departure throughput per hour (Segregated mode)	 without OSD tool support, with a Heathrow traffic mix. Departures Concepts Solutions OSD (AO-0329) - 0.6 increase in departure movements/hour, compared to RECAT-EU without OSD tool support, with a Heathrow traffic mix. PWS-D (AO-0323): 3.92 increase in departure movements/hour, compared to ICAO without OSD tool support, with a Barcelona traffic mix; 1.2 increase in departure movements/hour, compared to RECAT-EU without OSD tool support, with a Heathrow traffic mix; MDS-D (AO-0304) in the context of PWS-D (AO-0323) 	Low ⁴
	 – 0.05 increase³ in departure movements/hour, compared to RECAT-EU without OSD tool support, with a Heathrow traffic mix. 	
CAP3.2: Peak Arrival throughput per hour (segregated mode)	Arrivals Concepts SolutionsORD (AO-0328) - 0.3-0.9 increase in movements/hour, compared to TBS (AO-0303) FTD Indicator only tool support for RECAT-EU TBS, with a Vienna airport traffic mix.PWS-A (AO-0306) - 1.3-2.4 increase in movements/hour, compared to TBS (AO-0303) FTD Indicator only tool support for RECAT-EU TBS, with a Vienna airport traffic mix.	Low ⁴
	WDS-A (AO-0310) in the context of RECAT-EU TBS with ORD (AO-0328) tool support – 0.9-2.8 increase in movements/hour, compared to TBS (AO-0303) FTD Indicator only tool support for RECAT-EU TBS, with a Vienna airport traffic mix.	
CAP4: Un-accommodated traffic reduction	Arrivals Concepts Solutions ORD (AO-0328) – 109.5-328.5 increase in flights/year, compared to TBS (AO-0303) FTD Indicator only tool support for RECAT-EU TBS, with a Vienna airport traffic	Low ⁴

		r
	mix.	
	PWS-A (AO-0306) – 474-876 increase in flights/year, compared to TBS (AO-0303) FTD Indicator only tool support for RECAT-EU TBS, with a Vienna airport traffic mix.	
	WDS-A (AO-0310) in the context of RECAT-EU TBS with ORD (AO-0328) tool support – 328.5-1022 increase in flights/year, compared to TBS (AO-0303) FTD Indicator only tool support for RECAT-EU TBS, with a Vienna airport traffic mix.	
	Departures Concepts Solutions OSD (AO-0329) - 0.6 reduction in un-accommodated departures/hour, compared to RECAT-EU without OSD tool support, with a Heathrow traffic mix.	
	PWS-D (AO-0323) – 1.1 reduction in un- accommodated departures/hour, compared to RECAT- EU without OSD tool support, with a Heathrow traffic mix.	
	WDS-D (AO-0304) in the context of PWS-D (AO-0323) – 0.05 reduction ³ in un-accommodated departures/hour, compared to RECAT-EU without OSD tool support, with a Heathrow traffic mix.	
	Arrivals Concepts Solutions ORD (AO-0328) – 0 increase in movements/hour, compared to TBS (AO-0303) FTD Indicator only tool support for RECAT-EU TBS, with a Vienna airport traffic mix.	
RES1: Loss of Airport	PWS-A (AO-0306) – 0-3 increase in movements/hour, compared to TBS (AO-0303) FTD Indicator only tool support for RECAT-EU TBS, with a Vienna airport traffic mix.	
Capacity Avoided	WDS-A (AO-0310) in the context of RECAT-EU TBS with ORD (AO-0328) tool support – 0-2 increase in movements/hour, compared to TBS (AO-0303) FTD Indicator only tool support for RECAT-EU TBS, with a Vienna airport traffic mix.	Low ⁴
	Departures Concepts Solutions OSD (AO-0329) – 0.6 departure movements per hour loss of capacity avoided, compared to RECAT-EU without OSD tools support, with a Heathrow traffic mix.	

	 PWS-D (AO-0323) – 1.1 departure movements per hour loss of capacity avoided, compared to RECAT-EU without OSD tools support, with a Heathrow traffic mix. WDS-D (AO-0304) in the context of PWS-D (AO-0323) – 0.05 departure movements³ per hour loss of capacity avoided, compared to RECAT-EU without OSD tools support, with a Heathrow traffic mix. 	
RES1.1: Airport time to recover from non-nominal to nominal condition	Arrivals Concepts Solutions ORD (AO-0328) – 0.6-0.9 minutes gain, compared to TBS (AO-0303) FTD Indicator only tool support for RECAT-EU TBS, with a Vienna airport traffic mix. PWS-A (AO-0306) – 0.6-7.15 minutes gain, compared to TBS (AO-0303) FTD Indicator only tool support for RECAT-EU TBS, with a Vienna airport traffic mix. WDS-A (AO-0310) in the context of RECAT-EU TBS with ORD (AO-0328) tool support – 0.68-4.8 minutes gain, compared to TBS (AO-0303) FTD Indicator only tool support for RECAT-EU TBS, with a Vienna airport traffic mix.	Low ⁴
RES2: Loss of Airspace Capacity Avoided.	 Arrivals Concepts Solutions ORD (AO-0328) – 0 increase in movements/hour, compared to TBS (AO-0303) FTD Indicator only tool support for RECAT-EU TBS, with a Vienna airport traffic mix. PWS-A (AO-0306) – 0-3 increase in movements/hour, compared to TBS (AO-0303) FTD Indicator only tool support for RECAT-EU TBS, with a Vienna airport traffic mix. WDS-A (AO-0310) in the context of RECAT-EU TBS with ORD (AO-0328) tool support – 0-2 increase in movements/hour, compared to TBS (AO-0303) FTD Indicator only tool support for RECAT-EU TBS, with a Vienna airport traffic mix. 	Low ⁴
RES4: Minutes of delays.	Arrivals Concepts Solutions ORD (AO-0328) – 0.8-1 minutes gain, compared to TBS (AO-0303) FTD Indicator only tool support for RECAT- EU TBS, with a Vienna airport traffic mix. PWS-A (AO-0306) – 2.48-7.83 minutes gain, compared to TBS (AO-0303) FTD Indicator only tool support for RECAT-EU TBS, with a Vienna airport traffic mix.	Low ⁴

	WDS-A (AO-0310) in the context of RECAT-EU TBS with ORD (AO-0328) tool support – 1-5.4 minutes gain, compared to TBS (AO-0303) FTD Indicator only tool support for RECAT-EU TBS, with a Vienna airport traffic mix.	
RE5: Number of	Arrivals Concepts Solutions ORD (AO-0328) – 0, compared to TBS (AO-0303) FTD Indicator only tool support for RECAT-EU TBS, with a Vienna airport traffic mix. PWS-A (AO-0306) – 0, compared to TBS (AO-0303) FTD	
RE5: Number of cancellations.	Indicator only tool support for RECAT-EU TBS, with a Vienna airport traffic mix.	Low ⁴
	WDS-A (AO-0310) in the context of RECAT-EU TBS with ORD (AO-0328) tool support – 0, compared to TBS (AO-0303) FTD Indicator only tool support for RECAT-EU TBS, with a Vienna airport traffic mix.	
HP1: Consistency of human role with respect to human capabilities and limitations	See sections 4.3.6, 4.4.6, and 4.5.1.	N/A
HP2: Suitability of technical system in supporting the tasks of human actors	See sections 4.3.6, 4.4.6, and 4.5.1.	N/A
HP3: Adequacy of team structure and team communication in supporting the human actors	See sections 4.3.6, 4.4.6, and 4.5.1.	N/A
HP4: Feasibility with regard to HP-related transition factors	See sections 4.3.6, 4.4.6, and 4.5.1.	N/A

Table 2 Mandatory PIs Assessment Summary

2 Introduction

2.1 Purpose of the document

The Performance Assessment⁸ covers the Key Performance Areas (KPAs) defined in the SESAR2020 Performance Framework [3]. The Key Performance Indicators (KPIs) and the mandatory Performance Indicators (PIs) are assessed, but also additional PIs as needed to capture the performance impacts of the Solution. It considers the guidance document on KPIs/PIs [3] for practical considerations, on metrics for example.

The purpose of this document is to present the performance assessment results from the validation exercises at SESAR Solution level. The KPA performance results are used for the performance assessment at strategy level and provide inputs to the SESAR Joint Undertaking (SJU) for decisions on the SESAR2020 Programme.

In addition to the results, this document presents the assumptions and mechanisms (how the validation exercises results have been consolidated) used to achieve this performance assessment result.

One Performance Assessment Report shall be produced or iterated per Solution.

2.2 Intended readership

In general, this document provides the ATM stakeholders (e.g. airspace users, ANSPs, airports, airspace industry) and SJU performance data for the Solution addressed.

Produced by the Solution project, the main recipient in the SESAR performance management process is PJ.19, which will aggregate all the performance assessment results from the SESAR2020 solution projects PJ.01-PJ.18 and provide the data to PJ.20 for considering the performance data for the European ATM Master Plan. The aggregation will be done at higher levels suitable for use at Master Planning Level, such as deployment scenarios. Additionally, the consolidation process will be carried out annually, based on the SESAR Solution's available inputs.

In addition, other intended readership are the SESAR Solution PJ.02-01 project members, the other solutions in SESAR Project PJ.02 Increased Runway and Airport Throughput, the related solutions in SESAR Project PJ.01 Enhanced Arrivals and Departures, the related solutions in SESAR Project PJ.04 Total Airport Management and the related solutions in SESAR Project PJ.09 Advanced Demand & Capacity Balancing.

⁸ The opinions expressed herein reflect the authors view only. Under no circumstances shall the SESAR Joint Undertaking be responsible for any use that may be made of the information contained herein.

2.3 Inputs from other projects

The document includes information from the following SESAR 1 projects:

- B.05 D72 [5]: SESAR 1 Final Performance Assessment, where are described the principles used in SESAR1 for producing the performance assessment report.

PJ.19 will manage and provide:

- PJ.19.04.01 D4.1 [3]: Performance Framework (2018), guidance on KPIs and Data collection supports.
- PJ.19.04.03 D4.0.1: S2020 Common assumptions, used to aggregate results obtained during validation exercises (and captured into validation reports) into KPIs at the ECAC level, which will in turn be captured in Performance Assessment Reports and used as inputs to the CBAs produced by the Solution projects. Where are also included performance aggregation assumptions, with traffic data items.
- For guidance and support PJ.19 have put in place the Community of Practice (CoP)⁹ within STELLAR, gathering experts and providing best practices.

2.4 Glossary of terms

See the AIRM Glossary [1] for a comprehensive glossary of terms.

2.5 Acronyms and Terminology

Term	Definition
AIM	Accident Incident Model
AIRM	ATM Information Reference Model
ANS	Air Navigation Service
ANSP	Air Navigation Service Provider
APP	Approach
APT	Airport

9

https://stellar.sesarju.eu/?link=true&domainName=saas&redirectUrl=%2Fjsp%2Fproject%2Fproject.j sp%3Fobjld%3Dxrn%3Aview%3Axrn%3Adatabase%3Aondb%2Ftable%2F59_anonymous%402333834 .13%403834139.13

Term	Definition
ARES	Airspace REServation
ATC	Air Traffic Control
ATCO	Air Traffic Control Officer
ATFM	Air Traffic Flow Management
ATM	Air Traffic Management
BAD	Benefits Assessment Date
BAER	Benefit Assessment Equipment Rate
BIM	Benefit Impact Mechanism
САР	Capacity
СВА	Cost Benefit Analysis
CDG	Charles De Gaulle
CFIT	Controlled Flight into Terrain
CREDOS	Crosswind Reduced Separations for Departure Operations
CRT	Criteria
CSPR	Closely Spaced Parallel Runway Operations
CWP	Controller Working Position
DB	Deployment Baseline
DBS	Distance-Based Separation
DOD	Detailed Operational Description
E-ATMS	European Air Traffic Management System
E-OCVM	European Operational Concept Validation Methodology
EARTH	Increased runway and airport throughput
EASA	European Aviation Safety Agency
EATMA	European ATM Architecture
ECAC	European Civil Aviation Conference
ECTL	EUROCONTROL

Term	Definition
FEFF	Fuel Efficiency
FTS	Fast Time Simulation
GBAS	Ground Based Augmentation System
HMI	Human-Machine Interface
IAF	Initial Approach Fix
ICAO	International Civil Aviation Organization
IFR	Instrument Flight Rules
ISRM	Information Services Reference Model
ITD	Integrated Technology Demonstrators
ITM	Intermediate Approach controller
КРА	Key Performance Area
КРІ	Key Performance Indicator
LVP	Low-Visibility Procedures
MAC	Mid-Air Collision
MET	Meteorological services for air navigation
MRS	Minimum Radar Separation
N/A	Not Applicable
OBJ	Objective
ORD	Optimised Runway Delivery
01	Operational Improvement
OSD	Optimised Separation Delivery
OSED	Operational Service and Environment Definition
PAR	Performance Assessment Report
PBN	Performance Based Navigation
PI	Performance Indicator
PRD	Predictability

Term	Definition	
PRU	Performance Review Unit	
PWS	Pair Wise Separation(s)	
QoS	Quality of Service	
RBT	Reference Business / Mission Trajectory	
RECAT	Re-categorisation of Wake Turbulence Separation Minima	
RES	Resilience	
RIMCAS	Runway Incursion Monitoring and Conflict Alert System	
ROT	Runway Occupancy Time	
RSP	Required Surveillance Performance	
RTS	Real-Time Simulation	
RWY	Runway	
SAC	Safety Criteria	
SAF	SAFety	
SAR	Safety Assessment Report	
SESAR	Single European Sky ATM Research Programme	
SESAR2020 Programme	The programme which defines the Research and Development activities and Projects for the SJU.	
SID	Standard Instrument Departure	
SJU	SESAR Joint Undertaking	
SPR	Safety and Performance Requirements	
SRM	Safety Reference Material	
STATFOR	EUROCONTROL Statistics and Forecasts Service	
SWIM	System-Wide Information Management	
TBS	Time-Based Separation	
TEAM	Tactically-Enhanced Arrivals Mode	
ТМА	Tactical Manoeuvring Area	

Term	Definition
TWR	Tower
TWY	TaxiWaY
VALP	Validation Plan
VALR	Validation Report
VALS	Validation Strategy
WDS	Weather-Dependant Separation
WTA	Wake Turbulence-induced Accident
WTC	Wake Turbulence Category

Table 3: Acronyms and terminology

3 Solution Scope

3.1 Detailed Description of the Solution

This Performance Assessment Report provides the results for the four concepts areas of the SESAR Solution 02-01:

Arrivals Concepts Solutions

The arrivals concepts solutions consist of Wake Turbulence Separations for Arrivals based on Static Aircraft Characteristics (PWS-A), Optimised Runway Delivery on Final Approach (ORD) and Weather-Dependent Reductions of Wake Turbulence Separations for Final Approach (WDS-A).

ORD is the ATC support tool to enable consistent and efficient delivery of the required separation or spacing between arrival pairs on final approach to the runway landing threshold through providing Target Distance Indicators (TDIs) to the controllers.

PWS-A is the efficient aircraft type pairwise wake separation rules for final approach consisting of both the 96 x 96 aircraft type based pairwise wake separation minima and the twenty wake category (20-CAT) based wake separation minima for arrival pairs involving other aircraft types.

WDS-A is the conditional reduction or suspension of wake separation minima on final approach, applicable under pre-defined wind conditions, so as to enable runway throughput increase compared to the applicable standard weather independent wake separation minima. This is on the basis that under the pre-defined wind conditions the wake turbulence generated by the lead aircraft is either wind transported out of the path of the follower aircraft on final approach or has decayed sufficiently to be acceptable to be encountered by the follower aircraft.

The wake separation minima on final approach are defined as both distance-based minima and timebased minima, and so may be applied as either distance-based minima or time-based minima.

Revising the wake separation minima aims to increase arrival runway capacity, efficiency, predictability and resilience while maintaining or increasing safety.

Departures Concepts Solutions

The departures concepts solutions consist of Wake Turbulence Separations for Departure based on Static Aircraft Characteristics (PWS-D), Optimised Separation Delivery for Departure (OSD) and Weather-Dependent Reductions of Wake Turbulence Separation for Departure (WDS-D).

OSD is the ATC support tool to enable consistent and efficient delivery of the required separation or spacing between departure pairs on the initial departure path.

PWS-D is the efficient aircraft type pairwise wake separation rules for departure operations currently consist of the time-based seven wake category (7-CAT) based wake separation minima, or the distance-based 96 x 96 aircraft type based pairwise wake separation minima in conjunction with the twenty wake category (20-CAT) based wake separation minima for departure pairs involving other aircraft types.

Planned for SESAR 2020 Wave 2 is an activity to develop the aircraft type pairwise time-based wake separation minima for departures and the refined wake category time-based wake separation minima. This is subject to having sufficient departure aircraft data for carrying out the wake risk analysis for the supporting safety case. In SESAR 2020 Wave 1 draft aircraft type pairwise time-based wake separation minima and refined wake category time-based wake separation minima were established and employed in the validation exercises in order to support assessment of the Human Performance, Safety and Performance validation objectives.

WDS-D is the conditional reduction or suspension of the wake separation minima for departure operations, applicable under pre-defined wind conditions so as to enable a runway throughput increase compared to the applicable standard weather independent wake separation minima. This is on the basis that under the pre-defined wind conditions the wake turbulence generated by the lead aircraft is either crosswind transported out of the path of the follower aircraft on the initial departure path or has decayed sufficiently to be acceptable to be encountered by the follower aircraft on the initial departure path.

The wake separation minima on the initial departure path are defined as both distance-based minima and time-based minima, and so may be applied as either distance-based minima or time-based minima.

OSD, PWS-D and WDS-D will increase departure runway capacity, and improve the efficiency, predictability and resilience of departure operations, while maintaining safety.

Wake Risk Monitoring Concept Solution

This wake risk monitoring concept and solution being developed and validated is an improved detection and monitoring of wake turbulence encounters occurring in day-to-day operation.

The detection and monitoring are an automated and objective means to identify wake turbulence encounters in daily operations in the post execution phase, based on the analysis of recorded operational data available from on-board the aircraft, and additional traffic information from ADS-B Out messages. This analysis can be complemented by additional ground-based direct measurements of wake vortices during the approach or departure phases.

This tool is to provide objective and statistically meaningful information about the frequency of occurrence of wake turbulence encounters, both within the operating method proposed by this SESAR Solution PJ02-01 as well as under pre-SESAR operating methods. It furthermore allows to identify severe wake turbulence encounters (those which are expected to lead e.g. to an associated Reportable Occurrence) as well as non-severe wake encounters which normally cause no disruption of the normal flight. This new capability will facilitate in-service safety monitoring of the wake turbulence encounter risk of the deployed new wake turbulence separation optimisation regulations.

Wake Decay Enhancing Concept Solution

The highest risk of encountering wake vortices prevails during final approach in ground proximity, where the vortices cannot descend below the glide path but tend to rebound because of the interaction with the ground surface. This is aggravated by the fact that the possibilities of the pilot to recover from a vortex encounter are limited by the low flight altitude. In SESAR a method is developed and demonstrated at an international airport that accelerates wake vortex decay in that critical height range. The installation of so-called plate lines beyond the runway tails may improve

safety by reducing the number of wake vortex encounters and increase the efficiency of wake vortex advisory systems.

The individual plates are aligned parallel to the runway direction and are 9 m long and 4.5 m high. A plate line consists of 8 plates with a separation of 20m. The plate line is displaced by at least 300 m from the threshold. While descending the vortices interact with the plates generating disturbances that propagate in and against flight direction. These disturbances reduce the lifetime of the longest lived and potentially most hazardous wake vortices by at least 20%.

A technical design of the plate lines has been elaborated that is compatible with airport requirements (e.g. stability, frangibility) and approval of authorities for the installation of the plate line has been obtained. A measurement campaign has been conducted at Vienna airport employing several LiDARs for wake vortex measurements supplemented by a suite of advanced meteorological sensors to determine the atmospheric conditions and especially the wind conditions which have a major impact on the wake vortex decay and wake displacements which have been measured with high accuracy.

The measurement data has been analysed to quantify the acceleration of the decay of the most critical and long-lived wake vortices close to the ground with respect to local small-scale atmospheric conditions. The measurement data will also be used to estimate the corresponding flight safety benefits and capacity gains to be achieved by different arrival concept solutions in SESAR 2020 Wake 2 VLD3. Finally, comprehensive documentation has been elaborated to form the basis for the preparation of regulations to be endorsed by competent authorities.

The measurement data indicates that the lifetime of the long-lived vortices in a ±50 m safety corridor along the glide path is reduced by 30% for landings comprising medium, heavy, and super weight class aircraft. For this, 239 measurements with plates and 191 measurements without plates have been considered. As a representative for heavy aircraft landings of 29 B763 (46 measurements with plates and 37 measurements without plates) have been assessed separately leading to a 29% vortex lifetime reduction. For 113 A320 aircraft (57 measurements with plates and 56 measurements without plates) the vortex lifetime could be reduced by 32%.

3.2 Detailed Description of relationship with other Solutions

The figure below shows types of relationship that can exist between Solutions:

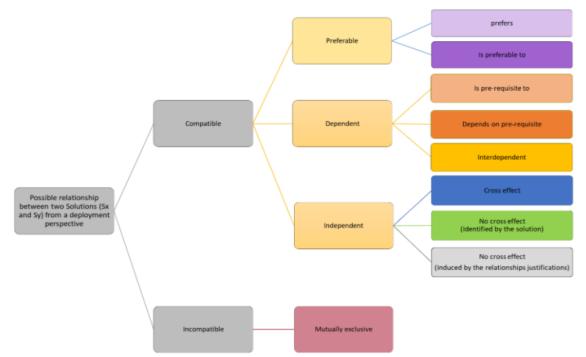


Figure 1: Possible relationships between two solutions from a deployment perspective

Solution Number	Solution Title	Relationship	Rational of the relationship and calculation of the solution's aggregation
PJ.02-08	Traffic optimisation on single and multiple runway airports	Compatible, Independent, cross effect	Solution 8 provides enhanced prediction of Runway Occupancy Time to be integrated in the ATCO support tool to compute the separations to apply for optimizing runway throughput. Solution 8 provides integrated arrival and departure sequence that can support PJ.02-01 concepts. PJ.02-01 can provide wake separation requirements to be considered in the refinement of the (more stable) integrated arrival and departure sequence.
PJ.02-03	Minimum-Pair separations based on RSP	Compatible - independent - cross effect	Solution 3 is focused on the Required Surveillance Performance (RSP) for a 2 NM Minimum Radar Separation (MRS) on final approach. It has provided the expected requirements and specifications for the RSP such as the MRS update rate of 4s to be used in the RTS. The ECTL RTS for PJ.02.01/PJ.02.03 has considered PWS-A at both

			the current 2.5 NM MRS and at a future 2 NM MRS.
PJ.02-02	Enhanced arrival procedures	Compatible - independent - cross effect	Solution 2 look at procedures that could provide noise and capacity benefits. This procedure may need additional separation buffer. Solution 2 will provide requirements, specifications and procedures for GBAS operations that are expected for the validation activities.
			Solution 1 provides requirements for wake separation based on pair. The results of Solution 1 simulations will be an input for Solution 2.
			The decrease/increase of separations can be defined at the granularity of aircraft type, but since the separation reductions are always bigger than the separation increases, cross benefits are expected in terms of APT capacity when the solutions for arrivals are combined.
PJ.01-07	Approach Improvement through Assisted	Compatible - independent - cross effect	PJ.02-01 and PJ.01-07 coordination to provide PJ.01-07 with needed expertise on wake turbulence issues.
	Visual Separation		PJ.02-01 look at the wake turbulence monitoring on airborne cockpit point of view.
			No impact on APT CAP (as airborne only enhancement for wake monitoring). Cross effect as may improve situation awareness of the pilot and therefore may improve SAF and HP.
PJ.18- 04b	MET information	Compatible – preferable - prefers	PJ.18-04b: PJ.02-01 prefers PJ.18-04b as better wind conditions have a positive effect, although this can be difficult to quantify.

Table 4: Relationships with other Solutions

4 Solution Performance Assessment

4.1 Assessment Sources and Summary of Validation Exercise Performance Results

No previous Validation Exercises (pre-SESAR2020, etc.) relevant for this assessment have been identified.

Exercise ID	Exercise Title	Release	Maturity	Status
RTS1	WDS-A with ORD for Arrivals, on single Runway (RWY) in segregated mode, for Paris CDG airport (encompassing transition from/to Distance or Time Based (DBS or TBS) standard separations)	9	V3	Completed
RTS3a	PWS-A with ORD for Arrivals, and PWS-D with OSD for Departures, on single RWY in mixed mode, for Vienna airport	9	V3	Completed
RTS3b	ORD for Arrivals, on single RWY segregated mode operations, for Copenhagen airport	9	V3	Completed
RTS4a	ORD for Arrivals, and PWS-D with OSD for Departures, on a single RWY in mixed mode, for Vienna airport	9	V3	Completed
RTS4b	PWS-A with ORD for Arrivals on CSPR runways, and PWS-D with OSD for Departures, on partially segregated runway, for Paris CDG airport	9	V3	Completed
RTS5	PWS-D and WDS-D with OSD for Departures, on dependent parallel RWYs in segregated mode, with a small number of arrivals landing on the departure runway under tactically enhanced arrival management, and encompassing transition in case of degraded mode, for London Heathrow airport	9	V3	Completed
RTS6	RTS conducted by ENAIRE to evaluate the feasibility of WDS-A for Arrivals, and PWS-D with OSD for Departures on parallel RWYs operating in segregated mode for Barcelona airport	9	V3	Completed

SESAR Validation Exercises of this Solution are listed below:

Exercise ID	Exercise Title	Release	Maturity	Status
FTS9	Fast Time Simulations for CBA of different concepts (ORD, ORD with WDS-A, ORD with PWS-A, ORD with WDS-A and PWS-A for Arrivals, on single Runway (RWY) in segregated mode, for generic airports based on "trombone" approach with 2 STARs as in Vienna Airport)	9	V3	Completed
LT10	A live trail conducted by DLR in Vienna airport to assess the application of a wake decay enhancing device in the Vienna airport environment.	9	V3	Completed

Table 5: SESAR2020 Validation Exercises

The following table provides a summary of information collected from available performance outcomes:

Exercise	OI Step	Exercise scenario & scope	Performance Results
RTS1	AO-0328 (ORD) AO-0310 (WDS-A)	WDS-A with ORD for Arrivals, on single Runway (RWY) in segregated mode, for Paris CDG. Very high complexity TMA and Very Large airport Operational environment.	SAF: Controllers were able to safely and successfully deliver the aircraft under time-based weather dependent separations on the final approach using the ORD tool. All controllers reported in both the post exercise debriefs and post simulation questionnaires that WDS with the ORD tool was operationally acceptable in the dual approach environment. CAP: Using WDS with the ORD tool the average arrival throughput was 41.41 aircraft per hour while RECAT-EU without ORD tool had an average throughput of 36.6 aircraft per hour (equivalent to 13% increase in movements/hour).
RTS3a	AO-0328 (ORD) AO-0306 (PWS-A)	PWS-A with ORD for Arrivals, and PWS-D with OSD for Departures, on single RWY in mixed mode, for Vienna airport	 SAF: TB PWS-A with ORD tool is operationally feasible in mixed mode runway operations and controllers are able to safely and successfully deliver the aircraft under Time Based PWS-A on the final approach using the ORD tool. HP: Controllers provide feedback that TB PWS-A separation scheme with the ORD tool is operationally acceptable in single

Exercise	OI Step	Exercise scenario & scope	Performance Results
			runway mixed mode environment.
			CAP: ORD (AO-0328) – <u>7.9% increase</u> in movements/hour with ORD and mixed mode procedures of single consecutive arrivals and departures PWS-A (AO-0306) – <u>0.01% increase</u> in movements/hour with ORD and mixed mode procedures of single consecutive arrivals and departures.
RTS3b	AO-0328 (ORD)	ORD for Arrivals, on single RWY segregated, for Copenhagen airport	SAF: Safe controller working practice was observed during the simulation runs and no specific increase of the risk of potential for human error was observed. HP: TBS with ORD was found to be operationally feasible in a PBN approach environment in segregated runway operations such as those tested in the RTS. CAP: More a/c were handled per hour with TBS and the ORD tool compared to the reference scenario (ICAO without ORD) only 36.8 to 38.8 aircraft landed per hour during the reference runs, while 38.0 up to 42.0 arrivals landed per hour during the solution runs.
RTS4a	AO-0328 (ORD) AO-0306 (PWS-A) AO-0329 (OSD) AO-0323 (PWS-D)	PWS-A with ORD for Arrivals, and PWS-D with OSD for Departures, on a single RWY in mixed mode, for Vienna airport	 HP: Controllers provide feedback that is operationally feasible to use the ORD tool in the mixed mode single runway operations to support the delivery of gap spacings in the arrival flow to allow for departures. Pair wise separations for departures using the OSD tool in mixed mode runway operations in the low wind conditions tested were reported to be operationally feasible. SAF: Safe working practices were observed during the simulation and the controllers reported that PWS with OSD tool did not increase the risk of human error in any way.
RTS4b	AO-0328	PWS-A with ORD for Arrivals on CSPR runways, and PWS-D with	CAP: increase of 4.7 ac/h on departures with PWS-D and OSD when compared to

Exercise	OI Step	Exercise scenario & scope	Performance Results
	(ORD) AO-0306 (PWS-A) AO-0329	OSD for Departures, on partially segregated runway, for Paris CDG airport	reference scenario (ICAO separation). Increase of 2.5 ac/hour on arrivals with PWS-A and ORD when compared to reference scenario (RECAT-EU separation).
	(OSD) AO-0323 (PWS-D)		HP: the ORD tool with PWS – A concept in CSPR at CDG airport is operationally feasible in approach environment only. OSD with PWS-D in CSPR are considered to be operationally feasible by providing additional functionalities to support the mixed mode runway operations. SAF: approach controllers were observed to apply safe standard practices during TB-PWS-A with ORD in CSPR for Arrivals operations.
RTS5	AO-0329 (OSD) AO-0323 (PWS-D) AO-0304 (WDS-D)	RTS assessed OSD, PWS-D and WDS-D in segregated mode operations in the London Heathrow Very Large Airport Operational Environment.	Runway Capacity results showed a 1.0%, 2.0% and 0.1% ³ increase in runway throughput in the OSD, PWS-D and WDS-D solution scenarios compared to the reference scenario. Mean Taxi-out time reduced by 0.4minutes, 0.7minutes and 0.5minutes ³ in the OSD, PWS-D and WDS-D solution scenarios compared to the reference scenario. Predictability (variability in taxi-out time) reduced by 11.1%, 11.1% and 8.1% ³ in the OSD, PWS-D and WDS-D solution scenarios compared to the reference scenario.
RTS6	AO-0310 (WDS-A) AO-0329 (OSD) AO-0323 (PWS-D)	RTS conducted by ENAIRE to evaluate the feasibility of WDS-A for Arrivals, and PWS-D with OSD for Departures on parallel RWYs operating in segregated mode for Barcelona airport.	<u>Departures</u> Runway Capacity results showed an 8.65% increase in runway throughput compared to ICAO separations and a 2.81% increase compared to RECAT-EU separations. Mean Taxi-out time reduced by 2.36 minutes compared to ICAO separations and 0.32 minutes compared to RECAT-

Exercise	OI Step	Exercise scenario & scope	Performance Results
			EU separations.
			Predictability (variability in taxi-out time) reduced by 39.7% compared to ICAO separations and 5.3% compared to RECAT-EU
FTS9	AO-0328 (ORD) AO-0306 (PWS-A) AO-0310 (WDS-A)	This FTS assessed the performance impact of the different wake separation solutions on arrivals of the different concepts when solutions are deployed in combination (e.g. PWS-A with ORD tool) and/or when solutions are deployed individually. The FTS covered a generic environment derived from Vienna airport	CAP: WDS-A tested in different crosswind conditions. For Strong Crosswind the capacity increase goes from a minimum of 2.31% to a maximum of about 10%. PWS-A tested in different wind conditions. For Strong Headwind the capacity increases from a minimum of 5.3% to a maximum of 5.9% coordinated. RECAT-EU TBS with ORD tested in different headwind conditions, with throughput increase up to 2.1%. All solutions scenarios compared to reference scenario RECAT-EU with FTD only. FEFF: WDS-A up to 3% fuel saving, PWS- A up to 3.7% fuel saving, ORD up to 1.5% fuel saving. All solutions scenarios compared to reference scenario RECAT- EU with FTD only. PRD: reduction in flying time. For WDS the standard deviation when considering the different wind
			considering the different wind conditions is in the range of 0.55-0.57 minutes, for PWS-A is 0.57-0.62 minutes, for ORD only is 0.40 minutes.
LT10	AO-0325 Wake Decay Enhancing Devices	In live trial LT10 two plate lines are installed at runway 16 of Vienna airport to demonstrate the reduction of vortex lifetime during final approach, the flight phase with most wake vortex encounters.	 SAF: The lifetime of the long-lived vortices in a safety corridor extending ±50 m from the flight path is reduced on average by 30% for measured landings comprising medium, heavy, and super weight class aircraft. Reduced wake-vortex lifetime will reduce encounter frequency corresponding to an improved safety performance. CAP: The reduced encounter frequency will reduce the go-around rate, leading

Exercise	OI Step	Exercise scenario & scope	Performance Results
			Reduced vortex lifetime will allow for a revision of existing separation rules (RECAT-EU, RECAT-PWS-EU, dynamic pairwise separations) with smaller wake separations between arrivals in a future project. Reduced wake separation for arrivals will increase the runway throughput. Higher runway throughput allows for increased number of movements, leading to higher capacity.
			FEFF: The reduced encounter frequency will reduce the go-around rate, leading to positive impacts on fuel efficiency. A reduction in delay per flight will result in reduced fuel burn in the TMA. This has a positive impact on Fuel Efficiency. RES: Reduction of separations will avoid
			losses of capacity resulting in higher resilience.

Table 6: Summary of Validation Results.

4.2 Conditions / Assumptions for Applicability

The following Table 7 summarises the applicable operating environments:

OE	Applicable sub-OE	Special characteristics
ТМА	TMA Very High Complexity	Very High complexity ATC operational unit mainly providing Approach Control Services in a part of the airspace under control has a complexity score of equal or more than 10
	TMA High Complexity	High complexity ATC operational unit mainly providing Approach Control Services in a part of the airspace under control has a complexity score of between 6 and 10
	TMA Medium Complexity	Medium complexity ATC operational unit mainly providing Approach Control Services in a part of the airspace under control has a complexity score of between 2 and 6
Network	Network	Contribution of the network to ATM performance
Airport	Very Large Airport	Airports with more than 250k movements per year
	Large Airport	Airports with more or equal than 150k and less or equal than 250k movements per year
	Medium Airport	Airports with more or equal than 40k and less than 150k movements per

year

Table 7: Applicable Operating Environments.

The following Table 8 summarises the essential deployment details:

BAD	Specific geographical and/or stakeholder deployment						
31-08-2026	Very Large Airports, Large Airports, Medium Airports environment operating at capacity constrained levels.						

Table 8: Deployment details.

Equipage details and how equipage influences benefits in the ramp-up phase is given in Table 9:

Min flight	Opt flight	BAER	AUs that need	Start of flight	End of flight
equipage rate	equipage rate		to equip	equipage	equipage
N/A	N/A	N/A	N/A	N/A	N/A

Table 9: Influence of Equipage on benefits.

4.3 Arrivals Concepts Solutions

4.3.1 Safety

4.3.1.1 Safety Criteria and Performance Mechanism

This section firstly defines the set of SAfety Criteria applicable to the operational scenarios for the arrivals concepts solutions and secondly defines the performance mechanisms associated with safety.

4.3.1.1.1 Safety Criteria

SAfety Criteria (SAC) define the acceptable level of safety (i.e. accident and incident risk level) to be achieved by the Solution under assessment, considering its impact on the ATM/ANS functional system and its operation.

The SAC setting is driven by the analysis of the impact of the Change on the relevant AIM models and it needs to be consistent with the SESAR safety performance targets defined by PJ 19.04. The following AIM models have been considered to be relevant for the arrival solutions:

- Wake Turbulence on Final Approach (WT on FAP)
- Mid-Air Collision on Final Approach (MAC on FAP)
- Runway Collision (RWY Col)

The Safety Assessment addresses all the PJ02.01 OI steps for arrivals, namely:

- AO-0306: Wake Turbulence Separations (for arrivals) based on Static Aircraft Characteristics (Static Pairwise Separation for Arrivals (S-PWS-A))
- AO-0310: Weather-dependent reductions of Wake Turbulence separations for final approach (Weather Dependent Separation for Arrivals (WDS-A))
- AO-0328: Optimised Runway Delivery on Final Approach (ORD)

Two sets of safety criteria are formulated:

- 1. A first one aimed at ensuring an appropriate <u>Separation design</u> i.e. definition of WT separation minima which, if correctly applied in operation, guarantee safe operations on final approach segment and initial common approach path respectively;
- 2. A second one aimed at ensuring correct <u>Separation delivery</u> i.e. that the defined WT separation minima are correctly applied by ATC.

SEPARATION DESIGN

The following definition will be employed to designate a **pair of aircraft**:

Two consecutive arrivals on the same runway, or on Closely Spaced Parallel RWYs (CSPR), or an arrival following a departure in mixed mode on the same runway or on CSPR.

A SAC is defined for each Arrival WT separation mode within the scope (PWS-A, WDS-A) driven by the applicable WT Accident AIM model (WT on FAP).

 on risk of WT Encounter on Final Approach related to correct application of the WT scheme under consideration (see in AIM WT on Final Approach model the outcome of precursor Wake Encounter (WE) 6S "Imminent wake encounter under fault-free conditions" not mitigated by barrier B2 "Wake encounter avoidance")

A-TB-WDS-Tw-SAC#1: The probability per approach of wake turbulence encounter of a given severity for a given traffic pair spaced at WDS Total wind minima on Final Approach segment for any applicable total wind conditions shall not increase compared to the same traffic pair spaced at reference distance WTC-based minima in reasonable worst-case conditions*.

* Reasonable worst-case conditions recognized for WT separation design

A-TB-WDS-Xw-SAC#1: The probability per approach of wake turbulence encounter of a given severity for a given traffic pair spaced at WDS Cross wind minima on Final Approach segment for any applicable cross wind conditions shall not increase compared to the same traffic pair spaced at reference distance WTC-based minima in reasonable worst-case conditions*.

RECAT-EU-PWS-SAC#1: For an aircraft type pair at RECAT-EU-PWS minima on Final Approach segment, the pair-wise wake turbulence encounter severity shall not be higher than the severity of reference aircraft type pair (selected as acceptable baseline with proven extensive operations) at ICAO minima and in reasonable worst-case conditions*

The strategy intended for meeting the above SACs will rely upon the analysis of experimental data (traffic, meteo, wake) possibly combined with modelling.

Once the Design has met the SAC above, the following safety issue still remains to be addressed:

Safety issue: The frequency of wake turbulence encounters at lower severity levels might increase due to the reduced separation minima. As the frequency of wake turbulence encounters at each level of severity depends on local traffic mix, local wind conditions and proportion of time of application of the concept, there is a need to find a suitable way for controlling the associated potential for WT-related risk increase.

An additional SAC, to be derived on each WT separation mode, is defined in order to cap the safety risk from the case where the correctly defined WT separation minima are not correctly applied, with potential for severe wake encounter higher than if those minima were correctly applied.

4. on risk of Imminent wake encounter under unmanaged under-separation (see WE 6F in AIM WTA Final Approach model):

A-SAC#F1: The probability per approach of imminent wake encounter under unmanaged under-separation on Final Approach shall be no greater in operations based on WT scheme under consideration than in current operations applying reference minima (e.g. ICAO or an established operational baseline)

The strategy intended for meeting the A-SAC#F1 relies upon qualitatively showing that the use of the tool will involve a significant reduction of the frequency of unmanaged under-separations which will

compensate for the risk increase brought in by the higher probability of imminent wake encounter associated to those unmanaged under-separations.

SEPARATION DELIVERY

A set of SACs, to be derived on each WT separation mode, are defined in order to ensure that the defined WT separation minima are correctly applied for separation delivery, i.e. that the right Functional System in terms of People, Procedures, Equipment (e.g. separation delivery tool) is designed such as to enable safe operation in each separation mode. The correct application of WT separation minima needs to account for the additional separation constraints imposed by the Surveillance separation (during interception and along the final approach path) and the need of preventing RWY collision¹⁰. For achieving that, the safety risk related to under-separation and its precursors needs to be controlled, driven by the AIM WT on Final Approach models and accounting for constraints imposed by the MRS minima and by the AIM RWY collision model.

5. on risk of Unmanaged under-separation (WT) in adequate separation mode during interception and final approach (see WE 7F.1 in AIM WT on Final Approach model):

A-SAC#F2: The probability per approach of Unmanaged under-separation (WT) in adequate separation mode during interception & final approach shall be no greater in operations based on WT scheme under consideration than in current operations applying reference minima (e.g. ICAO or an established operational baseline)

6. on risk of Unmanaged under-separation induced by inadequate selection & management of separation mode i.e. selection of and transition between any adequate modes of operation i.e. A-WDS-Tw, A-WDS-Xw, DBS (see WE 7F.2 in AIM WT accident on Final Approach model):

A-SAC#F3: The probability per approach of unmanaged under-separation (WT) during interception & final approach shall not increase due to inadequate selection of or transition between any adequate modes of operation

7. on risk of Imminent infringement (WT) during interception and final approach (see WE 8 in AIM WT accident on Final Approach model):

A-SAC#F4: The probability per approach of Imminent infringement (WT) during Interception & final approach shall be no greater in operations based on WT scheme under consideration than in current operations applying reference minima (e.g. ICAO or an established operational baseline)

• on risk of Imminent collision during interception and final approach path (see in AIM MAC FAP model MF4):

A-SAC#F6: The probability per approach of Imminent collision during interception and final approach shall be no greater in operations based on WT scheme under consideration than in

¹⁰ In case of aircraft inability to recover from a severe wake encounter a wake accident will occur (encompassing loss of control or uncontrolled flight into terrain; that is not related to the Controlled Flight into Terrain accident and associated AIM model)

current operations applying reference minima (e.g. ICAO or an established operational baseline).

• on risk of Imminent infringement (radar separation) during interception and final approach path (see in AIM MAC FAP model MF5.1 and MF7.1):

A-SAC#F7: The probability per approach of Imminent infringement (radar separation) during interception and final approach shall be no greater in operations based on WT scheme under consideration than in current operations applying reference minima (e.g. ICAO or an established operational baseline).

8. on risk of Crew/Aircraft induced spacing conflicts (spacing conflicts induced by Crew/Aircraft and not related to ATC instructions for speed adjustment) during interception and final approach (see WE 10/11 in AIM WT accident on Final Approach model):

A-SAC#F5: The probability per approach of Crew/Aircraft induced spacing conflicts during interception & final approach shall be no greater in operations based on WT scheme under consideration than in current operations applying reference minima (e.g. ICAO or an established operational baseline)

9. on risk of Imminent Inappropriate Landing (see in AIM RWY collision model the precursor RP2.4 which might be caused by e.g. spacing management by APP ATCO without considering ROT constraint or APP ATCO clearing a/c to land while another a/c has been cleared for line-up (applicable only in mixed mode) and which outcome is mitigated by B2: ATC Collision Avoidance involving e.g. last moment detection by TWR ATCO with or without Runway Incursion Monitoring and Conflict Alert System RIMCAS):

A-SAC#R1: The probability per approach of Runway Conflict resulting from Conflicting ATC clearances shall be no greater in operations based on WT scheme under consideration than in current operations applying reference minima (e.g. ICAO or an established operational baseline)

 on risk of Runway conflict due to premature landing or unauthorised RWY entry of ac/vehicle (see in AIM RWY collision model in the precursor RP2.1 which might be caused by e.g. TWR ATCO failure to correctly monitor the RWY and to initiate Go around and which outcome is mitigated by B2: ATC Runway Collision Avoidance involving last moment detection by TWR ATCO with or without RIMCAS):

A-SAC#R2: The probability per approach of Runway conflict not prevented by ATC involving unauthorised runway entry of AC/vehicle shall be no greater in operations based on WT scheme under consideration than in current operations applying reference minima (e.g. ICAO or an established operational baseline)

4.3.1.1.2 Performance Mechanisms

The Performance Mechanisms in the BIMs that relate to Safety are as follows:

 Wake Turbulence Separations (for arrivals) based on Static Aircraft Characteristics (AO-0306 – PWS-A) including Optimised Runway Delivery (AO-0328 - ORD)

- With the use of the target indicators, the accuracy of the spacing between aircraft is improved compared to what is achieved today (e.g. distance between pair of aircraft closer to separation minima) and will allow controllers to deliver aircraft with greater accuracy than today. Improving spacing accuracy will reduce the number of aircraft that are under-separated which links to <u>Safety</u>.
- Controller reliance on target indicators may impact Task Performance (i.e. Workload, Situational Awareness and User Acceptance). Overall workload will not increase. It is expected that workload will increase for some tasks such as using the new Sequencing tool HMI. However the benefits of tool support (i.e. the target distance indicators) will reduce workload in other areas so no changes are expected to <u>Safety</u>. Reduced Situational Awareness (less aware of aircraft type), if below acceptable levels, could result in a decreased <u>Safety</u>.
- Using PWS-A will not increase the frequency of potential WV encounters for a given wind and a given traffic pair compared to reference traffic pair at current standard operations in reasonable worst case conditions. No increase in potential WVEs, will not impact safety performance – links to <u>Safety</u>.
- WDS (for arrivals) (AO-0310 WDS-A) including Optimised Runway Delivery (AO-0328 ORD)
 - With the use of the target indicators, the accuracy of the spacing between aircraft is improved compared to what is achieved today (e.g. distance between pair of aircraft closer to separation minima) and will allow controllers to deliver aircraft with greater accuracy than today. Improving spacing accuracy will reduce the number of aircraft that are under-separated which links to <u>Safety</u>.
 - Controller reliance on target indicators may impact Task Performance (i.e. Workload, Situational Awareness and User Acceptance). Overall workload will not increase. It is expected that workload will increase for some tasks such as using the new Sequencing tool HMI. However the benefits of tool support (i.e. the target distance indicators) will reduce workload in other areas so no changes are expected to <u>Safety</u>. Reduced Situational Awareness (less aware of aircraft type), if below acceptable levels, could result in a decreased <u>Safety</u>.
 - Using WDS-A will not increase the frequency of potential WV encounters for a given wind and a given traffic pair compared to reference traffic pair at current standard operations in reasonable worst case conditions. No increase in potential WVEs, will not impact safety performance – links to <u>Safety</u>.
- Optimised Runway Delivery (AO-0328 ORD)
 - With the use of the target indicators, the accuracy of the spacing between aircraft is improved compared to what is achieved today (e.g. distance between pair of aircraft closer to separation minima) and will allow controllers to deliver aircraft with greater accuracy than today. Improving spacing accuracy will reduce the number of aircraft that are under-separated which links to <u>Safety</u>.
 - Controller reliance on target indicators may impact Task Performance (i.e. Workload, Situational Awareness and User Acceptance). Overall workload will not increase. It is expected that workload will increase for some tasks such as using the new

Sequencing tool HMI. However the benefits of tool support (i.e. the target distance indicators) will reduce workload in other areas so no changes are expected to <u>Safety</u>. Reduced Situational Awareness (less aware of aircraft type), if below acceptable levels, could result in a decreased <u>Safety</u>.

 Using ORD will not increase the frequency of potential WV encounters for a given wind and a given traffic pair compared to reference traffic pair at current standard operations in reasonable worst case conditions. No increase in potential WVEs, will not impact safety performance – links to <u>Safety</u>.

4.3.1.2 Data collection and Assessment

The information reported here has been extracted from sections 3.10 and 4.6 from the SAR[43]

From the Safety Criteria listed in the previous section and by following the SRM process, Safety Objectives (SO) have been developed within the success approach (ensuring that the design enables safe operations in absence of failure within the solution scope) and the failure approach (via identification of operational hazards). Therefore, the Safety Criteria are implicitly achieved by the design through the demonstration that the design meets the aforementioned SOs. The safety demonstration, documented in the SAR [43] is based on a combination of evidences gathered from the validation exercises and evidences produced within the safety assessment based on safety workshops, reviews and interviews with relevant operational and technical experts.

Moreover, safety validation objectives (which were subsequently traced back to the relevant SACs) were derived for each of the validation exercises in PJ02.01. The validation results are summarized in the table below, whilst indicating the level of safety evidence that has been obtained for each of the applicable validation safety objective.

Exercise ID, Name, Objective	Exercise Validation objective	Success criterion	Safety Criteria coverage	Validation results & Level of safety evidence
RTS01 - Conducted by EUROCONTROL to assess the application of time based Weather Dependent Separations (WDS -AO-0310) with Optimised Runway Delivery (ORD - AO-0328) for arriving aircraft using the Paris CDG airport and approach environment	OBJ-PJ02.01-V3-VALP- SA1: To assess the impact of weather dependent separations on the final approach on operational safety compared to current wake vortex separation scheme	CRT-PJ02.01-V3-VALP-SA1- 001: There is evidence that the level of operational safety is maintained and not negatively impacted under weather dependent separations on the final approach compared to the current operations applying wake vortex separation scheme without ORD tool.	A-SAC#F2, A-SAC#F3, A-SAC#F4, A-SAC#F5, A-SAC#R1, A-SAC#R2, A-SAC#R3	The controllers were seen to apply the safe standard practices when using the WDS with ORD tool in the simulation. Controllers reported that thanks to the reduced workload, stress levels, increased situation awareness compared to RECAT EU without ORD tool, they were able to allocate spare resources to other tasks, such as preventing runway incursions or detecting possible separation infringements. More specifically, controllers reported that when working in the Tower, the ORD/separation delivery tool increases their awareness of potential separation infringements enabling an easier and earlier identification. The above evidence suggests that the potential for human error with safety implication will as a minimum, not increase compared to using RECAT with no ORD tool. Meanwhile a Safety issue subsists:

	r e a l' s t t	he ITM ATCO situation awareness night be altered in the dual arrival environment (CDG North and South arrivals) because by focusing on the TDs, the ITM position does not systematically check the altitude of he a/c corresponding to the other TM, as they would in RECAT EU, with potential for separation loss.
	c c k	The impact of the sudden loss of one or multiple/all indicators (i.e. during degraded mode of operations) has been assessed in debriefings. Conclusion:
		- Multiple indicators: safety risk could be mitigated through an adaptation of the working methods, applying a higher separation than in RECAT EU and accepting a temporary increase in workload (situation judged as similar to manage as switching to LVP procedures in normal operations);
Founding Members	45	 One indicator: applying RECAT-EU to the affected aircraft (making use of the distance vector) or instructing a go-around solves the issue.

	CRT-PJ02.01-V3-VALP-SA1- 002: There is evidence that WDS with ORD tool for arrivals does not increase the number of minor under- separations and decreases the number of large under- separations (i.e. those with potential for severe wake encounters) compared to the current operations wake vortex separation scheme without ORD tool.	C#F3, separated aircraft (less than or equal to 0.5 NM but more than 0.1NM) on
--	---	--

				use of the ORD tool, neither related to transitioning between separation rules on the Base leg nor related to the Dual approach operations (conflicts North vs South). ATC can safely handle the mode switch provided they are notified in advance about the change in wind conditions and the imminent need to transition from one separation scheme to another. An advanced warning of the mode transition is required in order to temporarily limit or regulate the flow of inbound traffic (e.g. through metering) during the switch of separation scheme in order to manage the change and the controller workload.
		CRT-PJ02.01-V3-VALP-SA1-003: The probability of Go around due to inadequate consideration of ROT constraint is not increased	A-SAC#R1	Only two Go-Arounds due to ROT constraint have been recorded in Reference scenario, and none with the Solution scenario – that complies with the success criteria, but is not a statistically representative evidence
RTS2 - Conducted by EUROCONTROL to assess the application of wake turbulence separations based on static aircraft characteristics for arriving aircraft (static PairWise Separations - PWS-A -AO-0310)	OBJ-PJ2.02-V3-VALP- SA2: To assess the impact of static pairwise separations for arrivals with ORD tool on operational safety compared to current	CRT-PJ2.01-V3-VALP-SA2- 001: To assess the impact of time based Static Pair Wise separations for arrivals PWS- A with ORD tool on operational safety compared to current operations	A-SAC#F2, A-SAC#F3, A-SAC#F4, A-SAC#F5, A-SAC#R1, A-SAC#R2,	The controllers were seen to apply the safe standard practices when applying TB-PWS MRS 2.5NM with ORD tool in the simulation. No increase of potential human error

with ORD (AO-0328)	wake vortex separation scheme	applying wake vortex separation scheme without ORD tool in single runway mixed mode operations under nominal conditions. CRT-PJ2.01-V3-VALP-SA2- 002: To collect partial	A-SAC#R3	was observed during the exercises. No under spacings were observed in RTS02 for either the solution scenario
		002: To collect partial supporting evidence that S-PWS with ORD tool for arrivals does not increase the number of minor underseparations and decreases the number of large underseparations (i.e. those with potential for severe wake encounters) compared to the current operations wake vortex separation scheme without ORD tool.	A-SAC#F2, A-SAC#F3, A-SAC#F4	RTSU2 for either the solution scenario TB PWS with the ORD tool or the reference scenario. There was no increase in separation non- conformances before alignment or on the base leg due to the use of TB PWS with ORD tool. Therefore no increase in separation infringements were observed in RTS02 with TB PWS and the ORD tool compared to the reference scenario. However, the validity of this conclusion is limited by the low relevance of the statistics involved due to the limited number of runs.
		CRT-PJ2.01-V3-VALP-SA2-003: that time based Static Pair Wise separations for arrivals PWS-A with ORD tool maintains the same probability of Go around due to inadequate consideration of ROT constraint as per the reference scenario	A-SAC#R1	The number of ROT related Go- arounds is of same order of magnitude in TB PWS-A 2.5NM MRS ORD solution scenario compared to the ICAO DBS reference scenario.

RTS03a - Conducted by EUROCONTROL to assess the application of wake turbulence separations based on static aircraft characteristics for arriving aircraft (static PairWise Separations - PWS-A -AO-0310) with ORD (AO-0328).	OBJ-PJ2.02-V3-VALP- SA3: To assess the impact of the ORD tool on operational safety compared to current operations applying wake vortex separation scheme without ORD tool in single runway mixed mode operations under nominal conditions.	CRT-PJ2.01-V3-VALP-SA2- 001: To assess the impact of time based Static Pair Wise separations for arrivals PWS- A with ORD tool on operational safety compared to current operations applying wake vortex separation scheme without ORD tool in single runway mixed mode operations under nominal conditions. CRT-PJ2.01-V3-VALP-SA3- 001: To assess the impact of the ORD tool on operational safety compared to current operations applying wake vortex separation scheme without ORD tool in single runway mixed mode operations under nominal conditions.	A-SAC#F2, A-SAC#F3, A-SAC#F4, A-SAC#F5, A-SAC#R1, A-SAC#R2, A-SAC#R3	Safe standard controller working practices were observed with the ORD tool in the 2A-2D-2A mixed mode runway procedures. <u>No new</u> <u>potential causes for human error and</u> <u>no increase in the potential severity</u> <u>of existing human errors were</u> <u>observed or reported</u> to be introduced by the ORD tool or PWS procedures under nominal conditions. No new observations/remarks compared to previous simulations (e.g. RTS1) regarding the loss of separation indicators (ITD/FTD). Safe standard controller working practices were observed with the ORD tool in the alternating arrival departure sequence mixed mode runway procedures assessed. No new potential causes for human error and no increase in the potential severity of existing human errors were observed or reported to be introduced by the ORD tool under nominal conditions.

CRT-PJ2.01-V3-VALP-SA2- 002: To collect partial supporting evidence that S- PWS with ORD tool for arrivals does not increase the number of minor under- separations and decreases the number of large under- separations (i.e. those with potential for severe wake encounters) compared to the current operations wake vortex separation scheme without ORD tool. CRT-PJ2.01-V3-VALP-SA3- 003 : To collect partial supporting evidence that the ORD tool maintains the same probability of Go around due to inadequate consideration of ROT constraint as per the reference scenario	A-SAC#F1, A-SAC#F2, A-SAC#F3, A-SAC#F4	The number of minor under- separated aircraft (less than or equal to 0.5NM) on the final approach in single runway mixed mode operations was not higher and was even reduced under Time Based PWS-A with ORD tool compared to the reference scenario. The number of major under- separated aircraft (more than 0.5NM) on the final approach in single runway mixed mode operations was reduced under Time Based PWS-A with ORD tool compared to the reference scenario. <u>No separation infringements have occurred before alignment to runway centreline and when the aircraft are within 25 NM from the runway threshold (i.e. including base leg). However, more analysis is needed as the number of exercise runs and scenarios assessed was limited.</u>
CRT-PJ2.01-V3-VALP-SA2-003: that time based Static Pair Wise separations for arrivals PWS-A with ORD tool maintains the same probability of Go around due to inadequate consideration	A-SAC#R1	<i>For RTS03a:</i> There was one go-around instructed by TWR controller in total in the TB PWS-A with ORD tool exercises compared to the no go-arounds in the reference scenario.

		of ROT constraint as per the reference scenario		However, more analysis is needed as the number of exercise runs and scenarios assessed was limited.
				Number of go-arounds was not higher in the TB spacing with ORD tool exercises compared to DB spacings with no ORD tool. In fact there were more go-rounds within the DB spacings with no ORD tool: 3 go-arounds were observed for the runs without the ORD tool, as opposed to no go-arounds being observed during the runs with the ORD tool. However, more analysis is needed to validate this finding due to the limited statistical analysis that can be performed based on the collected real time simulation data and to the limited number of scenarios and
				conditions tested
RTS03b - Conducted by EUROCONTROL to assess the application and the operational feasibility of time based separations with the Optimised Runway Delivery (ORD - AO- 0328) tool in a Performance	OBJ-PJ2.02-V3-VALP- SA3: To assess the impact of the ORD tool with separation requirements based on the current wake vortex categories compared to	CRT-PJ2.01-V3-VALP-SA3-001: To assess the impact of TBS with the ORD tool on operational safety compared to distance based separation in segregated runways mode operations under nominal	A-SAC#F2, A-SAC#F3, A-SAC#F4, A-SAC#F5, A-SAC#R1, A-SAC#R2, A-SAC#R3	Safe controller working practice was observed during the simulation runs and no specific increase of the risk of potential for human error was observed. However, in the final debriefing
Based Navigation environment	no ORD tool on	conditions.		controllers reported that while working with the ORD tool, a

operational safety.			controller might become less aware about the aircraft distances on the final approach and consequently have a lower level of situational awareness. That issue could further lead to human error in degraded modes when no tool is present.
	CRT-PJ2.01-V3-VALP-SA3-002: To collect partial supporting evidence that TBS with ORD tool for arrivals does not increase the number of minor underseparations and decreases the number of large underseparations (i.e. those with potential for severe wake encounters) compared to the current operations wake vortex separation scheme without ORD tool.	A-SAC#F2, A-SAC#F3, A-SAC#F4, A-SAC#R1	Regarding under-spacing, for ATCO1, the reference scenario run presents 4 under-spaced aircraft pairs, while none were observed during the corresponding solution scenario runs. For ATCO2 and ATCO3, no under- spaced aircraft pairs were observed during the reference scenario runs whereas one case of a small under- spacing is observed for one of the two solution scenario runs (run #7 for ATCO2 and run #3 for ATCO3). For separation before alignment on the centre line no infringements were observed for ATCO2 and ATCO3 whereas for ATCO 1, 1 and 2 separation infringements were observed for the solution scenario runs 5 and 11 respectively
	CRT-PJ2.01-V3-VALP-SA3- 003: To collect partial	A-SAC#R1	More go-arounds have been observed for the reference scenario
	supporting evidence that TBS with ORD tool maintains the same probability of Go		run compared to the solution scenario runs: for the three ATCOs, between 2 and 3 go-arounds were

		around due to inadequate consideration of ROT constraint as per the reference scenario		performed during the reference scenario run while none were observed for the corresponding solution scenario runs except for one exercise where 2 were observed. In post exercise debriefings controllers reported that the go arounds were mainly due to the fact that the compression after the DF was not the same as in Copenhagen and this effect had a stronger impact in Reference scenario with PBN than in the Solution scenario.
RTS04b - Conducted by EUROCONTROL The aim was to assess the operational feasibility of time based static Pair-Wise Separation (S-PWS-A - AO- 0310) with Optimised Runway Delivery (ORD - AO-0328) for arriving aircraft in a closely spaced parallel runway environment; RTS4b was conducted using the Paris CDG airport and approach environment.	OBJ-PJ2.02-V3-VALP- SA2: To assess the impact of static pairwise separations for arrivals with ORD tool on operational safety compared to current wake vortex separation scheme	CRT-PJ2.01-V3-VALP-SA2-001: To assess the impact of arrivals PWS-A with the ORD tool in CSPR environment on operational safety compared to current operations applying wake vortex separation scheme without ORD tool in a non-CSPR environment under nominal conditions.	A-SAC#F2, A-SAC#F3, A-SAC#F4, A-SAC#F5, A-SAC#R1, A-SAC#R2, A-SAC#R3	Both ININ and ITMN approach controllers were observed to apply safe standard practices during TB- PWS-A with ORD in CSPR for Arrivals operations. However, at CDG, the TWR ATCOs is already complex and the tower runway controller is already working at high capacity in the peak periods, having to manage crossings, departures on RWY27L and arrivals on RWY27R. Adding, to this environment, an un- steady flow of arrivals on RWY28L due to CSPR (partially segregated operations), was considered to be unacceptable from a safety point of

				view for the CDG TWR ATCOs.
		CRT-PJ2.01-V3-VALP-SA2- 002: To collect partial supporting evidence that S- PWS with ORD tool for arrivals in a CSPR environment does not increase the number of minor under-separations and decreases the number of large under-separations (i.e. those with potential for severe wake encounters) compared to the current operations wake vortex separation scheme without ORD tool.	A-SAC#F1, A-SAC#F2, A-SAC#F3, A-SAC#F4	The number of under-separations (small and large) being at least not higher in the solution scenario arrivals runs (TB PWS with the ORD tool under CSPR/DT) compared to the reference scenario runs (RECAT EU with no tool support and no CSPR i.e. segregated runway operations). Additionally there was no increase observed in separation non- conformances before alignment or on the base leg due to the PWS-A with ORD in CSPR/DT.
		CRT-PJ2.01-V3-VALP-SA2- 003: To collect partial supporting evidence that time based Static Pair Wise separations for arrivals PWS- A with ORD tool under CSPR maintains the same probability of Go around due to inadequate consideration of ROT constraint as per the reference scenario.	A-SAC#R1	No increase of ROT related go around was observed in Solution scenario (TB PWS with ORD in CSPR/DT environment) compared to Reference scenario.
RTS06 – Conducted by CRIDA/ENAIRE to assess OI Step AO-0310 Weather	OBJ-PJ2.02-V3-VALP- SA1: To assess the impact of weather	CRT-PJ2.01-V3-VALP-SA1-001: There is evidence that the level of operational safety	A-SAC#F2, A-SAC#F3, A-SAC#F4,	Compared to ICAO DBS the results could be summarized as follows:

54

Dependent Separations for Arrivals (WDS-A).	dependent separations on the final approach on operational safety compared to current wake vortex separation scheme	is maintained and not negatively impacted under weather dependent separations on the final approach with ORD tool compared to the current operations applying wake vortex separation scheme without ORD tool.	A-SAC#F5, A-SAC#R1, A-SAC#R2, A-SAC#R3	 The percentage of infringements increased a 4% in solution scenarios. Due to several technical problems only two scenarios could be compared hence these results are not conclusive. More runs should be performed to guarantee that the level of infringements does not increase. The number of go-around is higher in reference scenarios The data of experienced workload obtained from the questionnaires show that the workload was very similar comparing the solution and reference scenarios runs. Taking into account these results, safety did not get worse in solution scenarios, however more runs should be executed in future steps to guarantee it.
FTS09 – conducted by EUROCONTROL to support the CBA for the Arrivals Concepts Solutions wake separation concepts. To assess the performance impact of the different wake separation	No Safety Validation Obje	ective needed to be set for this F	ΤS	

solutions on arrivals of the
different concepts both when
solutions are deployed in
combination (e.g. PWS-A with
ORD tool) and/or when
solutions are deployed
individually.
The FTS takes as input the
expected traffic sequence at
IAF and different parameters
(WV separation, MRS, ROT,
etc.) to provide an estimate of
the expected throughput and
spacing between landing
aircraft.

4.3.1.3 Extrapolation to ECAC wide

The results obtained from the validation activities are for the moment limited to the specific set of aerodrome environments the concepts have been simulated in. This is in terms of layout and configuration (single runway segregated operations – arrivals or departures, closely spaced parallel runways in mix mode, single runway segregated departures with TEAM operations) as well as in terms of traffic mix (mix and proportion of aircraft types and wake categories) and traffic demand (demand profile over the busy operational hours) as per the traffic in Very Large, Large and Medium Airports with Very High, High and Medium Complexity TMAs.

These results could be extrapolated to similar aerodromes in ECAC, but not enough evidence is available to extrapolate this statement to the rest of aerodromes in other categories. The number of aerodromes to which this Solution could be applied while ensuring the level of safety is maintained needs then to be defined.

4.3.1.4 Discussion of Assessment Result

With regard to all the success criteria about the quantification of the under-separations and goarounds:

 Based on the data collected in the RTS and due to the limited number of scenarios and conditions that can be tested in an RTS, only a limited statistical analysis could be performed for these success criteria, as the data is insufficient to derive a significant statistical conclusion. However, these results do give an indication of trends. Thus, this quantitative data in combination with the qualitative safety data/results obtained from the RTS and other safety-related activities (e.g. workshops, HAZIDs) enables us to conclude that safety is not negatively impacted.

With regard to abnormal and degraded mode of operations:

• Even though some degraded mode of operations has been tested in the simulations, this is not true for all the abnormal and degraded modes due to the limitation of the simulation environment. However, anything that has not been tested in simulations was at least brainstormed in workshops with relevant experts.

4.3.1.5 Additional Comments and Notes

No additional comments.

4.3.2 Environment / Fuel Efficiency

Often fuel efficiency is improved through a reduction of flight or taxi time. This time benefit is also assessed, in this section, as it is additional input for the business case.

4.3.2.1 Performance Mechanism

The arrivals OI are focused on reduction and optimising separations between aircraft during traffic peak. 2 OIs (WDS-A and PWS-A) review the minimum wake separations to be applied between consecutive arrivals, the ORD OI further enhance the separation delivery tool that supports the ATCO in providing separations and spacing. By delivering aircraft with further optimised wake separations at threshold there is a positive impact on arrival delay and thus a reduction of flying time that

impacts fuel burn and emissions. The Performance Mechanisms in the BIMs that relate to Fuel Efficiency are as follows:

- Wake Turbulence Separations (for arrivals) based on Static Aircraft Characteristics (AO-0306 – PWS-A) including Optimised Runway Delivery (AO-0328 - ORD)
 - Reduction of separations and spacing will reduce the average delay per flight. As airborne delay uses more fuel (e.g. in case of holding), a reduction in this delay will result in reduced fuel burn in the TMA. This has a positive impact on Fuel Efficiency.
 - With the use of the target indicators, the accuracy of the spacing between aircraft is improved compared to what is achieved today (e.g. distance between pair of aircraft closer to separation minima) and will reduce the margins delivered. This may increase the go-around rate and will affect Fuel Efficiency.
- WDS (for arrivals) (AO-0310 WDS-A) including Optimised Runway Delivery (AO-0328 ORD)
 - Reduction of separations and spacing will reduce the average delay per flight. As airborne delay uses more fuel (e.g. in case of holding), a reduction in this delay will result in reduced fuel burn in the TMA. This has a positive impact on Fuel Efficiency.
 - With the use of the target indicators, the accuracy of the spacing between aircraft is improved compared to what is achieved today (e.g. distance between pair of aircraft closer to separation minima) and will reduce the margins delivered. This may increase the go-around rate and will affect Fuel Efficiency.
- Optimised Runway Delivery (AO-0328 ORD)
 - Optimised separations and spacing delivery will reduce the average delay per flight. As airborne delay uses more fuel (e.g. in case of holding), a reduction in this delay will result in reduced fuel burn in the TMA. This has a positive impact on Fuel Efficiency.
 - With the use of the target indicators, the accuracy of the spacing between aircraft is improved compared to what is achieved today (e.g. distance between pair of aircraft closer to separation minima) and will reduce the margins delivered. This may increase the go-around rate and will affect Fuel Efficiency.

4.3.2.2 Assessment Data (Exercises and Expectations)

Fuel Efficiency benefits due to the application of operational concepts addressed by PJ.02-01 have been identified, taking into account:

- average flight duration;
- Number of go-around (effect on increased flying time duration).

Fuel efficiency has been assessed in FTS9. See VALR for details about the exercise.

The fuel burn savings is computed based on the comparison of the averaged flying time per flight. Because the aircraft flights are released in all runs at the same positions, the traffic pressure and the applicable separation minima will impact the aircraft trajectories and hence their flying time.

Moreover, a go-around also significantly increases the flying time which is taken into account by the model.

The relationship between averaged flying time reduction compared to reference scenario and fuel burn savings is then established using assumptions found in [23]. In particular, the fuel burn rates for arrival management per RECAT category is obtained as an average of the value provided for several aircraft (see Figure 2). The value for Cat-A and Cat-C aircraft types are obtained from Cat-B value weighted by the differences in averaged MLW per category, see Table 10. Two scenarios are considered: aircraft weight at 50 % of max useful load and aircraft weight at 65% of max useful load. Table 10 also provided the mean fuel burn rate for each traffic sample obtained as the average weighted by the traffic mix of each traffic sample. Because of the higher fraction of heavy aircraft types, Traffic samples 2 and 4 show slightly larger fuel burn rate compared to Traffic sample 1 and 3.

Flight phase:	Taxi	Enr	En route		anagement				
Weight: (% of max useful load)	N/A	65	80	50	65				
Scheduled AC Type									
B738	12.0	37.7	40.7	36.0	38.3				
A320	11.5	38.5	41.7	35.6	37.4				
A319	10.0	34.8	37.4	35.6	37.0				
A321	13.5	41.7	45.1	40.9	43.1				
E190	9.0	28.8	31.2	27.7	28.9				
DH8D	-	17.1	17.7	14.5	15.0				
B737	12.0	33.3	35.9	32.7	34.6				
CRJ9	-	25.2	27.2	17.0	18.1				
A332	25.0	94.4	102.5	80.4	85.7				
B77W	32.7	144.4	159.4	110.9	125.8				
Business AC Type	Business AC Type								
C56X	-	7.7	8.2	7.7	7.9				
BE20	-	3.9	4.2	4.3	4.4				
PC12	-	2.4	2.6	3.7	3.8				
C510	-	4.7	4.9	4.8	5.0				
F2TH	-	11.5	12.6	9.3	9.7				
Rotorcraft AC Type									
S92	N/A	8.8	9.5	6.9	7.3				
A139	N/A	5.8	6.1	4.8	5.0				
EC25	N/A	9.0	9.6	6.9	7.3				
EC55	N/A	4.7	4.9	3.7	3.9				
			4.9						

Figure 2: Fuel burn rates for various aircraft types in flight phases (Source: [23])

	fuel burn rate arrival [kg/min] 50 % max useful load	fuel burn rate arrival [kg/min] 65 % max useful load	
Cat-A	162.6*	179.8*	
Founding Members	© – 2020 – EUROCON	ITROL, THALES AIR SYSTEMS SAS, NATS, ENAIRE, INDRA,	5

Cat-B	95.7	105.8
Cat-C	61.1*	67.5*
Cat-D	36.2	38.1
Cat-E	19.7	20.7
Cat-F	6.0	6.2
Mean Traf sample 1/3	38.1	41.0
Mean Traf sample 2/4	41.7	45.0

Table 10: mean fuel burn for arrival per RECAT-EU category and for traffic samples 1/3 and 2/4. (*) Values for Cat-A and Cat-C are obtained from Cat-B values weighted by the difference in averaged MLW of the category

[23] also reports an average fuel burn per minute of flight of 49 kg when considering all phases of flight and all aircraft types, see [23].

 Average fuel burn per minute of flight = 49 kg Average fuel burn per nautical mile (NM) of flight = 11 kg
ICAO (2007) - "Global Aviation Plan", ICAO, Doc 9750 AN/963, 3rd Ed. 2007 (Attachment 1, App-H08) http://www.icao.int/publications/Documents/9750_3ed_en.pdf
 This number is derived by dividing the total JET A1 consumption (55 billion US gal) by the total of minutes flown (3.4 billion) by all airlines (scheduled and non-scheduled) as per IATA statistics for 2005.
 This number is derived by dividing the total JET A1 consumption (55 billion US gal) by the total of kilometres flown (27.9 billion) by all airlines (scheduled and non-scheduled) as per IATA statistics for 2005.

Figure 3: Averaged fuel burn rate in flight (Source: [23])

Note that this average depends on the aircraft traffic mix. [23] provides the percentage of most frequent aircraft in Europe. Using that list the traffic mix per RECAT category is obtained and provided in the Table below.

	% in traffic mix
Cat-A	1%
Cat-B	17%
Cat-C	5%
Cat-D	40%
Cat-E	27%
Cat-F	10%

Table 11: traffic mix based on RECAT-EU categories using the percentage of aircraft types reported in [23].

For this traffic mix, the arrival fuel burn rate is 42.3 kg/min (at 50% max useful load) and 45.6 kg/min (at 65% max useful load). A corrected average fuel burn rate is then obtained by weighting the average fuel burn per flight by the ratio of fuel burn rate for arrival. It reads:

$$Fuel \ burn \ rate = 49 \frac{kg}{min} \frac{1}{2} \left(\frac{fuel \ burn \ rate \ arrival \ 50\%}{42.3 \ kg/min} + \frac{fuel \ burn \ rate \ arrival \ 65\%}{45.6 \ kg/min} \right).$$

The obtained values are 44 kg/min for Traffic samples 1 and 3 and 48.4 for Traffic samples 2 and 4.

Fuel burn rate #1 = 44 kg/min

Fuel burn rate #2 = 48.4 kg/min

The average fuel burn per flight in Europe is then computed based on the mean flight duration, as reported in Figure 4, multiplied by the average fuel burn rate. It reads:

Fuel burn per flight = Fuel burn rate x 91.5 min

Depending on traffic samples:

Average Fuel burn per flight #1 = 4026 kg

Average Fuel burn per flight #2 = 4428.6 kg

Value 1	Average time from Take-off to Landing						
	Year Minutes						
	2016	91.5					
	2015	91.3					
	(Values based on flights in the ESRA08 ²² area)						
Source 1		EUROCONTROL - Performance Review Report (PRR 2016), July 2017 http://www.eurocontrol.int/publications/performance-review-report-prr-2016					
	EUROCONTROL - Performance Review Report (PRR 2015), June 2016 http://www.eurocontrol.int/publications/performance-review-report-prr-2015						

Figure 4: Averaged flying time for IFR flights (Source: [23])

The mean percentage of fuel burn saving per flight is then estimated as the mean difference of flying time per flight compared to the reference multiplied by the mean fuel burn rate of the traffic sample divided by the mean fuel burn per flight. It reads:

 $fuel \ burn \ saving \ [\%] = \frac{\Delta Flying \ time \ [min] \ x \ fuel \ burn \ rate \ [kg/min]}{Fuel \ burn \ per \ flight \ [kg]}$

CO₂/Fuel ratio = 3.15 [23]

All OIs have been assessed in the exercise separately and together (to apply WDS-A and PWS-A ORD is required) as reported in the table below:

Wind	low headwind		strong headwind		strong crosswind	
Separation scheme and mode	min	max	min	max	min	max
RECAT-EU TBS with ORD (AO-0328)	0.3%	1.5%	0.4%	1.1%	-	-
RECAT-EU-PWS TBS with ORD (AO-0328 and AO-0306)	1.9%	3.7%	1.9%	3.3%	-	-

Founding Members

RECAT-EU WDS with ORD (AO-0328 and AO-0310)	-	-	-	-	0.7%	3.1%
RECAT-EU-PWS WDS with ORD (AO-0328, AO-	-	-	-	-	2.1%	3.4%
0306 and AO-0310)						

Table 12: Summary of the fuel burn savings if operating the test scheme versus RECAT-EU TBS with FTD only (reference scenario) at maximum test case traffic pressure for the various separation schemes and modes and in various wind conditions

4.3.2.3 Extrapolation to ECAC wide

The following PJ.19 common assumptions have been used:

- High density airports traffic contribution to total airport traffic = 59.5%
- Arrivals traffic contribution to total traffic = 50%
- Average ECAC flight time = 90 minutes

Then as described above, the average fuel burn per flight and the fuel burn rate depending on traffic samples have been used for the calculations. The fuel burn rate assumption below is not aligned to the calculation above (based on the common assumptions document), but instead it has been provided by PJ19 following their review:

- Average Fuel burn per flight #1 = 4026 kg
- Average Fuel burn per flight #2 = 4428.6 kg
- Fuel burn rate #1 = 20 kg/min
- Fuel burn rate #2 = 48.4 kg/min

FEFF3, FEFF2 and FEFF1 for AO-0328 (ORD)

Reference Scenario- RECAT-EU TBS with FTD only.

Solution Scenario- RECAT-EU TBS with ORD.

FEFF3

- 1. Flight time reduction per arrival #1 = 0.55 min. This is the lowest benefit obtained assessing traffic sample with higher percentage of medium aircraft, from FTS9 results.
- 2. Flight time reduction (FEFF3) at ECAC level #1 = 50% (arrivals traffic contribution) * 59.5% (high density airports traffic contribution) * 0.55 minutes (flight-time reduction per arrival#1) = 0.16 minutes per flight
- Relative flight time reduction at ECAC level #1= 0.16 minutes (flight time reduction at ECAC level) / 90 minutes (average ECAC flight time) * 100 = 0.17%
- 4. Flight time reduction per arrival #2 = 1.51 min. This is the maximum benefit obtained assessing traffic sample with higher percentage of heavier aircraft, from FTS9 results.
- Flight time reduction (FEFF3) at ECAC level #2 = 50% (arrivals traffic contribution) * 59.5% (high density airports traffic contribution) * 1.51 minutes (flight-time reduction per arrival#2) = 0.45 minutes per flight

Relative flight time reduction at ECAC level #2= 0.45 minutes (flight time reduction at ECAC level) / 90 minutes (average ECAC flight time) * 100 = 0.5%

FEFF1

As explained above the fuel burn rate for arrival is 44-48.4 kg/min depending on traffic mix.

- 1. Fuel consumption reduction per arrival #1 = 0.55 (flight time reduction per arrival) #1 * 44 (fuel burn rate for arrival #1) = 24.2 kg/flight
- Relative fuel consumption reduction #1 = 24.2 kg/flight (fuel consumption reduction on arrival #1) / 4026 kg (Average fuel burn per flight #1) * 100 = 0.59%
- Fuel consumption reduction (FEFF1) at ECAC level #1 = 50% (arrivals traffic contribution) * 59.5% (high density airports traffic contribution) * 0.59% (relative fuel consumption reduction #1) = 0.17% = 7.2 kg/flight
- 4. Fuel consumption reduction per arrival #2 = 1.51 (flight time reduction per arrival #2) * 48.4 (fuel burn rate for arrival #2)= 73.08 kg/flight
- 5. Relative fuel consumption reduction #2 = 73.08 kg/flight (fuel consumption reduction on arrival #2) / 4428.6 kg (Average fuel burn per flight #2) * 100= 1.6%
- Fuel consumption reduction (FEFF1) at ECAC level #2 = 50% (arrivals traffic contribution) * 59.5% (high density airports traffic contribution) * 1.6% (relative fuel consumption reduction #1) = 0.48% = 21.7 kg/flight

FEFF2

- CO₂ emission reduction per arrival #1 = 24.2 (Fuel consumption reduction on arrival #1) * 3.15 (CO₂/Fuel Ratio) = 76.23 kg CO₂ per flight
- Relative CO₂ emission reduction on arrival #1 = 76.23 (CO₂ emission reduction #1) / 4026 (Average Fuel burn per flight #1) / 3.15 (CO₂/Fuel ratio) * 100 = 0.6%
- 3. Relative CO2 emission reduction on arrival #1 (FEFF2) at ECAC level = 50% (arrivals traffic contribution) * 59.5% (high density airports traffic contribution) * x 0.6% (Relative CO2 emission reduction on arrival #1) = $0.17\% = 22.67 \text{ kg CO}_2/\text{flight}$
- 4. CO_2 emission reduction on arrival #2 = 73.08 (Fuel consumption reduction on arrival #2) * 3.15 (CO_2 /Fuel Ratio) = 230.2 kg CO_2 per flight
- Relative CO₂ emission reduction on arrival #2 = 230.2 (CO₂ emission reduction #2) / 4428.6 (Average Fuel burn per flight #1) / 3.15 (CO₂/Fuel ratio) * 100= 1.6%
- 6. Relative CO2 emission reduction on arrival #2 (FEFF2) at ECAC level = 50% (arrivals traffic contribution) * 59.5% (high density airports traffic contribution) * x 1.6% (Relative CO2 emission reduction on arrival #1) = $0.47\% = 68.48 \text{ kg CO}_2/\text{flight}$

FEFF3, FEFF2 and FEFF1 for AO-0306 (PWS-A)

Reference Scenario- RECAT-EU TBS with FTD only.

Solution Scenario- RECAT-EU-PWS TBS with ORD.

FEFF3

- 1. Flight time reduction per arrival #1 = 2.1 min. This is the lowest benefit obtained assessing traffic sample with higher percentage of medium aircraft, from FTS9 results.
- Plight time reduction (FEFF3) at ECAC level #1 = 50% (arrivals traffic contribution) * 59.5% (high density airports traffic contribution) * 2.1 minutes (flight-time reduction per arrival#1) = 0.62 minutes per flight
- 3. Relative flight time reduction at ECAC level #1= 0.62 minutes (flight time reduction at ECAC level) / 90 minutes (average ECAC flight time) * 100 = 0.68%
- 4. Flight time reduction per arrival #2 = 3.61 min. This is the maximum benefit obtained assessing traffic sample with higher percentage of heavier aircraft, from FTS9 results.
- Flight time reduction (FEFF3) at ECAC level #2 = 50% (arrivals traffic contribution) * 59.5% (high density airports traffic contribution) * 3.61 minutes (flight-time reduction per arrival#2) = 1.07 minutes per flight
- 6. Relative flight time reduction at ECAC level #2= 1.07 minutes (flight time reduction at ECAC level) / 90 minutes (average ECAC flight time) * 100 = 1.18%

FEFF1

As explained above the fuel burn rate for arrival is 20-48.4 kg/min depending on traffic mix.

- 1. Fuel consumption reduction per arrival #1 = 2.1 (flight time reduction per arrival) #1 * 20 (fuel burn rate for arrival #1) = 42 kg/flight
- Relative fuel consumption reduction #1 = 42 kg/flight (fuel consumption reduction on arrival #1) / 4026 kg (Average fuel burn per flight #1) * 100 = 1.1%
- Fuel consumption reduction (FEFF1) at ECAC level #1 = 50% (arrivals traffic contribution) * 59.5% (high density airports traffic contribution) * 1.1% (relative fuel consumption reduction #1) * 3(peak)/16(hours in operation) = 0.06% = 3kg/flight
- 4. Fuel consumption reduction per arrival #2 = 3.61 (flight time reduction per arrival #2) * 48.4 (fuel burn rate for arrival #2) = 174.72 kg/flight
- 5. Relative fuel consumption reduction #2 = 174.72 kg/flight (fuel consumption reduction on arrival #2) / 5280 kg (Average fuel burn per flight #2) * 100= 3.33%
- Fuel consumption reduction (FEFF1) at ECAC level #2 = 50% (arrivals traffic contribution) * 59.5% (high density airports traffic contribution) * 3.33% (relative fuel consumption reduction #1) = 0.3% = 16 kg/flight

FEFF2

 CO₂ emission reduction per arrival #1 = 92.4 (Fuel consumption reduction per arrival #1) * 3.15 (CO₂/Fuel Ratio) = 291.06 kg CO₂ per flight

^{64 © – 2020 –} EUROCONTROL, THALES AIR SYSTEMS SAS, NATS, ENAIRE, INDRA, LEONARDO GmbH, AIRBUS, AT-ONE, DSNA, SEAC2020. All rights reserved. Licensed to the SJU under conditions.

- Relative CO₂ emission reduction on arrival #1 = 291.06 (CO₂ emission reduction #1) / 4026 (Average Fuel burn per flight #1) / 3.15 (CO₂/Fuel ratio) * 100 = 2.29%
- 3. Relative CO2 emission reduction on arrival #1 (FEFF2) at ECAC level = 50% (arrivals traffic contribution) * 59.5% (high density airports traffic contribution) * 2.29% (Relative CO2 emission reduction on arrival #1) = $0.68\% = 86.59 \text{ kg CO}_2/\text{flight}$
- 4. CO₂ emission reduction on arrival #2 = 174.72 (Fuel consumption reduction per arrival #2) * 3.15 (CO₂/Fuel Ratio) = 550.36 kg CO₂ per flight
- 5. Relative CO₂ emission reduction on arrival #2 = 550.36 (CO₂ emission reduction #2) / 4428.6 (Average Fuel burn per flight #2) / 3.15 (CO₂/Fuel ratio) * 100= 3.94%
- Relative CO2 emission reduction on arrival #2 (FEFF2) at ECAC level = 50% (arrivals traffic contribution) * 59.5% (high density airports traffic contribution) * x 3.94% (Relative CO2 emission reduction on arrival #2) = 1.17% = 163.73 kg CO₂/flight

FEFF3, FEFF2 and FEFF1 for AO-0316 (WDS-A)

Reference Scenario- RECAT-EU TBS with FTD only.

Solution Scenario- RECAT-EU-PWS WDS with ORD.

FEFF3

- 1. Flight time reduction per arrival #1 = 2.1 min. This is the lowest benefit obtained assessing traffic sample with higher percentage of medium aircraft, considering 10 knots crosswind for concept applicability, from FTS9 results.
- Flight time reduction (FEFF3) at ECAC level #1 = 50% (arrivals traffic contribution) * 59.5% (high density airports traffic contribution) * 2.1 minutes (flight-time reduction per arrival#1) = 0.62 minutes per flight
- 3. Relative flight time reduction at ECAC level #1= 0.62 minutes (flight time reduction at ECAC level) / 90 minutes (average ECAC flight time) * 100 = 0.68%
- 4. Flight time reduction per arrival #2 = 2.81 min. This is the maximum benefit obtained assessing traffic sample with higher percentage of heavier aircraft, from FTS9 results.
- Flight time reduction (FEFF3) at ECAC level #2 = 50% (arrivals traffic contribution) * 59.5% (high density airports traffic contribution) * 2.61 minutes (flight-time reduction per arrival#2) = 0.83 minutes per flight
- Relative flight time reduction at ECAC level #2= 0.83 minutes (flight time reduction at ECAC level) / 90 minutes (average ECAC flight time) * 100 = 0.92%

FEFF1

As explained above the fuel burn rate for arrival is 44-48.4 kg/min depending on traffic mix.

1. Fuel consumption reduction per arrival #1 = 2.1 (flight time reduction per arrival) #1 * 44 (fuel burn rate for arrival #1) = 92.4 kg/flight

- 2. Relative fuel consumption reduction #1 = 92.4 kg/flight (fuel consumption reduction on arrival #1) / 4026 kg (Average fuel burn per flight #1) * 100 = 2.29%
- Fuel consumption reduction (FEFF1) at ECAC level #1 = 50% (arrivals traffic contribution) * 59.5% (high density airports traffic contribution) * 2.29% (relative fuel consumption reduction #1) = 0.68% = 27.4 kg/flight
- 4. Fuel consumption reduction per arrival #2 = 2.81 (flight time reduction per arrival #2) * 48.4 (fuel burn rate for arrival #2) = 136 kg/flight
- 5. Relative fuel consumption reduction #2 = 136 kg/flight (fuel consumption reduction on arrival #2) / 4428.6 kg (Average fuel burn per flight #2) * 100= 3.07%
- Fuel consumption reduction (FEFF1) at ECAC level #2 = 50% (arrivals traffic contribution) * 59.5% (high density airports traffic contribution) * 3.07% (relative fuel consumption reduction #1) = 0.91% = 40.46 kg/flight

FEFF2

- CO₂ emission reduction per arrival #1 = 92.4 (Fuel consumption reduction per arrival #1) * 3.15 (CO₂/Fuel Ratio) = 291.06 kg CO₂ per flight
- Relative CO₂ emission reduction on arrival #1 = 291.06 (CO₂ emission reduction #1) / 4026 (Average Fuel burn per flight #1) / 3.15 (CO₂/Fuel ratio) * 100 = 2.29%
- 3. Relative CO2 emission reduction on arrival #1 (FEFF2) at ECAC level = 50% (arrivals traffic contribution) * 59.5% (high density airports traffic contribution) * x 2.29% (Relative CO2 emission reduction on arrival #1) = $0.68\% = 86.59 \text{ kg CO}_2/\text{flight}$
- CO₂ emission reduction on arrival #2 = 136 (Fuel consumption reduction per arrival #2) * 3.15 (CO₂/Fuel Ratio) = 428.4 kg CO₂ per flight
- 5. Relative CO₂ emission reduction on arrival #2 = 428.4 (CO₂ emission reduction #2) / 4428.6 (Average Fuel burn per flight #2) / 3.15 (CO₂/Fuel ratio) * 100= 3.07%
- Relative CO2 emission reduction on arrival #2 (FEFF2) at ECAC level = 50% (arrivals traffic contribution) * 59.5% (high density airports traffic contribution) * x 3.07% (Relative CO2 emission reduction on arrival #2) = 0.91% = 127.44 kg CO₂/flight

KPIs / PIs	Unit	Calculation	Mandatory	Benefit in SESAR1 (if applicable)	Absolute expected performance benefit in SESAR2020	% expected performance benefit in SESAR2020
FEFF1 Actual Average fuel burn per flight	Kg fuel per movement	Total amount of actual fuel burn divided by the number of movements		N/A	TBS – 7.2-21.7 reduction kg of fuel per flight, compared to TBS (AO-0303) FTD Indicator only tool support for RECAT-EU	support for RECAT-EU

66 © – 2020 – EUROCONTROL, THALES AIR SYSTEMS SAS, NATS, ENAIRE, INDRA, LEONARDO GmbH, AIRBUS, AT-ONE, DSNA, SEAC2020. All rights reserved. Licensed to the SJU under conditions.

KPIs / PIs	Unit	Calculation	Mandatory	Benefit in SESAR1 (if applicable)	Absolute expected performance benefit in SESAR2020	% expected performance benefit in SESAR2020
					PWS-A (AO-0306) – 3- 16 reduction kg of fuel per flight, compared to TBS (AO-0303) FTD Indicator only tool support for RECAT-EU TBS, with a Vienna airport traffic mix. WDS-A (AO-0310) in the context of RECAT- EU TBS with ORD (AO- 0328) tool support – 27.4-40.4 reduction kg of fuel per flight, compared to TBS (AO- 0303) FTD Indicator only tool support for RECAT-EU TBS, with a Vienna airport traffic mix.	PWS-A (AO-0306) – 0.06%-3% reduction kg of fuel per flight, compared to TBS (AO- 0303) FTD Indicator only tool support for RECAT-EU TBS, with a Vienna airport traffic mix. WDS-A (AO-0310) in the context of RECAT- EU TBS with ORD (AO- 0328) tool support – 0.68%-0.91% reduction kg of fuel per flight, compared to TBS (AO- 0303) FTD Indicator only tool support for RECAT-EU TBS, with a Vienna airport traffic mix.
FEFF2 Actual Average CO ₂ Emission per flight	Kg CO₂ per flight	Amount of fuel burn x 3.15 (CO ₂ emission index) divided by the number of flights	YES	N/A	 68.48 reduction Kg CO₂ per flight, compared to TBS (AO-0303) FTD Indicator only tool support for RECAT-EU TBS, with a Vienna airport traffic mix. PWS-A (AO-0306) - 86.59-163.73 reduction Kg CO₂ per flight, compared to TBS (AO-0303) FTD Indicator only tool support for RECAT-EU TBS, with a Vienna airport traffic mix. WDS-A (AO-0310) in the context of RECAT-EU TBS with ORD (AO-0328) tool support - 86.59-127.44 reduction Kg CO₂ per flight, compared to TBS (AO-0303) FTD Indicator only tool support - 86.59-127.44 reduction Kg CO₂ per flight, compared to TBS (AO-0303) FTD Indicator only tool support for RECAT-EU TBS with ORD (AO-0328) tool support on Kg CO₂ per flight, compared to TBS (AO-0303) FTD Indicator only tool support for RECAT-EU TBS, with a 	ORD (AO-0328) -0.17%- 0.47% reduction Kg CO ₂ per flight, compared to TBS (AO-0303) FTD Indicator only tool support for RECAT-EU TBS, with a Vienna airport traffic mix. PWS-A (AO-0306) - 0.68%-1.17% reduction Kg CO ₂ per flight, compared to TBS (AO- 0303) FTD Indicator only tool support for RECAT-EU TBS, with a Vienna airport traffic mix. WDS-A (AO-0310 in the context of RECAT-EU TBS with ORD (AO- 0328) tool support - 0.68%-0.91% reduction minutes per flight, compared to TBS (AO- 0303) FTD Indicator only tool support for

KPIs / PIs	Unit	Calculation	Mandatory	Benefit in SESAR1 (if applicable)	Absolute expected performance benefit in SESAR2020	% expected performance benefit in SESAR2020
FEFF3 Reduction in average flight duration	Minutes per flight	Average actual flight duration measured in the Reference Scenario – Average flight duration measured in the Solution Scenario	YES	applicable) N/A	ORD (AO-0328) – 0.16- 0.45 reduction minutes per flight, compared to TBS (AO-0303) FTD Indicator only tool support for RECAT-EU TBS, with a Vienna airport traffic mix. PWS-A (AO-0306) – 0.62-1.07 reduction minutes per flight, compared to TBS (AO- 0303) FTD Indicator only tool support for RECAT-EU TBS, with a Vienna airport traffic mix. WDS-A (AO-0310) in the context of RECAT- EU TBS with ORD (AO- 0328) tool support – 0.62-0.83 reduction minutes per flight, compared to TBS (AO- 0303) FTD Indicator only tool support for	ORD (AO-0328) – 0.17%-0.5% reduction minutes per flight, compared to TBS (AO- 0303) FTD Indicator only tool support for RECAT-EU TBS, with a Vienna airport traffic mix. PWS-A (AO-0306) – 0.68%-1.18% reduction minutes per flight, compared to TBS (AO-
					RECAT-EU TBS, with a Vienna airport traffic mix.	RECAT-EU TBS, with a Vienna airport traffic mix.

4.3.2.4 Discussion of Assessment Result

The performance target indicates a reduction of 26.7 kg per flight. The expected performance benefits (considering different traffic samples and wind conditions) are in this range with the performance target with the exception of the OI AO-0328 (ORD) when deployed alone. For ORD the best result is 21 kg reduction, still close to the validation target.

The confidence in these results is low.

4.3.2.5 Additional Comments and Notes

Please note that WDS-A results are lower than PWS-A because WDS-A can be applied only when both aircrafts are established on the centreline. Outside of the centreline, wind direction, wake vortices transportation uncertainty and great variability of an aircraft pair relative positions (in terms of relative heading and altitude) leads to not being able to apply the reduced WDS-A separation and so the TMA separation minima apply instead. Depending on the aircraft pair, on the interception position and the difference in ground speed of leader and follower aircraft, the follower aircraft through airspeed management might reach the WDS-A minima or not, this behaviour is reproduced in the FTS.

The statement above is also valid for all the others KPI results of WDS-A.

Following the late PJ19 review in December 2019 and due to the different common assumptions proposed that were not available when this document was produced it was decided to quantify the benefits in the PAGAR for FEFF1 as follows:

Max Fuel consumption reduction (FEFF1) at ECAC level #2 = 50% (arrivals traffic contribution) * 59.5% (high density airports traffic contribution) * 3.33% (3.61 minutes at 48,4kg fuel rate with 5280kg average ECAC flight) relative fuel consumption flight #1) x 5(peak)/16(hours In operation) = 0.3% = 16kg/flight

Min Fuel consumption reduction (FEFF1) at ECAC level #2 = 50% (arrivals traffic contribution) * 59.5% (high density airports traffic contribution) * 1.1% (2.1 minutes at 20kg fuel rate with 5280kg average ECAC flight) relative fuel consumption flight #1) x 3(peak)/16(hours In operation) = 0.06% = 3 kg/flight

Average the min and max = 9.5kg/flights

The confidence in these results is low.

4.3.3 Airport Capacity (Runway Throughput Flights/Hour)

4.3.3.1 Performance Mechanism

- The arrivals OI are focused on reduction and optimising separations between aircraft during traffic peak. 2 OIs (WDS-A and PWS-A) further optimise the minimum wake separations to be applied between consecutive arrivals, the ORD OI further enhance the separation delivery tool that supports the ATCO in providing separations and spacing. By delivering aircraft with further optimised wake separations at threshold there is a reduction of the overall wake separation that is required that affects runway throughput. The Performance Mechanisms in the BIMs that relate to Airport Capacity (Runway Throughput Flights per Hour) are as follows: Wake Turbulence Separations (for arrivals) based on Static Aircraft Characteristics (AO-0306 PWS-A) including Optimised Runway Delivery (AO-0328 ORD)
 - The use of PWS-A is expected to reduce wake separation between arrivals. The use of ORD impacts the separation and spacing delivery between arrivals. The resulting optimised separation and spacing delivery increases the runway throughput. The higher the throughput, the higher the number of movements, leading to a positive impact on <u>Capacity</u>.
 - With the use of the target indicators, the accuracy of the spacing between aircraft is improved compared to what is achieved today (e.g. distance between pair of aircraft closer to separation minima) and will reduce the margins delivered. This may increase the go-around rate and will affect Capacity.
 - With the use of the target indicators, the accuracy of the spacing between aircraft is improved compared to what is achieved today (e.g. distance between pair of aircraft closer to separation minima) and will allow controllers to deliver aircraft with greater accuracy than today. Improving spacing accuracy will enable more aircraft to be sequenced with reduced spacing which links to Capacity.

- WDS (for arrivals) (AO-0310 WDS-A) including Optimised Runway Delivery (AO-0328 ORD)
 - The use of WDS-A (e.g. for WDS based on crosswind when crosswind is above the activation threshold) is expected to reduce the separation between arrivals. The use of ORD impacts the separation and spacing delivered between arrivals. The resulting optimised separation and spacing delivery increases the runway throughput. Increased average runway throughput will result in an increase Capacity.
 - With the use of the target indicators, the accuracy of the spacing between aircraft is improved compared to what is achieved today (e.g. distance between pair of aircraft closer to separation minima) and will reduce the margins delivered. This may increase the go-around rate and will affect Capacity.
 - With the use of the target indicators, the accuracy of the spacing between aircraft is improved compared to what is achieved today (e.g. distance between pair of aircraft closer to separation minima) and will allow controllers to deliver aircraft with greater accuracy than today. Improving spacing accuracy will enable more aircraft to be sequenced with reduced spacing which links to Capacity.
- Optimised Runway Delivery (AO-0328 ORD)
 - The use of ORD impacts the separation and spacing delivery between arrivals. The resulting optimised separation and spacing delivery increases the runway throughput. The higher the throughput, the higher the number of movements, leading to a positive impact on Capacity.
 - With the use of the target indicators, the accuracy of the spacing between aircraft is improved compared to what is achieved today (e.g. distance between pair of aircraft closer to separation minima) and will reduce the margins delivered. This may increase the go-around rate and will affect Capacity.
 - With the use of the target indicators, the accuracy of the spacing between aircraft is improved compared to what is achieved today (e.g. distance between pair of aircraft closer to separation minima) and will reduce the margins delivered. Improving spacing accuracy will enable more aircraft to be sequenced with reduced spacing which links to Capacity.

4.3.3.2 Assessment Data (Exercises and Expectations)

CAP3:

The results for CAP3 are taken from the RTS3a validation exercise with mixed mode procedures of single consecutive arrivals and departures. The RTS3a used in combination two OIs: **ORD + PWS-A.** It has to be noted that the OIs concerning wake turbulence reductions (PWS-A and WDS-A) have a limited impact on separations in mixed mode as the most effective use of runway in mixed mode is to alternate 1 arrival and 1 departure in the sequence; with this sequence order the spacing between two consecutive arrivals is at least in the range of 4.5-5 NM (depending on wind conditions) for allowing a departure take-off between the two arrivals. This spacing of 4.5-5 NM is commonly equal or higher than wake turbulence separations applied with PWS-A and WDS-A as the traffic mix is mainly composed of Heavy-Medium or Medium-Medium pairs. Therefore, we consider that the

main benefit in mixed mode is driven by the ORD (AO-0328) and that the effect of PWS-A (AO-0306) and WDS-A (AO-0310) is negligible in mixed mode compared to ORD (AO-0328).

Runway throughput reference scenario of mixed mode with ICAO (or RECAT-EU) wake separations without OR tool support, with RTS3a airport aircraft type mix and traffic pressure = 50.46 movements per hour

Runway throughput solution scenario of mixed mode with ICAO (or RECAT-EU) wake separations with **ORD (AO-0328) tool support**, with RTS3a airport aircraft type mix and traffic pressure = 54.9 movements per hour

RTS3a results for **ORD (AO-0328)** solution scenario showed an increase of 7.9% in throughput equivalent to additional 4.44 movements per hour, compared to reference scenario.

CAP3.2:

Several RTS and a one extensive FTS have been performed during the solution lifecycle. RTS are not the most appropriate method to measure capacity benefits, therefore the CAP3.2 results (segregated mode) are based on the more comprehensive set of results obtained by the FTS9 exercise.

Different traffic samples have been assessed in different wind conditions for the different solution scenarios and compared to the reference scenario (RECAT-EU TBS with FTD only).

The tables below summarize the minimum and maximum throughput % change obtained. The throughput of the solution scenarios compared to the reference scenario is also illustrated. Those throughput values are depending on the traffic sample that was providing the minimum or the maximum benefit.

Wind		low wind s		strong headwind		osswind
Separation scheme and mode	min	max	min	max	min	max
RECAT-EU TBS with ORD (AO-0328)	1%	2.3%	0.8%	1.8%		
Throughput						
RECAT-EU TBS with ORD (AO-0328)	37.4	39.0	37.7	38.6	-	-
RECAT-EU TBS with FTD only	37.0	38.1	37.4	37.9		

Wind	low wind		strong headwind		strong crosswi	nd
Separation scheme and mode	min	max	min	max	min	max
RECAT-EU-PWS TBS with ORD (AO-0328 and AO-	3.3	6.1	5.3%	5.9%	-	-
0306)	%	%				
Throughput						
RECAT-EU-PWS TBS with ORD (AO-0328 and AO-	40.2	41.2	39.3	40.2	-	-
0306)						
RECAT-EU TBS with FTD only	38.9	38.8	37.3	37.9		

Wind	low wind		strong headwind		strong crosswind	
Separation scheme and mode	mi	ma	min	max	min	max

Founding Members

	n	Х				
RECAT-EU WDS with ORD (AO-0328 and AO-0310)	-	-	-	-	2.3%	7.5%
Throughput						
RECAT-EU WDS with ORD (AO-0328 and AO-0310)					39.9	40.4
RECAT-EU TBS with FTD only					39.0	37.6

Wind	low wind		strong headwind		strong crossw	ind
Separation scheme and mode	mi n	ma x	min	max	min	max
RECAT-EU-PWS WDS with ORD (AO-0328, AO-0306 and AO-0310)	-	-	-	-	5.1%	9.8%
Throughput RECAT-EU-PWS WDS with ORD (AO-0328, AO-0306	-	-	-	-	40.2	42.1
and AO-0310) RECAT-EU TBS with FTD only					38.2	38.3

In Table 13 is a recap of the maximum throughput in % for the different OIs and in different wind conditions.

Wind	low wind		strong headwind		strong crossw	ind
Separation scheme and mode	min	max	min	max	min	max
RECAT-EU TBS with ORD (AO-0328)	1%	2.3%	0.8%	1.8%	-	-
RECAT-EU-PWS TBS with ORD (AO-0328 and AO-0306)	3.3%	6.1%	5.3%	5.9%	-	-
RECAT-EU WDS with ORD (AO-0328 and AO-0310)	-	-	-	-	2.3%	7.5%
RECAT-EU-PWS WDS with ORD (AO-0328, AO-0306 and AO-0310)	-	-	-	-	5.1%	9.8%

Table 13: Summary of the maximum throughput evolution for the different OIs, for different traffic samples and in different wind conditions

CAP4:

Assuming that the constrained airport has a single traffic peak of 1 hour during the day, the results of CAP3.2 are multiplied per the number of days in a year, to obtain a lower bound estimation of the benefit.

ORD (AO-0328) – 109.5-328.5 increase in flights/year PWS-A (AO-0306) – 474-876 increase in flights/year WDS-A (AO-0310) – 328.5-1022 increase in flights/year

KPIs / PIs	Unit	Calculation	Mandatory	Benefit in SESAR1 (if applicable)	Absolute expected performance benefit in SESAR2020	% expected performance benefit in SESAR2020
CAP3 Peak Runway Throughput (Mixed mode)	% and Flight per hour	% and also total number of movements per one runway per one hour for specific traffic mix and density (in mixed mode RWY operations). The percentage change is measured against the maximum observed throughput during peak demand hours in the mixed-mode RWY operations airports group.	YES	N/A	ORD (AO-0328) tool support for RECAT-EU TBS – 4.44 increase in movements per hour, compared to TBS (AO-0303) FTD Indicator only tool support for RECAT-EU TBS, with a Vienna airport traffic mix. PWS-A (AO- 0306) with ORD (AO-0328) tool support – 0.05 increase in movements per hour, compared to TBS (AO-0303) FTD Indicator only tool support for RECAT-EU TBS, with a Vienna airport traffic mix. WDS-A (AO- 0310) in the context of RECAT-EU TBS with ORD (AO- 0328) tool support – 0.05 increase in movements per hour, compared to TBS (AO-0303) FTD Indicator only tool support for RECAT-EU TBS with ORD (AO- 0328) tool support – 0.05 increase in movements per hour, compared to TBS (AO-0303) FTD Indicator only tool support for RECAT-EU TBS, with a Vienna airport traffic mix.	0310) in the context of RECAT-EU TBS with ORD (AO- 0328) tool support – 0.01% increase in movements per hour, compared to TBS (AO-0303) FTD Indicator
CAP3.1 Peak Departure throughput per hour (Segregated	% and Flight per hour	% and also total number of departures per one runway per one hour for specific traffic mix and density (in segregated	YES	N/A	See departures concept section	

Founding Members

KPIs / PIs	Unit	Calculation	Mandatory	Benefit in SESAR1 (if applicable)	Absolute expected performance benefit in SESAR2020	% expected performance benefit in SESAR2020
mode)		mode of operations). The percentage change is measured against the maximum observed throughput during peak demand hours in the segregated- mode RWY operations airports group.				
CAP3.2 Peak Arrival throughput per hour (Segregated mode)	% and	% and also total number of arrivals per one runway per one hour for specific traffic mix and density (in segregated mode of operations). The percentage change is measured against the maximum observed throughput during peak demand hours in the segregated- mode RWY operations airports group.	YES	N/A	tool support for RECAT-EU TBS- 0.3-0.9 increase in movements per hour, compared to TBS (AO-0303) FTD Indicator only tool support for RECAT-EU TBS, with a Vienna airport traffic mix. PWS-A (AO- 0306) with ORD (AO-0328) tool support – 1.3-2.4 increase in movements per hour, compared to TBS (AO-0303) FTD Indicator only tool support for RECAT-EU TBS, with a Vienna airport traffic mix. WDS-A (AO- 0310) in the context of RECAT-EU TBS with ORD (AO- 0328) tool support – 0.9-2.8 increase in movements per hour, compared	increase in movements per hour, compared to TBS (AO-0303) FTD Indicator only tool support for RECAT-EU TBS, with a Vienna airport traffic mix. PWS-A (AO- 0306) with ORD (AO-0328) tool support – 3.3% - 6.1% increase in movements per hour, compared to TBS (AO-0303) FTD Indicator only tool support for RECAT-EU TBS, with a Vienna airport traffic mix. WDS-A (AO- 0310) in the context of RECAT-EU TBS with ORD (AO- 0328) tool support – 2.3% - 7.5% increase in movements per hour, compared to TBS (AO-0303)

Founding Members

KPIs / PIs	Unit	Calculation	Mandatory	Benefit in SESAR1 (if applicable)	Absolute expected performance benefit in SESAR2020	% expected performance benefit in SESAR2020
					only tool support for RECAT-EU TBS, with a Vienna airport traffic mix.	only tool support for RECAT-EU TBS, with a Vienna airport traffic mix.
CAP4 Un- accommodated traffic reduction	Flights/year	Reduction in the number of un-accommodated flights i.e. a flight that would have been scheduled if there were available slots at the origin/destination airports. NB: Supports CBA Inputs. NB: Relates to Airport Capacity because this is STATFOR computation. CBA calculate this based on the assessment of the runway throughput we provide with and without the solutions and STATFOR data.	YES For CBA.	NA	tool support for RECAT-EU TBS- 109.5-328.5 increase in flights per year, compared to TBS (AO-0303) FTD Indicator only tool support for RECAT-EU TBS, with a Vienna airport traffic mix. PWS-A (AO- 0306) with ORD (AO-0328) tool support – 474- 876 increase in flights per year, compared to TBS (AO-0303) FTD Indicator only tool support for RECAT-EU TBS, with a Vienna airport traffic mix. WDS-A (AO- 0310) in the context of RECAT-EU TBS with ORD (AO- 0328) tool support – 328.5- 1022 increase in flights per year, compared to TBS (AO-0303) FTD Indicator only tool support – 328.5- 1022 increase in flights per year, compared to TBS (AO-0303) FTD Indicator only tool support for RECAT-EU TBS, with a Vienna	0.8%-2.3% increase in flights per year, compared to TBS (AO-0303) FTD Indicator only tool support for RECAT-EU TBS, with a Vienna airport traffic mix. PWS-A (AO- 0306) with ORD (AO-0328) tool support – 3.3%- 6.1% increase in flights per year, compared to TBS (AO-0303) FTD Indicator only tool support for RECAT-EU TBS, with a Vienna airport traffic mix.

4.3.3.3 Extrapolation to ECAC wide

There is no ECAC wide extrapolation required for this KPI.

4.3.3.4 Discussion of Assessment Result

These results meet and exceed the performance targets defined from PJ.19 that was a 2.574% increase in capacity with the exception of ORD when deployed alone (where the best result of 2.3% capacity increase is very close to the validation target).

The confidence estimate in the results is moderate, they are based on generic characteristics that are common in other European airports. The benefits identified are an estimation applicable to very large, large and medium airports that are capacity constrained during traffic peaks because of the wake turbulence constraints and the separation delivery on approach.

For each local airports the exact benefits are depending on several factors including specific traffic mix, length of traffic peak, wind conditions (especially for WDS), applicable surveillance minima, runway occupancy time, glide length, type of approach, runway layout, airport infrastructure, etc..; these factors were taken into account in the FTS as fixed parameters (e.g. ROT) or dynamic parameters modified in each run (e.g. the traffic mix, wind conditions, ...) to provide as many different cases as possible.

14 reference scenarios and 20 solution scenarios have been fast time simulated for each of the 4 traffic samples. Each traffic sample varies 7 times the traffic pressure, thus a comprehensive set of results has been obtained and for the PAR we provided a range of values.

4.3.3.5 Additional Comments and Notes

No additional comments.

4.3.4 Resilience (% Loss of Airport & Airspace Capacity Avoided)

4.3.4.1 Performance Mechanism

The arrivals OI are focused on reduction and optimising separations between aircraft during traffic peak. 2 OIs (WDS-A and PWS-A) further optimised the minimum wake separations to be applied between consecutive arrivals, the ORD OI further enhance the separation delivery tool that supports the ATCO in providing separations and spacing. By reducing separations and optimising spacing we obtain higher Resilience and loss of capacity can be avoided. See the BIM in the OSED for details.

4.3.4.2 Assessment Data (Exercises and Expectations)

For the resilience KPI, in the FTS9 exercise each solution run is compared to the reference scenario runs with the same traffic pressure, the number of go-around is then recorded. A go-around is equivalent to a loss of Airport Capacity, so a % reduction of the number of the go-around improves the airport resilience when adverse conditions (such as strong wind) are in place.

RES1

The following table summarizes the results in terms of fraction of go-around and number of movements (between brackets) for the solutions scenarios when compared to the reference

scenario; a positive percentage indicates a reduction in the number of go-around in the solution scenarios.

Wind	low wind		strong headwind		strong crosswind	
Separation scheme and mode	min	max	min	max	min	max
RECAT-EU TBS with ORD (AO-0328)	0%	0%	0%	0%	-	-
	(0)	(0)	(0)	(0)		
RECAT-EU-PWS TBS with ORD (AO-0328 and AO-	0%	6%	2%	6%	-	-
0306)	(0)	(3)	(1)	(3)		
RECAT-EU WDS with ORD (AO-0328 and AO-0310)	-	-	-	-	0%	4%
					(0)	(2)
RECAT-EU-PWS WDS with ORD (AO-0328, AO-0306	-	-	-	-	1%	8%
and AO-0310)					(1)	(4)

Depending from wind condition, traffic samples and OIs applied the benefit range for the solution is between 0%-8% movements and 0-4 go-arounds less.

RES1.1

In line with RES1, the following table shows the additional length of the runs due to the capacity disruption. A negative amount indicates the additional length of the run (in minutes) for the reference scenario compared to the solution scenarios runs.

Wind	low wind		strong headwind		strong crosswi	ind
Separation scheme and mode	mi	ma	min	max	min	max
	n	x				
RECAT-EU TBS with ORD (AO-0328)	-	-	-0.9	-0.9	-	-
	0.6	0.6				
RECAT-EU-PWS TBS with ORD (AO-0328 and AO-0306)	-	-	-2.65	-7.15	-	-
	0.6	6.5				
RECAT-EU WDS with ORD (AO-0328 and AO-0310)	-	-	-	-	-0.68	-4.8
RECAT-EU-PWS WDS with ORD (AO-0328, AO-0306 and AO-0310)	-	-	-	-	-2.7	-11.8

Depending from wind condition, traffic samples and OIs applied the benefit range for the solution is between -0.6-11.8 minutes to recover from disruption.

RES4

For this performance indicator results of the FTS9 are used. The reference scenario at the maximum traffic pressure for avoiding go-arounds is compared to the solution runs. The saved time spent flying in the TMA is recorded and used to quantify the benefit to reduce the delay due to the less time spent in holding, the amount time flying faster and the reduced separations in the TMA. A positive amount indicates a positive benefit for the solution run.

low wind	strong	strong	
	JS, AT-ONE, DSNA, S	EAC2020. All rights reserved.	77
	© – 2020 – EUROCONTROL,	© – 2020 – EUROCONTROL, THALES AIR SYSTEM LEONARDO GmbH, AIRBUS, AT-ONE, DSNA, S	Iow windstrongstrong© - 2020 - EUROCONTROL, THALES AIR SYSTEMS SAS, NATS, ENAIRE, INDRA, LEONARDO GmbH, AIRBUS, AT-ONE, DSNA, SEAC2020. All rights reserved. Licensed to the SJU under conditions.

	headwir	nd	ind			
Separation scheme and mode	min	max	min	max	min	max
RECAT-EU TBS with ORD (AO-0328)	0.8	1	0.66	1	-	-
RECAT-EU-PWS TBS with ORD (AO-0328 and AO-0306)	2.4 8	7.83	2.48	7.83	-	-
RECAT-EU WDS with ORD (AO-0328 and AO-0310)	-	-	-	-	1	5.4
RECAT-EU-PWS WDS with ORD (AO-0328, AO-0306 and AO-0310)	-	-	-	-	2.1	10.68

Depending from wind condition, traffic samples and OIs applied the minutes of delay saved for the solution is between 0.66-10.68.

RES5 (Cancellation)

There aren't any differences between reference and solution scenarios, with 0 flights cancellation. This is because both scenarios rely on TBS OI from SESAR1. TBS has been deployed at Heathrow Airport in March 2015 and one of the main benefits was that tactical cancellations due to headwinds were reduced at 0 [23]. It is not expected that those OIs would be beneficial for cancellations due to other reasons.

PIs	Unit	Calculation	Mandatory	Benefit in SESAR1 (if applicable)	Absolute expected performance benefit in SESAR2020	% expected performance benefit in SESAR2020
-----	------	-------------	-----------	---	---	---

PIs	Unit	Calculation	Mandatory	Benefit in SESAR1 (if applicable)	Absolute expected performance benefit in SESAR2020	% expected performance benefit in SESAR2020
RES1 Loss of Airport Capacity Avoided	% and Movements per hour	Loss of Airport Capacity with the concept divided by the loss of Airport Capacity without the concept.	YES	N/A	ORD (AO-0328) tool support for RECAT- EU TBS – 0 increase in movements per hour, compared to TBS (AO-0303) FTD Indicator only tool support for RECAT- EU TBS, with a Vienna airport traffic mix. PWS-A (AO-0306) – 0-3 increase in movements per hour, compared to TBS (AO-0303) FTD Indicator only tool support for RECAT- EU TBS, with a Vienna airport traffic mix. WDS-A (AO-0310) in the context of RECAT-EU TBS with ORD (AO-0328) tool support - 0-2 increase in movements per hour, compared to TBS (AO-0303) FTD Indicator only tool support for RECAT- EU TBS, with a Vienna airport traffic mix.	ORD (AO-0328) tool support for RECAT- EU TBS – 0% increase in movements per hour, compared to TBS (AO-0303) FTD Indicator only tool support for RECAT- EU TBS, with a Vienna airport traffic mix. PWS-A (AO-0306) – 0-6% increase in movements per hour, compared to TBS (AO-0303) FTD Indicator only tool support for RECAT- EU TBS, with a Vienna airport traffic mix. WDS-A (AO-0310) in the context of RECAT-EU TBS with ORD (AO-0328) tool support – 0-4% increase in movements per hour, compared to TBS (AO-0303) FTD Indicator only tool support – 0-4% increase in movements per hour, compared to TBS (AO-0303) FTD Indicator only tool support for RECAT- EU TBS, with a Vienna airport traffic mix.

PIs	Unit	Calculation	Mandatory	Benefit in SESAR1 (if applicable)	Absolute expected performance benefit in SESAR2020	% expected performance benefit in SESAR2020
RES 1.1 Airport time to recover from non- nominal to nominal condition	Minutes	Duration of Airport lost capacity from non- nominal to nominal condition.	YES for Airport OE Solutions	N/A	ORD (AO-0328) tool support for RECAT- EU TBS- 0.6-0.9 minutes gain, compared to TBS (AO-0303) FTD Indicator only tool support for RECAT- EU TBS, with a Vienna airport traffic mix. PWS-A (AO-0306) - 0.6-7.15 minutes gain in 1 hour, compared to TBS (AO-0303) FTD Indicator only tool support for RECAT- EU TBS, with a Vienna airport traffic mix. WDS-A (AO-0310) in the context of RECAT-EU TBS with ORD (AO-0328) tool support - 0.68-4.8 minutes gain in 1 hour, compared to TBS (AO-0303) FTD Indicator only tool support for RECAT- EU TBS, with a Vienna airport traffic mix.	ORD (AO-0328) tool support for RECAT- EU TBS- 1% minutes gain in 1 hour, compared to TBS (AO-0303) FTD Indicator only tool support for RECAT- EU TBS, with a Vienna airport traffic mix. PWS-A (AO-0306) - 1%-12% minutes gain in 1 hour, compared to TBS (AO-0303) FTD Indicator only tool support for RECAT- EU TBS, with a Vienna airport traffic mix. WDS-A (AO-0310) in the context of RECAT-EU TBS with ORD (AO-0328) tool support - 0-8% minutes gain in hour, compared to TBS (AO-0303) FTD Indicator only tool support - 0-8% minutes gain in hour, compared to TBS (AO-0303) FTD Indicator only tool support for RECAT- EU TBS, with a Vienna airport traffic mix.

PIs	Unit	Calculation	Mandatory	Benefit in SESAR1 (if applicable)	Absolute expected performance benefit in SESAR2020	% expected performance benefit in SESAR2020
RES2 Loss of Airspace Capacity Avoided	% and Movements per hour	Loss of Airspace Capacity with the concept divided by the loss of Airspace Capacity without the concept	YES	N/A	ORD (AO-0328) tool support for RECAT- EU TBS- 0 increase in movements per hour, compared to TBS (AO-0303) FTD Indicator only tool support for RECAT- EU TBS, with a Vienna airport traffic mix. PWS-A (AO-0306) - 0-3 increase in movements per hour, compared to TBS (AO-0303) FTD Indicator only tool support for RECAT- EU TBS, with a Vienna airport traffic mix. WDS-A (AO-0310) in the context of RECAT-EU TBS with ORD (AO-0328) tool support - 0-2 increase in movements per hour, compared to TBS (AO-0303) FTD Indicator only tool support for RECAT- EU TBS, with a Vienna airport traffic mix.	ORD (AO-0328) tool support for RECAT- EU TBS- 0% increase in movements per hour, compared to TBS (AO-0303) FTD Indicator only tool support for RECAT- EU TBS, with a Vienna airport traffic mix. PWS-A (AO-0306) - 0-6% increase in movements per hour, compared to TBS (AO-0303) FTD Indicator only tool support for RECAT- EU TBS, with a Vienna airport traffic mix. WDS-A (AO-0310) in the context of RECAT-EU TBS with ORD (AO-0328) tool support - 0-4% increase in movements per hour, compared to TBS (AO-0303) FTD Indicator only tool support - 0-4% increase in movements per hour, compared to TBS (AO-0303) FTD Indicator only tool support for RECAT- EU TBS, with a Vienna airport traffic mix.
RES2.1 Airspace time to recover from non- nominal to nominal condition	Minutes	Duration of Airspace lost capacity compared to non- nominal to nominal condition.	for	N/A	N/A	N/A

PIs	Unit	Calculation	Mandatory	Benefit in SESAR1 (if applicable)	Absolute expected performance benefit in SESAR2020	% expected performance benefit in SESAR2020
RES4 Minutes of delays	Minutes	Impact on AUs measured through delays resulting from capacity degradation ¹¹ . RES1 and RES2 KPIs drive this PI, though the PI may need to be measured on a condition-by- condition basis (e.g. fog, wind, system outage).		N/A	ORD (AO-0328) tool support for RECAT- EU TBS- 0.8-1 minutes gain, compared to TBS (AO-0303) FTD Indicator only tool support for RECAT- EU TBS, with a Vienna airport traffic mix. PWS-A (AO-0306) - 2.48-7.83 minutes gain in 1 hour, compared to TBS (AO-0303) FTD Indicator only tool support for RECAT- EU TBS, with a Vienna airport traffic mix. WDS-A (AO-0310) in the context of RECAT-EU TBS with ORD (AO-0328) tool support - 1-5.4 minutes gain in 1 hour, compared to TBS (AO-0303) FTD Indicator only tool support for RECAT- EU TBS, with a Vienna airport traffic mix.	4%-13% minutes gain in 1 hour, compared to TBS (AO-0303) FTD Indicator only tool support for RECAT- EU TBS, with a Vienna airport traffic mix. WDS-A (AO-0310) in the context of RECAT-EU TBS with

Founding Members

¹¹ Reactionary delay out of the scope since they could be due to many different reasons other than capacity degradation, in addition the cause of reactionary delay is not recorded in detail.

^{82 © – 2020 –} EUROCONTROL, THALES AIR SYSTEMS SAS, NATS, ENAIRE, INDRA, LEONARDO GmbH, AIRBUS, AT-ONE, DSNA, SEAC2020. All rights reserved. Licensed to the SJU under conditions.

PIs	Unit	Calculation	Mandatory	Benefit in SESAR1 (if applicable)	Absolute expected performance benefit in SESAR2020	% expected performance benefit in SESAR2020
RES5 Number of cancellations	Nb flights	Impact on AUs measured through Cancellations resulting from capacity degradation ¹² . RES1 and RES2 KPIs drive this PI, though the PI may need to be measured on a condition-by- condition basis (e.g. fog, wind, system outage).		N/A	support for RECAT- EU TBS- 0, compared to TBS (AO-0303) FTD Indicator only tool support for RECAT- EU TBS, with a Vienna airport traffic mix. PWS-A (AO-0306) - 0, compared to TBS (AO-0303) FTD Indicator only tool support for RECAT- EU TBS, with a Vienna airport traffic mix. WDS-A (AO-0310) in the context of RECAT-EU TBS with ORD (AO-0328) tool support - 0, compared to TBS (AO-0303) FTD Indicator only tool support for RECAT- EU TBS, with a	 (AO-0303) FTD Indicator only tool support for RECAT- EU TBS, with a Vienna airport traffic mix. PWS-A (AO-0306) – 0%, compared to TBS (AO-0303) FTD Indicator only tool support for RECAT- EU TBS, with a Vienna airport traffic mix. WDS-A (AO-0310) in the context of RECAT-EU TBS with ORD (AO-0328) tool support – 0%, compared to TBS (AO-0303) FTD Indicator only tool support for RECAT-

4.3.4.3 Extrapolation to ECAC wide

There is no ECAC wide extrapolation required for this KPI.

4.3.4.4 Discussion of Assessment Result

There is not a validation target associated to Resilience by PJ19.04. The confidence estimate in the results is low. The benefits identified are an estimation applicable to very large, large and medium airports that are capacity constrained during traffic peaks because of the wake turbulence constraints and the separation delivery on approach.

¹² Reactionary delay out of the scope since they could be due to many different reasons other than capacity degradation, in addition the cause of reactionary delay is not recorded in detail.

4.3.4.5 Additional Comments and Notes

No additional comments.

4.3.5 Predictability (Flight Duration Variability, against RBT)

4.3.5.1 Performance Mechanism

The arrivals OI are focused on reduction and optimising separations between aircraft during traffic peak. Reduction of separations and spacing (e.g. takin in account a better estimation of wind conditions) will reduce the average delay per flight. See the BIM in the OSED for details.

4.3.5.2 Assessment Data (Exercises and Expectations)

PRD1

Predictability benefit for arrivals traffic in peak is measured using the results of the FTS9, where the time to land each aircraft was recorded and compared to the reference scenario. For these results only the scenarios where the traffic was coordinated in order to guarantee the maximum available traffic pressure without go-arounds were taken in account.

Predictability net benefit is measured using the standard deviation formula a, the results below provide the difference in standard deviation for each OIs, considering all runs with different traffic samples and wind conditions.

	Headwind	Crosswind
Separation scheme and mode	Standard Devia	ation (minutes)
RECAT-EU TBS with ORD (AO-0328)	0.40	-
RECAT-EU-PWS TBS with ORD (AO-0328 and AO-0306)	0.62	-
RECAT-EU WDS with ORD (AO-0328 and AO-0310)	-	0.55
RECAT-EU-PWS WDS with ORD (AO-0328, AO-0306 and AO-0310)	-	0.57

4.3.5.3 Extrapolation to ECAC wide

The following PJ.19 common assumptions have been used:

- High density airports traffic contribution to total airport traffic = 59.5%
- Arrivals traffic contribution to total traffic = 50%
- TMA contribution to variability = 43%
- B2B variance = 49.0 mins²
- Current variance = 49 min² (B2B absolute variance) * 43% (B2B variance of the TMA arrival) = 21.07 min²
- 2. Current variability = (21.07)1/2 = 4.59 min

PRD1 for AO-0328 (ORD):

1. Improved absolute variance (local) = 4.59 min -0.4 min = 4.19 min = 17.55 min^2

^{84 © – 2020 –} EUROCONTROL, THALES AIR SYSTEMS SAS, NATS, ENAIRE, INDRA, LEONARDO GmbH, AIRBUS, AT-ONE, DSNA, SEAC2020. All rights reserved. Licensed to the SJU under conditions.

- 2. Absolute difference variance (local) = 17.55 21.07 = -3.5139 min²
- 3. Arrival TMA predictability benefits at ECAC level -3.5139 min² (absolute difference variance (local)) *50% *59.5% (share of ECAC traffic) = -1.045min² = 2.13%

PRD1 for AO-0306 (PWS-A):

- 1. Improved absolute variance (local) = 4.59 min -0.62 min = 3.97 min = 15.761 min^2
- 2. Absolute difference variance (local) = 15.761 21.07 = -5.3091 min²
- 3. Arrival TMA predictability benefits at ECAC level -5.3091 min² (absolute difference variance (local)) *50% *59.5% (share of ECAC traffic) = -1.579min² = 3.22%

PRD1 for AO-0310 (WDS-A):

- 1. Improved absolute variance (local) = 4.59 min -0.55 min = 4.04 min = 16.32 min^2
- 2. Absolute difference variance (local) = $16.32 21.07 = -4.748 \text{ min}^2$
- 3. Arrival TMA predictability benefits at ECAC level -4.748 min² (absolute difference variance (local)) *50% *59.5% (share of ECAC traffic) = -1.412min² = 2.88%

KPIs / PIs	Unit	Calculation	Mandatory	Benefit in SESAR1 (if applicable)	Absolute expected performance benefit in SESAR2020	% expected performance benefit in SESAR2020
PRD1 Variance ¹³ of Difference in actual & Flight Plan or RBT durations	Minutes ²	Variance of Difference in actual & Flight Plan or RBT durations	YES	N/A	ORD (AO-0328) tool support for RECAT-EU TBS – 1.045 min^2 reduction (standard deviation) , compared to TBS (AO- 0303) FTD Indicator only tool support for RECAT-EU TBS, with a Vienna airport traffic mix. PWS-A (AO-0306) 1.579 min^2reduction (standard deviation), compared to TBS (AO-0303) FTD Indicator only tool support for RECAT-EU TBS, with a Vienna airport traffic mix. WDS-A (AO-0310) in the context of RECAT-EU TBS with ORD (AO-0328) tool support 1.412 min^2 reduction (standard deviation), compared to TBS (AO-0303) FTD Indicator only tool support for RECAT-EU TBS, with a Vienna airport traffic mix.	support for RECAT-EU

Table 14 is showing the impact on flight phases (provided when it is possible).

	Taxi out	TMA departure	En- route	TMA arrival	Taxi in
PRD1 Variance ¹⁴ of Difference in actual & Flight Plan or RBT durations	N/A	N/A	N/A	ORD (AO-0328) tool support for RECAT-EU TBS– 1.045 min^2 reduction in flight duration, compared to TBS (AO-0303) FTD Indicator only tool support for RECAT-EU TBS, with a Vienna airport traffic mix.	N/A

¹³ Standard Deviation is also accepted.

- ¹⁴ Standard Deviation is also accepted.
- 86 © 2020 EUROCONTROL, THALES AIR SYSTEMS SAS, NATS, ENAIRE, INDRA, LEONARDO GmbH, AIRBUS, AT-ONE, DSNA, SEAC2020. All rights reserved. Licensed to the SJU under conditions.

	PWS-A (AO-0306) – 1.579 min ² reduction in flight duration, compared to TBS (AO-0303) FTD Indicator only tool support for RECAT-EU TBS, with a Vienna airport traffic mix.	
	WDS-A (AO-0310) in the context of RECAT-EU TBS with ORD (AO-0328) tool support – 1.412 min^2 reduction in flight duration, compared to TBS (AO-0303) FTD Indicator only tool support for RECAT-EU TBS, with a Vienna airport traffic mix.	

Table 14: Predictability benefit per flight p	hase, standard deviation improvement.
Table 14. I realetability beliefit per fight p	mase, standard deviation improvement.

4.3.5.4 Discussion of Assessment Result

The performance target indicates 0.27%. The % expected performance benefits of 4-5-6 % exceed the performance target. The confidence in these results is low.

4.3.5.5 Additional Comments and Notes

No additional comments.

4.3.6 Human Performance

4.3.6.1 HP arguments, activities and metrics

The HP Assessment performed for the Arrival concepts- as part of PJ.02-01 ensured that relevant HP aspects have been identified and considered for the operational and technical development of the Increased Runway and Airport Throughput concepts, based on the HP Assessment Process methodology.

The arrivals validation activities for PJ.02-01 focused on:

- a) Arrival Wake Separation concepts:
 - 1. Static PairWise Separations (S-PWS) Wake turbulence separations for arrivals based on static aircraft characteristics (AO-0306);
 - 2. Weather Dependent Separations (WDS) weather dependant reductions of wake turbulence separations on the final approach (AO-0310);
 - Optimised Runway Delivery (ORD) a controller tool to support the application of static pairwise separations and weather dependent separations on the final approach (AO-0328).

All OIs have been analyses separately and the conclusions of the HP assessment are to be found in part IV of the OSED, where an HP log documents the conclusions for each OI separately. In the following sections of chapter 4.3.14 a separate input will be made for each of the OIs for arrivals.

PIs	Activities & Metrics	Second level indicators	Covered
HP1 Consistency of human role with respect to human capabilities	 Stakeholder Workshop Prototyping 	HP1.1 Clarity and completeness of role and responsibilities of human actors	(AO-0306) (AO-0310) (AO-0328)

Pls	Activities & Metrics	Second level indicators	Covered
and limitations	Sessions • Real Time Simulation	HP1.2 Adequacy of operating methods (procedures) in supporting human performance	(AO-0306) (AO-0310) (AO-0328)
		HP1.3 Capability of human actors to achieve their tasks in a timely manner, with limited error rate and acceptable workload level	(AO-0306) (AO-0310) (AO-0328)
	Stakeholder	HP2.1 Adequacy of allocation of tasks between the human and the machine (i.e. level of automation).	(AO-0306) (AO-0310) (AO-0328)
HP2 Suitability of technical system in	 Workshop Prototyping Sessions Real Time 	HP2.2 Adequacy of technical systems in supporting Human Performance with respect to timeliness of system responses and accuracy of information provided	(AO-0306) (AO-0310) (AO-0328)
supporting the tasks of human actors	Simulation	HP2.3 Adequacy of the human machine interface in supporting the human in carrying out their tasks.	(AO-0306) (AO-0310) (AO-0328)
	- Stelebelder	HP3.1 Adequacy of team composition in terms of identified roles	N/A
НРЗ	 Stakeholder Workshop Prototyping Sessions 	HP3.2 Adequacy of task allocation among human actors	(AO-0310) (AO-0328)
Adequacy of team structure and team communication in supporting the human actors	Real Time Simulation	HP3.3 Adequacy of team communication with regard to information type, technical enablers and impact on situation awareness/workload	(AO-0306) (AO-0310) (AO-0328)
		HP4.1 User acceptability of the proposed solution	(AO-0306) (AO-0310) (AO-0328)
	Stakeholder	HP4.2 Feasibility in relation to changes in competence requirements	(AO-0306) (AO-0310) (AO-0328)
НР4	 Workshop Prototyping Sessions Real Time 	HP4.3 Feasibility in relation to changes in staffing levels, shift organization and workforce relocation.	N/A
Feasibility with regard to HP- related transition factors	Simulation	HP4.4 Feasibility in relation to changes in recruitment and selection requirements.	N/A
		HP4.5 Feasibility in terms of changes in training needs with regard to its contents, duration and modality.	(AO-0306) (AO-0310) (AO-0328)

Founding Members

4.3.6.2 Extrapolation to ECAC wide

There is no ECAC wide extrapolation required for this KPI.

4.3.6.3 Open HP issues/ recommendations and requirements

PIs	Number of open issues/ benefits	Nr. of recommendations	Number of requirements
HP1	(AO-0306) - none	(AO-0306) - 0	(AO-0306) - 16
Consistency of human role with respect to	(AO-0310) - none	(AO-0310) - 3	(AO-0310) - 23
human capabilities and limitations	(AO-0328) - none	(AO-0328) - 4	(AO-0328) - 47
HP2	(AO-0306) - none	(AO-0306) – 4	(AO-0306) – 5
Suitability of technical system in supporting	(AO-0310) - none	(AO-0310) – 3	(AO-0310) – 17
the tasks of human actors	(AO-0328) - none	(AO-0328) – 7	(AO-0328) – 81
HP3 Adequacy of team structure and team communication in supporting the human actors	(AO-0306) - none (AO-0310) - none (AO-0328) - none	(AO-0306) - 0 (AO-0310) - 2 (AO-0328) - 0	(AO-0306) - 0 (AO-0310) - 1 (AO-0328) - 3
HP4	(AO-0306) - none	(AO-0306) – 1	(AO-0306) – 6
Feasibility with regard to HP-related	(AO-0310) - none	(AO-0310) – 3	(AO-0310) – 7
transition factors	(AO-0328) - none	(AO-0328) – 1	(AO-0328) – 16

4.3.6.4 Concept interaction

N/A

4.3.6.5 Most important HP issues

Please list here any important issues that might have a major impact on the performance of the solution.

In case issues that impact other solutions are envisaged please list them here to facilitate the aggregation of data into deployment scenarios

PIs	Most important issue of the solution	Most important issues due to solution interdependencies		
HP1	N/A	N/A		
Consistency of human role with respect to human capabilities and limitations	N/A	N/A		
	N/A	N/A		
HP2	N/A	N/A		

Founding Members

Pls	Most important issue of the solution	Most important issues due to solution interdependencies
Suitability of technical system in supporting the tasks of human actors	N/A	N/A
	N/A	N/A
HP3 Adequacy of team structure and team	N/A	N/A
communication in supporting the human actors	N/A	N/A
	N/A	N/A
HP4	N/A	N/A
Feasibility with regard to HP-related transition factors	N/A	N/A
	N/A	N/A
	N/A	N/A
	N/A	N/A

Given the fact that through the stakeholder workshops, prototyping sessions and real time simulations all issues have been addressed and closed, the table below is not seen as applicable for PJ.02-01 arrivals concepts.

4.3.6.6 Additional Comments and Notes

No additional comments.

4.4 Departures Concepts Solutions

4.4.1 Safety

4.4.1.1 Safety Criteria and Performance Mechanism

The following (amended) SAC¹⁵ (Table 15) apply to all departure concepts¹⁶:

¹⁵ SACs amended following revision of the Departure Wake AIM

¹⁶ D-TB-WDS-Tw, D-TB-WDS-Xw, D-PWS-EU

^{90 © – 2020 –} EUROCONTROL, THALES AIR SYSTEMS SAS, NATS, ENAIRE, INDRA, LEONARDO GmbH, AIRBUS, AT-ONE, DSNA, SEAC2020. All rights reserved. Licensed to the SJU under conditions.

SAC Ref	SAC	Associated Hazard Ref	Associated Hazard
SAC#D1	There shall be no increase of imminent wake infringement on departure induced by ATC (or the crew of the 1 st aircraft), when the 2 nd aircraft is not yet airborne, in the wake turbulence scheme under consideration, compared to current operations' wake turbulence scheme (e.g. ICAO, RECAT-EU or UK 5-Cat) Precursor: WE8.a.1, WE8.1.2 leading to WE8.a	Hp#D1	Wake Turbulence-induced Accident (WTA) on Initial Common Departure Path
SAC#D2	There shall be no increase of imminent wake infringement on departure induced by ATC (or the crew of the 1 st or 2 nd aircraft), when the 2 nd aircraft is airborne, in the wake turbulence scheme under consideration, compared to current operations' wake turbulence scheme (e.g. ICAO, RECAT-EU or UK 5-Cat) Precursor: WE8.b.1 leading to WE8.b	Hp#D1	Wake Turbulence-induced Accident (WTA) on Initial Common Departure Path
SAC#D3	There shall be no increase in imminent infringement of separation (non-wake) on departure induced by ATC	Hp#D2	Situation in which the intended 4- dimensional (4D) trajectories of two or more airborne aircraft are in conflict- Initial Common Departure Path"
SAC#D4	There shall be no increase in imminent wake infringement on departure due to incorrect design of the rule Precursor: WE7S	Hp#D1	Wake Turbulence-induced Accident (WTA) on Initial Common Departure Path. (Situation where wake separation on departure is eroded by catch-up scenario)
SAC#D5	There shall be no increase of ATC tactical conflicts	Hp#D2	Situation in which the intended 4- dimensional (4D) trajectories of two or more airborne aircraft are in conflict- Initial Common Departure Path
SAC#D6 ¹⁷	There shall be no increase in ATC induced Runway Incursion(s) (related to line-up/take-off) Precursor: RP3.2B	Hp#D3	The preceding landing/departing aircraft are not clear of the runway- in-use
SAC#D7	The probability of wake turbulence encounter (in the wake turbulence scheme under consideration), of a given severity for a given traffic pair on the initial common departure path, shall not increase compared to current operations' wake turbulence scheme (e.g. ICAO, RECAT-EU or UK 5-Cat) in reasonable worst-case conditions. Pre-cursor: WE7S1 Safety Criteria for the Departures Concepts	Hp#D1	Wake Turbulence-induced Accident (WTA) on Initial Common Departure Path

 Table 15 - Safety Criteria for the Departures Concepts

The following are the Performance Mechanisms associated with Safety.

¹⁷ RWY Collision risk model V2.0 08/04/2019

OSD (AO-0329): With the OSD system support, the accuracy of the spacing delivered between departure aircraft can be improved compared to what is achieved today. Improving spacing delivery accuracy can enable the consistent separation delivery to the wake separation rules, with a reduced level of 'under separation delivery' compared to what is achieved today which links to Safety. Controller reliance on the OSD system support should have no impact on Task Performance (i.e. Workload, Situational Awareness and User Acceptance). Overall workload should not increase. It is expected that any workload increase for some tasks will be offset as a result of the OSD system support and reduce workload in other areas, so no changes are anticipated to Safety. Situational Awareness is not expected to be impacted and thus no changes are anticipated on Safety.

PWS-D (AO-0323) and the support of OSD (AO-0329): With the OSD system support, the accuracy of the spacing delivered between departure aircraft can be improved compared to what is achieved today. Improved spacing delivery accuracy with the OSD system support can enable the improved separation delivery to the PWS-D rules, reducing the level of 'under separation delivery' compared to what is achieved today, thus enabling a safe reduction in the overall amount of wake separation that is required to be delivered, which links to Safety. Controller reliance on the OSD system support should have no impact on Task Performance (i.e. Workload, Situational Awareness and User Acceptance). Overall workload should not increase. It is expected that any workload increase for some tasks will be offset as a result of the OSD system support and reduce workload in other areas, so no changes are anticipated to Safety. Using PWS-D will not increase the frequency of potential WV encounters for a given wind and a given traffic pair compared to reference traffic pair at current standard operations in reasonable worst-case conditions. No increase in the frequency of potential WVEs compared to reference traffic pair at current standard operations in reasonable worst-case conditions, will not impact Safety Performance – links to Safety.

WDS-D (AO-0304) in the context of PWS-D (AO-0323) and the support of OSD (AO-0329): With the OSD system support, the accuracy of the spacing delivered between departure aircraft can be improved compared to what is achieved today. Improving spacing delivery accuracy with the OSD system support can enable the improved separation delivery to the WDS-D rules, reducing the level of 'under separation delivery' compared to what is achieved today, thus enabling a safe reduction in the overall amount of wake separation that is required to be delivered, which links to Safety. Controller reliance on the OSD system support should have no impact on Task Performance (i.e. Workload, Situational Awareness and User Acceptance). Overall workload should not increase. It is expected that any workload increase for some tasks will be offset as a result of the OSD system support and reduce workload in other areas, so no changes are anticipated to Safety. Situational Awareness is not expected to be impacted and thus no changes are anticipated on Safety. Using WDS-D will not increase the frequency of potential WV encounters for a given wind and a given traffic pair compared to reference traffic pair at current standard operations in reasonable worstcase conditions. No increase in the frequency of potential WVEs compared to reference traffic pair at current standard operations in reasonable worst-case conditions, will not impact Safety Performance – links to Safety.

4.4.1.2 Data collection and Assessment

The analysis conducted was as a result of RTS and hazard identification discussion along with end user workshops.

Functionality requirements have been identified along with high level integrity requirements. No shadow or live trials have been performed. Reference has been made to CREDOS[51] and whilst the requirements from that project are mentioned, they are included only for reference and it is recommended that they are referred to if local implementation is considered.

The safety assessment report does not replace any requirement for ANSPs to conduct bespoke safety cases when implementing the concept at local level.

Exercise ID, Name, Objective	Exercise Validation objective	Success criterion	Safety Criteria coverage	Validation results & Level of safety evidence
RTS04b - Conducted by EUROCONTROL to assess the operational feasibility of the static PairWise Separations departure concept (S-PWS) – wake turbulence separations for departing aircraft based on static aircraft characteristics (AO-0323) with Optimised Separation Delivery (OSD – AO- 0329) for departure aircraft under partially segregated runway departure operations. RTS4b was conducted using the Paris CDG airport and approach environment.	OBJ-PJ2.02-V3-VALP- SA5 To assess the impact of PWS-D with OSD on operational safety compared to current operations applying current wake vortex separation scheme for departures without OSD tool in partially segregated runway operations under nominal conditions.	CRT-PJ2.01-V3-VALP-SA5-001 Check that safe standard controller working practices are employed for managing departures under PWS-D with OSD tool in partially segregated runway operations. Controllers' feedback and observations based on expert judgement indicate there is no increase in the potential for human error with safety implication due to the introduction of time based PWS-D with OSD tool for managing departures in partially segregated runway operations e.g. either in terms of the severity of existing possible human errors or introduction of new potential causes for human errors.	D-SAC#F2, D-SAC#F4, D-SAC#F5, D-SAC#R3	No unsafe controller working practices were seen to be introduced by the OSD tool alone. However, due to the fact that the OSD tool was not taking into account the arrivals on RWY28L, which could increase the potential for human error with safety implications, PWS-D with OSD in partially segregated runway operations is considered as <u>not</u> acceptable. The OSD tool needs to be developed further for partially segregated and mixed mode runway operations, to indicate to the TWR ATCO that the runway is in use by an arrival, which would stop the TWR ATCO from clearing a departure for line-up.
		CRT-PJ2.01-V3-VALP-SA5-002 The number* of minor under-	D-SAC#F1,	The number of minor and major under-separated aircraft on the initial

Founding Members

	separated aircraft on the Initial departure in operations is not higher under time based PWS- D with OSD tool to the reference scenario in partially segregated runway operations.	D-SAC#F2, D-SAC#F4	departure path is not higher under time based PWS-D with OSD compared to the Solution 1 scenario (TB ICAO no OSD).
	*The number will be expressed as a percentage of the traffic sample of each exercise, for normalization needs.		
	The number of major under- separated aircraft (to be defined) on the initial departure in partially segregated runway operations is reduced under time based PWS-D with OSD tool compared to the reference scenario.		
	CRT-PJ2.01-V3-VALP-SA5-003 The number* of Departure- related Runway incursions in partially segregated runway operations is not higher under time based PWS-D with OSD compared to the reference scenario.	D-SAC#R3	There were no RWY incursions observed in the runs where PWS-D with the OSD tool was applied (i.e. Solution 2).

Founding Members

		*The number will be expressed as a percentage of the number of Departures (only occurrences involving conflicts with Departures will be counted).		
RTS5 – Conducted by NATS to assess the operational feasibility of the static PairWise Separations departure concept (S-PWS) – wake turbulence separations for departing aircraft based on static aircraft characteristics (AO-0323) with Optimised Separation Delivery (OSD – AO-0329) for departure aircraft under partially segregated runway departure operations. RTS5 also assessed Weather-dependent separations for departures (WDS-D – AO- 0304). RTS5 was conducted using the London Heathrow airport and approach environment.	To assess the impact of the use of OSD tool with RECAT-EU 6-CAT wake time separations on operational safety compared to current operations with no OSD tool	There is evidence that the level of safety is maintained and not negatively impacted in solution scenario versus reference scenario in terms of: -Safe controller working procedures and practices are employed for managing RECAT-EU 6-CAT wake time separations with OSD tool -Positive feedback from controllers on the safety level of the employed working procedures and practices -Potential for Human errors with safety implications are not increased -ATCOs do not issue take-off clearances such that following ac become airborne prior to the required SID departure separation time	SAC#D1 SAC#D2 SAC#D3 SAC#D5 SAC#D7	ATCOs provided positive feedback by either agreeing or strongly agreeing with the statement that the working procedures/practises under the OSD scenario are safe. No controller disagreed with the statement that the potential for human error is the same (low) as current operations in the OSD scenario. Some controllers highlighted the potential risk of over- relying on the tool as well as the risk of being mislead with the use of the word "NONE" on the NBAT even when a SID separation still applies. The OSD scenario runs show a minor change in the proportion of under- separated SID pairs compared to the matched reference scenario runs. However, there were still instances of SID under-separation during the

		OSD scenario.
There is evidence that OSD tool in the context of RECAT-EU 6- CAT wake time separations for departures does not increase the number of minor under-	SAC#D1 SAC#D2 SAC#D3 SAC#D5	The OSD scenario runs show a reduction in the proportion of minor under-separated wake pairs compared to the matched reference scenario runs.
separations and decreases the number of large under- separations (i.e. those with potential for severe wake encounters) compared to the	SAC#D7	The number of large under-separated wake pairs in the OSD scenario runs was comparable to the matched reference scenario runs.
reference scenarios in terms of: -Departure aircraft minor under-separations (= <10 s) are no more than in the solution scenarios versus the reference scenario		There were no occurrences of aborted take-offs or go-arounds in any of the matched runs. During 09R runs, no TEAM arrivals were observed to be constrained in the OSD scenario runs.
-Departure aircraft major under-separations (>10 s) are less than in the solution scenarios versus the reference scenario -Number of aborted take-off		There were instances of under- separated wake pairs indicating the take-off clearance was issued such that the follower ac became airborne prior to the NBAT.
-Number of go-around for arrival aircraft landing on the departure runway -ATCOs do not issue line up clearances such that during		The OSD scenario runs show negligible change in the proportion of under-separated SID pairs compared to the matched reference scenario runs. However, there were still

Founding Members

© – 2020 – EUROCONTROL, THALES AIR SYSTEMS SAS, NATS, ENAIRE, INDRA, LEONARDO GmbH, AIRBUS, AT-ONE, DSNA, SEAC2020. All rights reserved. Licensed to the SJU under conditions.

3

TEAM arriving aircraft	instances of under-separated SID
approaches are constrained	pairs indicating the take-off clearance
-ATCOs do not issue take-off	was issued such that the follower ac
clearances such that following	became airborne prior to the SID
ac become airborne prior to	separation time.
the NBAT	separation time.
There is evidence that in OSD	Same as above
solution scenario with RECAT-	
EU 6-CAT wake time	
separations the probability of	
Departure-related Runway	
incursions is not higher than	
the reference scenario in terms	
of:	
-Departure aircraft minor	
under-separations (= <10 s)	
are no more than in the	
solution scenarios versus the	
reference scenario	
-Departure aircraft major	
under-separations (>10 s) are	
less than in the solution	
scenarios versus the reference	
scenario	
-Number of aborted take-off	
-Number of go-around for	
arrival aircraft landing on the	
departure runway	
-ATCOs do not issue line up	
-ATCOS do hot issue line up	

Founding Members

SESAR SOLUTION 02-01 SPR/INTEROP-OSED FOR V3 - PART V - PERFORMANCE ASSESSMENT REPORT

		clearances such that during TEAM arriving aircraft approaches are constrained -ATCOs do not issue take-off clearances such that following ac become airborne prior to the NBAT -ATCOs do not issue take-off clearances such that following ac become airborne prior to the required SID departure separation time		
	To confirm the impact of PWS-D concept on operational safety compared to reference scenario	There is evidence that the level of safety is maintained and not negatively impacted in solution scenario versus reference scenario in terms of: -Safe controller working procedures and practices are employed for managing SPW-D -Positive feedback from controllers on the safety level of the employed working procedures and practices -Potential for Human errors with safety implications are not increased -ATCOs do not issue take-off clearances such that following ac become airborne prior to	SAC#D1 SAC#D2 SAC#D3 SAC#D5 SAC#D7	ATCOs provided positive feedback by either agreeing or strongly agreeing with the statement that the working procedures/practises under the PWS- D scenario are safe. No controller disagreed with the statement that the potential for human error is the same (low) as current operations in the PWS-D scenario. Some controllers highlighted the potential risk of over- relying on the tool as well as the risk of being mislead with the use of the word "NONE" on the NBAT even when a SID separation still applies. The PWS-D scenario runs show a minor change in the proportion of
unding Members		THALES AND SYSTEMAS CAS MATS ENANDE INDI	DA E	

Founding Members

© – 2020 – EUROCONTROL, THALES AIR SYSTEMS SAS, NATS, ENAIRE, INDRA, LEONARDO GmbH, AIRBUS, AT-ONE, DSNA, SEAC2020. All rights reserved. Licensed to the SJU under conditions.

5

the required SID departure separation time There is evidence that PWS-D	SAC#D1	under-separated SID pairs compared to the matched reference scenario runs. However, there were still instances of SID under-separation during the PWS-D scenario. The PWS-D scenario runs show a
with OSD tool for departures does not increase the number of minor under-separations and decreases the number of large under-separations (i.e. those with potential for severe wake encounters) compared to the reference scenarios in terms of: -Departure aircraft minor under-separations (= <10 s) are no more than in the solution scenarios versus the reference scenario -Departure aircraft major under-separations (>10 s) are less than in the solution scenarios versus the reference scenario	SAC#D1 SAC#D2 SAC#D3 SAC#D5 SAC#D7	reduction in the proportion of minor under-separated wake pairs compared to the matched reference scenario runs. The number of large under-separated wake pairs in the PWS-D scenario runs was comparable to the matched reference scenario runs. There were no occurrences of aborted take-offs or go-arounds in any of the matched runs. During 09R runs, no TEAM arrivals were observed to be constrained in the PWS-D scenario runs. There were instances of under- separated wake pairs indicating the take-off clearance was issued such
-Number of aborted take-off -Number of go-around for arrival aircraft landing on the departure runway		that the follower ac became airborne prior to the NBAT. The PWS-D scenario runs show

SESAR SOLUTION 02-01 SPR/INTEROP-OSED FOR V3 - PART V - PERFORMANCE ASSESSMENT REPORT

-ATCOs do not issue line up clearances such that during TEAM arriving aircraft approaches are constrained -ATCOs do not issue take-off clearances such that following ac become airborne prior to the NBAT	negligible change in the proportion of under-separated SID pairs compared to the matched reference scenario runs. However, there were still instances of under-separated SID pairs indicating the take-off clearance was issued such that the follower ac became airborne prior to the SID separation time.
There is evidence that in PWS- D solution scenario the probability of Departure- related Runway incursions is not higher than the reference scenario in terms of: -Departure aircraft minor under-separations (= <10 s) are no more than in the solution scenarios versus the reference scenario -Departure aircraft major under-separations (>10 s) are less than in the solution scenarios versus the reference scenario -Number of aborted take-off -Number of go-around for arrival aircraft landing on the departure runway	Same as above

Founding Members

© – 2020 – EUROCONTROL, THALES AIR SYSTEMS SAS, NATS, ENAIRE, INDRA, LEONARDO GmbH, AIRBUS, AT-ONE, DSNA, SEAC2020. All rights reserved. Licensed to the SJU under conditions.

7

To confirm the impact of WDS-D Crosswind concept on operational safety compared to current wake vortex separation scheme	 -ATCOs do not issue line up clearances such that during TEAM arriving aircraft approaches are constrained -ATCOs do not issue take-off clearances such that following ac become airborne prior to the NBAT -ATCOs do not issue take-off clearances such that following ac become airborne prior to the required SID departure separation time There is evidence that the level of safety is maintained and not negatively impacted in solution scenario versus reference scenario in terms of: -Safe controller working procedures and practices are employed for managing WDS-D in solution scenario improving the level of safety respect to the reference scenarios -Positive feedback from controllers on the safety level of the employed working procedures and practices -Potential for Human errors 	SAC#D1 SAC#D2 SAC#D3 SAC#D5 SAC#D7	ATCOs provided positive feedback by either agreeing or strongly agreeing with the statement that the working procedures/practises under the WDS-D scenario are safe. No controller disagreed with the statement that the potential for human error is the same (low) as current operations in the WDS-D scenario. Some controllers highlighted the potential risk of over- relying on the tool as well as the risk of being mislead with the use of the word "NONE" on the NBAT even when a SID separation still applies.
---	---	--	---

SESAR SOLUTION 02-01 SPR/INTEROP-OSED FOR V3 - PART V - PERFORMANCE ASSESSMENT REPORT

with safety implications are not increased -ATCOs do not issue take-off clearances such that following ac become airborne prior to the required SID departure separation time		The WDS-D scenario runs show a minor change in the proportion of under-separated SID pairs compared to the matched reference scenario runs. However, there were still instances of SID under-separation during the WDS-D scenario.
There is evidence that WDS-D separations for departures does not increase the number of minor under-separations and decreases the number of large under-separations (i.e. those with potential for severe wake encounters) compared to the reference scenarios in terms of: -Departure aircraft minor under-separations (= <10 s) are no more than in the solution scenarios versus the reference scenario -Departure aircraft major under-separations (>10 s) are less than in the solution scenarios versus the reference scenario -Number of aborted take-off -Number of go-around for	SAC#D1 SAC#D2 SAC#D3 SAC#D5 SAC#D7	The WDS-D scenario runs show a reduction in the proportion of minor under-separated wake pairs compared to the matched reference scenario runs. There were no large under-separated wake pairs in the WDS-D scenario runs. There were no occurrences of aborted take-offs or go-arounds in any of the matched runs. During 09R runs, no TEAM arrivals were observed to be constrained in the WDS-D scenario runs. There were instances of under- separated wake pairs indicating the take-off clearance was issued such that the follower ac became airborne prior to the NBAT.

Founding Members

© – 2020 – EUROCONTROL, THALES AIR SYSTEMS SAS, NATS, ENAIRE, INDRA, LEONARDO GmbH, AIRBUS, AT-ONE, DSNA, SEAC2020. All rights reserved. Licensed to the SJU under conditions.

9

	arrival aircraft landing on the departure runway -ATCOs do not issue line up clearances such that during TEAM arriving aircraft approaches are constrained -ATCOs do not issue take-off clearances such that following ac become airborne prior to the NBAT	The WDS-D scenario runs show negligible change in the proportion of under-separated SID pairs compared to the matched reference scenario runs. However, there were still instances of under-separated SID pairs indicating the take-off clearance was issued such that the follower ac became airborne prior to the SID separation time.
	There is evidence that in WDS- D solution scenario the probability of Departure- related Runway incursions is not higher than the reference scenario in terms of: -Departure aircraft minor under-separations (= <10 s) are no more than in the solution scenarios versus the reference scenario -Departure aircraft major	Same as above
10 Q - 2020 - FUROCONTROL THALES AIR SYSTEMS SAS, NATS, ENAIRE INDRA	under-separations (>10 s) are less than in the solution scenarios versus the reference scenario -Number of aborted take-off -Number of go-around for arrival aircraft landing on the	

		departure runway -ATCOs do not issue line up clearances such that during TEAM arriving aircraft approaches are constrained -ATCOs do not issue take-off clearances such that following ac become airborne prior to the NBAT -ATCOs do not issue take-off clearances such that following ac become airborne prior to the required SID departure separation time		
RTS6 – Conducted by CRIDA/ENAIRE to assess AO- 0323 Wake Turbulence Separations (for Departures) based on static Aircraft Characteristics (PWS-D) and AO- 0329 Optimised separation delivery (OSD) for departures.	To assess the impact of static pairwise separations for departures on operational safety compared to current wake vortex separation scheme	There is evidence that the level of safety is maintained and not negatively impacted under static pairwise separations for departures compared to the current wake vortex separation scheme	SAC#D1 SAC#D2 SAC#D3 SAC#D5 SAC#D7	The level of perceived safety remained practically at the same level between reference and solution scenarios. Moreover the result of the analysis of the infringements go along the same line.

Founding Members

4.4.1.3 Extrapolation to ECAC wide

The results obtained from the validation activities are for the moment limited to a specific set of operational environments, in terms of runway layout and configuration as well as in terms of traffic.

These results could be extrapolated to similar aerodromes in ECAC, meaning that the level of safety would not be degraded when applying the PJ.02-01 Departures concepts (even if not all abnormal and degraded modes have been assessed) at these types of aerodromes.

However, not enough evidence is available to extrapolate this statement to the rest of the environments outside the scope of the PJ.02-01 validation activities. The number of aerodromes to which this Solution could be applied while ensuring the level of safety is maintained needs then to be defined.

4.4.1.4 Discussion of Assessment Result

N/A

4.4.1.5 Additional Comments and Notes

No additional comments.

4.4.2 Environment / Fuel Efficiency

Often fuel efficiency is improved through a reduction of flight or taxi time. This time benefit is also assessed, in this section, as it is additional input for the business case.

4.4.2.1 Performance Mechanism

OSD (AO-0329): Optimised delivery of departure aircraft separations can reduce the average ground delay per flight. As ground delay uses more fuel (e.g. in case of ground holding), a reduction in this delay will result in reduced fuel burn on the ground. This has a positive impact on Fuel Efficiency.

PWS-D (AO-0323) and the support of OSD (AO-0329): The use of PWS-D Reducing the wake departure aircraft separations will reduce the average ground delay per flight. As ground delay uses more fuel (e.g. in case of ground holding), a reduction in this delay will result in reduced fuel burn on the ground. This has a positive impact on Fuel Efficiency.

WDS-D (AO-0304) in the context of PWS-D (AO-0323) and the support of OSD (AO-0329): The use of WDS-D reducing the wake departure aircraft separations will reduce the average ground delay per flight. As ground delay uses more fuel (e.g. in case of ground holding), a reduction in this delay will result in reduced fuel burn on the ground. This has a positive impact on Fuel Efficiency.

4.4.2.2 Assessment Data (Exercises and Expectations)

The following results are taken from the RTS5 validation exercise (with a Heathrow traffic mix):

- AO-0329 (OSD) results showed an average 0.40 minutes reduction per flight in taxi-out time for RECAT-EU departure wake separations;
- AO-0323 (PWS-D) results showed an average 0.70 minutes reduction per flight in taxi-out time when compared to a reference scenario of RECAT-EU departure separation;

• AO-0304 (WDS-D) results in the context of PWS-D showed an average 0.50 minutes reduction3 per flight in taxi-out time when compared to a reference scenario of RECAT-EU departure wake separations.

The following results are taken from the RTS6 validation exercise (with a Barcelona traffic mix):

- AO-0323 (PWS-D) results showed on average:
 - 2.36 minutes reduction per flight in taxi-out time, when compared to a reference scenario of ICAO departure wake separations;
 - 0.32 minutes reduction per flight in taxi-out time, when compared to a reference scenario of RECAT-EU departure wake separations.

4.4.2.3 Extrapolation to ECAC wide

The following PJ.19 common assumptions have been used:

- Taxi Fuel burn rate = 900 kg/hour = 15kg/minute,
- Average fuel burn per flight = 4800kg,
- High density airports traffic contribution to total airport traffic = 59.5%
- Departures traffic contribution to total traffic = 50%
- CO₂/Fuel ratio = 3.15
- Average ECAC flight time = 1.5 hours = 90 minutes

The following methodology describes how the FEFF1, FEFF2 and FEFF3 metrics were obtained for <u>AO-0329 (OSD)</u>:

- 1.) Taxi-time reduction per flight (RTS5 validation exercise result) = 0.40 minutes
- 2.) Flight time reduction (FEFF3) at ECAC level = 50% (departure traffic contribution) * 59.5% (high density airports traffic contribution) * 0.40 minutes (taxi-time reduction per flight) = 0.12 minutes
- **3.)** Relative flight time reduction at ECAC level = 0.12 minutes (flight time reduction at ECAC level) * 90 minutes (average ECAC flight time) * 100 = 0.13%
- 4.) Fuel consumption reduction per flight = 15 kg/minute (taxi fuel burn rate) *0.40 minutes (taxi time reduction per flight) = 6.00 kg
- 5.) Fuel consumption reduction (FEFF1) at ECAC level = 50% (departures traffic contribution) * 59.5% (high density airports traffic contribution) * 6.00 kg (fuel consumption reduction) = 1.79 kg
- 6.) Relative fuel consumption reduction at ECAC level = 1.79 kg (fuel consumption reduction at ECAC level) /4800 kg (average fuel burn per flight) * 100 = 0.04%
- 7.) CO₂ emission reduction (FEFF2) at ECAC level = 1.79 kg fuel consumption reduction at ECAC level * 3.15 (CO₂/Fuel ratio) = 5.62 kg
- Relative CO₂ consumption reduction at ECAC level = 5.62kg (CO₂ consumption reduction at ECAC level) / [4800 kg (average fuel burn per flight) * 3.15 (CO₂/Fuel ratio)] * 100 = 0.04%

1

The following methodology describes how the FEFF1, FEFF2 and FEFF3 metrics were obtained for <u>AO-0323 (PWS-D)</u>, when compared to a reference scenario of ICAO departure wake separations:

- 1.) Taxi-time reduction per flight (RTS5 validation exercise result) = 2.36 minutes
- 2.) Flight time reduction (FEFF3) at ECAC level = 50% (departure traffic contribution) * 59.5% (high density airports traffic contribution) * 2.36 minutes (taxi-time reduction per flight) = 0.7 minutes
- **3.)** Relative flight time reduction at ECAC level = 0.7 minutes (flight time reduction at ECAC level) * 90 minutes (average ECAC flight time) * 100 = 0.78%
- 4.) Fuel consumption reduction per flight = 15 kg/minute (taxi fuel burn rate) *2.36 minutes (taxi time reduction per flight) = 35.4 kg
- 5.) Fuel consumption reduction (FEFF1) at ECAC level = 50% (departures traffic contribution) * 59.5% (high density airports traffic contribution)*35.4 kg (fuel consumption reduction) = 10.53 kg
- 6.) Relative fuel consumption reduction at ECAC level = 10.53kg (fuel consumption reduction at ECAC level) /4800 kg (average fuel burn per flight) * 100 = 0.22%
- 7.) CO₂ emission reduction (FEFF2) at ECAC level = 10.53 kg fuel consumption reduction at ECAC level * 3.15 (CO₂/Fuel ratio) = 33.18 kg
- 8.) Relative CO₂ consumption reduction at ECAC level = 33.18kg (CO₂ consumption reduction at ECAC level) /[4800 kg (average fuel burn per flight)* 3.15 (CO₂/Fuel ratio)] * 100 = 0.22%

The following methodology describes how the FEFF1, FEFF2 and FEFF3 metrics were obtained for <u>AO-0323 (PWS-D)</u>, when compared to a reference scenario of RECAT-EU departure wake separations:

Aggregation

1.) Taxi-time reduction per flight = 0.7 (RTS5) + 0.32 (RTS6)/2 = 0.51 minutes

Extrapolation of Aggregated results

- 1.) Taxi-time reduction per flight = 0.51 minutes
- 2.) Flight time reduction (FEFF3) at ECAC level = 50% (departure traffic contribution) * 59.5% (high density airports traffic contribution) * 0.51 minutes (taxi-time reduction per flight) = 0.15 minutes
- **3.)** Relative flight time reduction at ECAC level = 0.15 minutes (flight time reduction at ECAC level) * 90 minutes (average ECAC flight time) * 100 = 0.17%
- 4.) Fuel consumption reduction per flight = 15 kg/minute (taxi fuel burn rate) *0.51 minutes (taxi time reduction per flight) = 7.65kg
- 5.) Fuel consumption reduction (FEFF1) at ECAC level = 50% (departures traffic contribution) * 59.5% (high density airports traffic contribution) * 7.65 kg (fuel consumption reduction) = 2.28 kg

^{2 © – 2020 –} EUROCONTROL, THALES AIR SYSTEMS SAS, NATS, ENAIRE, INDRA, LEONARDO GmbH, AIRBUS, AT-ONE, DSNA, SEAC2020. All rights reserved. Licensed to the SJU under conditions.

- 6.) Relative fuel consumption reduction at ECAC level = 2.28 kg (fuel consumption reduction at ECAC level) /4800 kg (average fuel burn per flight) * 100 = 0.05%
- 7.) CO₂ emission reduction (FEFF2) at ECAC level = 2.28 kg fuel consumption reduction at ECAC level * 3.15 (CO₂/Fuel ratio) = 7.17 kg
- Relative CO₂ consumption reduction at ECAC level = 7.17 kg (CO₂ consumption reduction at ECAC level) /[4800 kg (average fuel burn per flight)* 3.15 (CO₂/Fuel ratio)] * 100 = 0.05%

The following methodology describes how the FEFF1, FEFF2 and FEFF3 metrics were obtained for <u>AO-0304 (WDS-D)</u>:

- 1.) Taxi-time reduction per flight (RTS5 validation exercise result) = 0.50 minutes
- 2.) Flight time reduction (FEFF3) at ECAC level = 50% (departure traffic contribution) * 59.5% (high density airports traffic contribution) * 0.50 minutes (taxi-time reduction per flight) = 0.15 minutes
- **3.)** Relative flight time reduction at ECAC level = 0.15 minutes (flight time reduction at ECAC level) * 90 minutes (average ECAC flight time) * 100 = 0.17%
- 4.) Fuel consumption reduction per flight = 15 kg/minute (taxi fuel burn rate) *0.50 minutes (taxi time reduction per flight) = 7.50 kg
- 5.) Fuel consumption reduction (FEFF1) at ECAC level = 50% (departures traffic contribution) * 59.5% (high density airports traffic contribution) * 7.50 kg (fuel consumption reduction) = 2.23 kg
- 6.) Relative fuel consumption reduction at ECAC level = 2.23 kg (fuel consumption reduction at ECAC level) /4800 kg (average fuel burn per flight) * 100 = 0.05%
- 7.) CO₂ emission reduction (FEFF2) at ECAC level = 2.23 kg fuel consumption reduction at ECAC level * 3.15 (CO₂/Fuel ratio) = 7.03 kg
- 8.) Relative CO₂ consumption reduction at ECAC level = 7.03kg (CO₂ consumption reduction at ECAC level) / [4800 kg (average fuel burn per flight) * 3.15 (CO₂/Fuel ratio)] * 100 = 0.05%

The following table summarises the results for each OI step. Please provide validation results or initial estimation of the Solution's performance in SESAR2020 (horizon 2035, compared to 2012 extrapolated to ECAC wide). (Please use the metrics stated below)

KPIs / PIs	Unit	Calculation	Mandatory	Benefit in SESAR1 (if applicable)	Absolute expected performance benefit in SESAR2020	% expected performance benefit in SESAR2020
FEFF1 Actual Average fuel burn per flight	Kg fuel per movement	Total amount of actual fuel burn divided by the number of movements	YES	N/A	AO-0329 (OSD) = 1.79 kg reduction in fuel consumption per flight at ECAC level, compared to RECAT-EU TBS without OSD tool support, with a Heathrow traffic mix. AO-0323 (PWS-D):	AO-0329 (OSD) = 0.04% reduction in fuel consumption per flight at ECAC level, compared to RECAT-EU TBS without OSD tool support, with a Heathrow traffic mix. AO-0323 (PWS-D):

Founding Members

© – 2020 – EUROCONTROL, THALES AIR SYSTEMS SAS, NATS, ENAIRE, INDRA, LEONARDO GmbH, AIRBUS, AT-ONE, DSNA, SEAC2020. All rights reserved. Licensed to the SJU under conditions.

3

KPIs / PIs	Unit	Calculation	Mandatory	Benefit in SESAR1 (if applicable)	Absolute expected performance benefit in SESAR2020	% expected performance benefit in SESAR2020
					 10.53 kg reduction in fuel consumption per flight at ECAC level, compared to ICAO without OSD tool support, with a Barcelona traffic mix; 2.28 kg reduction in fuel consumption per flight at ECAC level, compared to RECAT-EU without OSD tool support, with Heathrow and Barcelona traffic mixes. AO-0304 (WDS-D) in the context of PWS-D (AO- 0323) = 2.23 kg reduction³ in fuel consumption per flight at ECAC level, compared to RECAT-EU without OSD tool support, with a Heathrow traffic mix. 	 0.22% reduction in fuel consumption per flight at ECAC level, compared to ICAO without OSD tool support, with a Barcelona traffic mix; 0.05% reduction in fuel consumption per flight at ECAC level, compared to ICAO without OSD tool support, with a Barcelona traffic mix; 0.05% reduction in fuel consumption per flight at ECAC level, compared to RECAT-EU without OSD tool support, with Heathrow and Barcelona traffic mixes. AO-0304 (WDS-D) in the context of PWS-D (AO- 0323) = 0.05% reduction in fuel consumption per flight at ECAC level, compared to RECAT-EU without OSD tool support, with a Heathrow traffic mix.
FEFF2 Actual Average CO ₂ Emission per flight	Kg CO₂ per flight	Amount of fuel burn x 3.15 (CO ₂ emission index) divided by the number of flights	YES	N/A	AO-0329 (OSD) = 5.62 kg reduction in CO ₂ emissions per flight at ECAC level, compared to RECAT-EU TBS without OSD tool support, with a Heathrow traffic mix. AO-0323 (PWS-D): - 33.18 kg reduction in CO ₂ emissions per flight at ECAC level, compared to ICAO without OSD tool	AO-0329 (OSD) = 0.04% reduction in in CO ₂ emissions per flight at ECAC level, compared to RECAT-EU TBS without OSD tool support, with a Heathrow traffic mix. AO-0323 (PWS-D): - 0.22% reduction in in CO ₂ emissions per flight at ECAC level, compared to ICAO without OSD tool

KPIs / PIs	Unit	Calculation	Mandatory	Benefit in SESAR1 (if applicable)	Absolute expected performance benefit in SESAR2020	% expected performance benefit in SESAR2020
					support, with a Barcelona traffic mix;	support, with a Barcelona traffic mix;
					 7.17 kg reduction in CO₂ emissions per flight at ECAC level, compared to RECAT-EU without OSD tool support, with a Heathrow traffic mix. AO-0304 (WDS-D) in the context of PWS-D (AO- 0323) = 7.03 kg reduction³ in CO₂ emissions per flight at ECAC level, compared to RECAT-EU without OSD tool support, with a Heathrow traffic mix. 	 0.05% reduction in in CO2 emissions per flight at ECAC level, compared to RECAT-EU without OSD tool support, with a Heathrow traffic mix. AO-0304 (WDS-D) in the context of PWS-D (AO- 0323) = 0.05% reduction in in CO2 emissions per flight at ECAC level, compared to RECAT-EU without OSD tool support, with a Heathrow traffic mix.
FEFF3 Reduction in average flight duration	Minutes per flight	Average actual flight duration measured in the Reference Scenario – Average flight duration measured in the Solution Scenario	YES	N/A	AO-0329 (OSD) = 0.12 minutes reduction in flight duration (taxi-out time) per flight at ECAC level, compared to RECAT-EU TBS without OSD tool support, with a Heathrow traffic mix. AO-0323 (PWS-D): - 0.7 minutes reduction in flight duration (taxi-out time) per flight at ECAC level, compared to ICAO without OSD tool support, with a Barcelona traffic mix; - 0.3 minutes reduction in flight duration (taxi-out time) per flight at	AO-0329 (OSD) = 0.13% reduction in flight duration per flight at ECAC level, compared to RECAT-EU TBS without OSD tool support, with a Heathrow traffic mix. AO-0323 (PWS-D): - 0.78% reduction in flight duration per flight at ECAC level, compared to ICAO without OSD tool support, with a Barcelona traffic mix; - 0.34% reduction in flight duration per flight at ECAC level, compared to ICAO without OSD tool support, with a Barcelona traffic mix; - 0.34% reduction in flight duration per flight at ECAC level, compared to RECAT-EU

Founding Members

KPIs / PIs	Unit	Calculation	Mandatory	Benefit in SESAR1 (if applicable)	Absolute expected performance benefit in SESAR2020	% expected performance benefit in SESAR2020
					ECAC level, compared to RECAT-EU without OSD tool support, with a Heathrow traffic mix. AO-0304 (WDS-D) in the context of PWS-D (AO- 0323) = 0.15 minutes reduction ³ in flight duration (taxi-out time) per flight at ECAC level, compared to RECAT-EU without OSD tool support, with a Heathrow traffic mix.	without OSD tool support, with a Heathrow traffic mix. AO-0304 (WDS-D) in the context of PWS-D (AO- 0323) = 0.17% reduction 3in flight duration per flight at ECAC level, compared to RECAT-EU without OSD tool support, with a Heathrow traffic mix.

Table 16 shows the impact on flight phases:

	Taxi out	TMA departure	En- route	TMA arrival	Taxi in
FEFF1 Actual Average fuel burn per flight	 AO-0329 (OSD) = 1.79 kg reduction in fuel consumption per flight at ECAC level compared to RECAT-EU TBS without OSD tool support, with a Heathrow traffic mix. AO-0323 (PWS-D): 10.53kg reduction in fuel consumption per flight at ECAC level, compared to ICAO without OSD tool support, with a Barcelona traffic mix; 2.28kg reduction in fuel consumption per flight at ECAC level, compared to RECAT-EU without OSD tool support, with a Heathrow traffic mix. AO-0304 (WDS-D) in the context of PWS-D = 2.23 kg reduction³ in fuel consumption per flight at ECAC level, compared to RECAT-EU without OSD tool support, with a Heathrow traffic mix. 	N/A	N/A	N/A	N/A
FEFF2 Actual Average CO ₂ Emission per flight	 AO-0329 (OSD) = 5.62 kg reduction in CO₂ emissions per flight at ECAC level, compared to RECAT-EU TBS without OSD tool support, with a Heathrow traffic mix, compared to RECAT-EU without OSD tool support. AO-0323 (PWS-D): 33.18 kg reduction in CO₂ emissions per flight at ECAC level, compared to ICAO without OSD tool 	N/A	N/A	N/A	N/A

	support, with a Barcelona traffic mix;				
	- 7.17 kg reduction in CO_2 emissions per flight at ECAC level, compared to RECAT-EU without OSD tool support, with a Heathrow traffic mix.				
	AO-0304 (WDS-D) in the context of PWS-D = 7.03 kg reduction ³ in CO ₂ emissions per flight at ECAC level, compared to RECAT-EU without OSD tool support, with a Heathrow traffic mix.				
FEFF3	AO-0329 (OSD) = 0.12 minutes reduction in flight				
Reduction in average flight duration	duration (taxi-out time) per flight at ECAC level, compared to RECAT-EU TBS without OSD tool support, with a Heathrow traffic mix.				
	AO-0323 (PWS-D):				
	 0.7 minutes reduction in flight duration (taxi-out time) per flight at ECAC level, compared to ICAO without OSD tool support, with a Barcelona traffic mix; 	N/A	N/A	N/A	N/A
	 0.31 minutes reduction in flight duration (taxi-out time) per flight at ECAC level, compared to RECAT- EU without OSD tool support, with a Heathrow traffic mix. 				
	AO-0304 (WDS-D) in the context of PWS-D (AO-0323) = 0.15 minutes reduction ³ in flight duration (taxi-out time) per flight at ECAC level, compared to RECAT-EU without OSD tool support, with a Heathrow traffic mix.				

Table 16: Fuel burn reduction per flight phase.

4.4.2.4 Discussion of Assessment Result

The fuel efficiency results show a reduction in taxi-out time in each of the OI steps due to increased departure throughputs and hence reduced delays. There is low confidence in these results.

4.4.2.5 Additional Comments and Notes

No additional comments.

4.4.3 Airport Capacity (Runway Throughput Flights/Hour)

4.4.3.1 Performance Mechanism

OSD (AO-0329): With the OSD system support, the accuracy of the spacing delivered between departure aircraft can be improved compared to what is achieved today. Improving spacing delivery accuracy can reduce the level of 'over spacing delivery' compared to what is achieved today, thus enabling the efficient reduction of the overall amount of wake separation that is required to be delivered, which links to Capacity. The use of OSD is expected to optimise the delivery of departure aircraft separations and thus increasing runway throughput. Optimised spacing delivery between departure aircraft has a positive impact on the runway throughput. The higher the departure aircraft throughput, the higher the number of departure aircraft movements, leading to a positive impact on Capacity.

7

PWS-D (AO-0323) and the support of OSD (AO-0329): The use of PWS-D is expected to reduce wake separation between departure aircraft. OSD is expected to optimise the accuracy of the spacing delivered between departure aircraft. The reduced wake separations and optimised spacing delivery increases the runway throughput. PWS-D reduces wake separation and OSD Optimised spacing delivery accuracy between departure aircraft has a positive impact on the runway throughput. The higher the departure aircraft throughput, the higher the number of departure aircraft movements, leading to a positive impact on Capacity. Improved spacing delivery accuracy with the OSD system support can enable the improved separation delivery to the PWS-D rules, reducing the level of 'over spacing delivery' compared to what is achieved today, thus enabling the efficient reduction of the overall amount of wake separation that is required to be delivered, which links to Capacity.

WDS-D (AO-0304) in the context of PWS-D (AO-0323) and the support of OSD (AO-0329): The use of WDS-D (e.g. for WDS based on crosswind when crosswind is above the activation threshold) is expected to reduce wake separation between departure aircraft. OSD is expected to optimise the accuracy of the spacing delivered between departure aircraft. The reduced wake separations and optimised spacing delivery increasing the runway throughput. WDS-D reduced wake separation and OSD optimised spacing delivery accuracy between departure aircraft has a positive impact on the runway throughput. The higher the departure aircraft throughput, the higher the number of departure aircraft movements, leading to a positive impact on Capacity. Improving spacing delivery accuracy with the OSD system support can enable the improved separation delivery to the WDS-D rules, reducing the level of 'over spacing delivery' compared to what is achieved today, thus enabling the efficient reduction of the overall amount of wake separation that is required to be delivered, which links to Capacity.

4.4.3.2 Assessment Data (Exercises and Expectations)

The following results were taken from the RTS5 validation exercise (with a Heathrow traffic mix) that assessed departure throughput in segregated mode operations:

- OSD (AO-0329) showed on average a 1.0% increase in departure throughput, which equates to a 0.6 increase in departure movements per hour, compared to RECAT-EU without OSD tools support;
- PWS-D (AO-0323) showed on average a 2.0% increase in departure throughput, which equates to a 1.1 increase in departure movements per hour, compared to RECAT-EU without OSD tools support;
- WDS-D (AO-0304) in the context of PWS-D (AO-0323) showed on average a 0.1% increase³ in departure throughput, which equates to a 0.05 increase in departure movements per hour, compared to RECAT-EU without OSD tools support.

The following results were taken from the RTS6 validation exercise (with a Barcelona traffic mix) that assessed departure throughput in segregated mode operations:

- PWS-D (AO-0323) showed on average:
 - A 8.65% increase in departure throughput, which equates to a 3.9 increase in departure movements per hour, when compared to a reference of ICAO departure wake separations;
 - A 2.81% increase in departure throughput, which equates to a 1.3 increase in departure movements per hour, when compared to a reference of RECAT-EU departure wake separations.

^{8 © – 2020 –} EUROCONTROL, THALES AIR SYSTEMS SAS, NATS, ENAIRE, INDRA, LEONARDO GmbH, AIRBUS, AT-ONE, DSNA, SEAC2020. All rights reserved. Licensed to the SJU under conditions.

Aggregation of Results for PWS-D

1.) Peak Departure throughput per hour (Segregated mode) (CAP3.1) = 1.1 (RTS5) + 1.3 (RTS6)/2 = 1.2

KPIs / Pis	Unit	Calculation	Mandatory	Benefit in SESAR1 (if applicable)	Absolute expected performance benefit in SESAR2020	% expected performance benefit in SESAR2020
CAP3 Peak Runway Throughput (Mixed mode)	% and Flight per hour	% and also total number of movements per one runway per one hour for specific traffic mix and density (in mixed mode RWY operations). The percentage change is measured against the maximum observed throughput during peak demand hours in the mixed-mode RWY operations airports group.	YES	N/A	Mixed Mode not assessed in RTS5/RTS6.	Mixed Mode not assessed in RTS5/RTS6.
CAP3.1 Peak Departure throughput per hour (Segregated mode)	% and Flight per hour	% and also total number of departures per one runway per one hour for specific traffic mix and density (in segregated mode of operations). The percentage change is measured against the maximum observed throughput during peak demand hours in the segregated- mode RWY operations airports group.	YES	N/A	OSD (AO-0329) - 0.6 increase in departure movements per hour, compared to RECAT-EU TBS without OSD tool support, with a Heathrow traffic mix. PWS-D (AO- 0323): - 3.92 increase in departure movements per hour, compared to ICAO without OSD tools support, with a Barcelona traffic mix; - 1.2 increase in departure movements per hour, with a Barcelona traffic mix; per hour,	OSD (AO-0329) – 1.0% increase in departure movements per hour, compared to RECAT-EU TBS without OSD tool support, with a Heathrow traffic mix. PWS-D (AO- 0323): - 8.65% increase in departure movements per hour, compared to ICAO without OSD tools support, with a Barcelona traffic mix; - 2.41% increase in departure movements

EUROCONTRO

KPIs / PIs	Unit	Calculation	Mandatory	Benefit in SESAR1 (if applicable)	Absolute expected performance benefit in SESAR2020	% expected performance benefit in SESAR2020
					compared to RECAT-EU without OSD tool support, with Heathrow and Barcelona traffic mixes. WDS-D (AO-0304) in the context of PWS-D (AO-0323) – 0.05 increase ³ in departure movements per hour, compared to RECAT-EU without OSD tool support, with a Heathrow traffic mix.	per hour, compared to RECAT-EU without OSD tool support, with Heathrow and Barcelona traffic mixes. WDS-D (AO-0304) in the context of PWS-D (AO-0323) – 0.1% increase ³ in departure movements per hour, compared to RECAT-EU without OSD tool support, with a Heathrow traffic mix.
CAP3.2 Peak Arrival throughput per hour (Segregated mode)	% and Flight per hour	% and also total number of arrivals per one runway per one hour for specific traffic mix and density (in segregated mode of operations). The percentage change is measured against the maximum observed throughput during peak demand hours in the segregated- mode RWY operations airports group.	YES	See arrival concepts solutions	See arrival concepts solutions	See arrival concepts solutions
CAP4 Un- accommodated traffic reduction	Flights/year	Reduction in the number of un-accommodated flights i.e. a flight that would have been scheduled if there were available slots at the origin/destination airports. NB: Supports CBA Inputs. NB: Relates to Airport Capacity because this is STATFOR computation. CBA calculate this based on the assessment of the runway throughput we	YES For CBA.	N/A	OSD (AO-0329) – 0.6 reduction in un- accommodated departures per hour, compared to RECAT-EU TBS without OSD tool support, with a Heathrow traffic mix. PWS-D (AO-0323) – 1.1 reduction in un- accommodated	OSD (AO-0329) – 1.0% reduction in un- accommodated departures per hour, compared to RECAT-EU TBS without OSD tool support, with a Heathrow traffic mix. PWS-D (AO-0323) – 2.0% reduction in un- accommodated g Members

10 $\ensuremath{\mathbb{C}}$ – 2020 – Eurocontrol, thales air systems sas, nats, enaire, indra, LEONARDO GmbH, AIRBUS, AT-ONE, DSNA, SEAC2020. All rights reserved. Licensed to the SJU under conditions.

KPIs / PIs	Unit	Calculation	Mandatory	Benefit in SESAR1 (if applicable)	Absolute expected performance benefit in SESAR2020	% expected performance benefit in SESAR2020
		provide with and without the solutions and STATFOR data.			departures per hour, compared to RECAT-EU without OSD tool support, with a Heathrow traffic mix. WDS-D (AO-0304) in the context of PWS-D (AO-0323) – 0.05 reduction ³ in un- accommodated departures per hour, compared to RECAT-EU without OSD tool support, with a Heathrow traffic mix.	departures per hour, compared to RECAT-EU without OSD tool support, with a Heathrow traffic mix. WDS-D (AO-0304) in the context of PWS-D (AO-0323) – 0.05 reduction ³ in un- accommodated departures per hour, compared to RECAT-EU without OSD tool support, with a Heathrow traffic mix.

4.4.3.3 Extrapolation to ECAC wide

There is no ECAC wide extrapolation required for this KPI.

4.4.3.4 Discussion of Assessment Result

Varying performance between runs for some controllers led to unexpected departure throughput results. It was expected that AO-0329 (OSD) would bring negligible benefit due to keeping the wake separation scheme the same. AO-0304 (WDS-D) was expected to have a benefit in-line with AO-0323 (PWS-D) but it shows a smaller benefit. However, because of low departure throughput in the reference scenario the OSD and PWS-D throughputs are higher. Also, controllers noted during WDS-D runs that they were sequencing departures to try to achieve a reduced WDS-D separation, which may have not been the most optimal departure sequence. Hence, the WDS-D benefits showed a lower benefit than PWS-D. Therefore, it is recommended that validation exercises are conducted in the local environment to determine the benefits.

Following RTS5, consideration of 12 months' (April 2018-March 2019) worth of historical data was also used to investigate the potential benefits of PWS-D and WDS-D, local to London Heathrow[52]. In particular, this work intended to add insight to the RTS5 findings, to widen consideration via modelling and analysis of the Heathrow traffic beyond the four traffic samples deployed in RTS5.

Four cases were used in the analysis:

	SID pair constraint applied?	Crosswind constraint applied?
First Unconstrained Case	No	No

First Constrained Case	No	Yes
Second Unconstrained Case	Yes	No
Second Constrained Case	Yes	Yes

Table 17: Summary of differences between the cases for WDS-D in the context of PWS-D

Greater gains are anticipated with the introduction of PWS-D in the context of RECAT-EU, compared with the introduction of WDS-D in the context of PWS-D. Table 18 summarises the model results for each solution, and for the unconstrained and constrained cases.

	PWS-D in the context of RECAT-EU	WDS-D in the context of PWS-D
First Unconstrained Case	11m 52s	9m 23s
First Constrained Case	9m 50s	1m 58s
Second Unconstrained Case	Not applicable	2m 55s
Second Constrained Case	Not applicable	0m 36s

Table 18: Summary breakdown of potential gains by solution (gains measured in minutes and seconds per day) from additional capacity analysis

For both solutions it is observed that the anticipated gains are not uniform through the day but are expected to be less at the beginning and end of the operational day, corresponding to hours when there are less wake pairs within the traffic mix. The pairing CAT-B – CAT-D, Heavy – Medium, is the category pairing expected to give rise to the greatest potential gain for both solutions.

The level of potential benefits with WDS-D is dependent on the weather conditions, as a sufficient crosswind on departure is required, and how often the reduced WDS-D wake separation would apply.

Further data is available in the full report[52].

4.4.3.5 Additional Comments and Notes

No additional comments.

4.4.4 Resilience (% Loss of Airport & Airspace Capacity Avoided)

4.4.4.1 Performance Mechanism

The increase in departure throughput discussed above may be used for resilience rather than extra capacity. The increase in departure throughput could help reduce the % loss of airport capacity and so result in improved resilience.

4.4.4.2 Assessment Data (Exercises and Expectations)

The loss of airport capacity avoided has been assumed to directly correspond to the increase in departure throughput results above.

The following results were taken from the RTS5 validation exercise (with a Heathrow traffic mix) which assessed departure throughput in segregated mode operations.

- OSD (AO-0329) showed a 1.0% increase in departure throughput compared to RECAT-EU without OSD tools support, which equates to a 0.6 increase in departure movements per hour;
- PWS-D (AO-0323) showed a 2.0% increase in departure throughput compared to RECAT-EU without OSD tools support, which equates to a 1.1 increase in departure movements per hour;
- WDS-D (AO-0304) in the context of PWS-D (AO-0323) showed a 0.1% increase³ in departure throughput compared to RECAT-EU without OSD tools support, which equates to a 0.05 increase in departure movements per hour.

PIs	Unit	Calculation	Mandatory	Benefit in SESAR1 (if applicable)	Absolute expected performance benefit in SESAR2020	% expected performance benefit in SESAR2020
RES1 Loss of Airport Capacity Avoided	% and Movements per hour	Loss of Airport Capacity with the concept divided by the loss of Airport Capacity without the concept.	YES	N/A	OSD (AO-0329) – 0.6 departure movements per hour loss of capacity avoided, compared to RECAT-EU TBS without OSD tool support, with a Heathrow traffic mix. PWS-D (AO-0323) – 1.1 departure movements per hour loss of capacity avoided, compared to RECAT-EU without OSD tool support, with a Heathrow traffic mix. WDS-D (AO-0304) in the context of PWS- D (AO-0323) – 0.05 ³ departure movements per hour loss of capacity avoided, compared to RECAT-EU without OSD tool support, with a Heathrow traffic movements per hour loss of capacity avoided, compared to RECAT-EU without OSD tool support, with a Heathrow traffic mix.	OSD (AO-0329) – 1.0% departure movements per hour loss of capacity avoided, compared to RECAT-EU TBS without OSD tool support, with a Heathrow traffic mix. PWS-D (AO-0323) – 2.0% departure movements per hour loss of capacity avoided, compared to RECAT-EU without OSD tool support, with a Heathrow traffic mix. WDS-D (AO-0304) in the context of PWS- D (AO-0323) – 0.1% ³ departure movements per hour loss of capacity avoided, compared to RECAT-EU without OSD tool support, with a Heathrow traffic movements per hour loss of capacity avoided, compared to RECAT-EU without OSD tool support, with a Heathrow traffic mix.
RES 1.1 Airport time to recover from non-nominal to nominal condition	Minutes	Duration of Airport lost capacity from non-nominal to nominal condition.	YES for Airport OE Solutions	N/A	Not assessed in RTS5/RTS6.	Not assessed in RTS5/RTS6.
RES2 Loss of Airspace Capacity Avoided	% and Movements per hour	Loss of Airspace Capacity with the concept divided by the loss of Airspace Capacity without the concept	YES	N/A	N/A	N/A

PIs	Unit	Calculation	Mandatory	Benefit in SESAR1 (if applicable)	Absolute expected performance benefit in SESAR2020	% expected performance benefit in SESAR2020
RES2.1 Airspace time to recover from non- nominal to nominal condition	Minutes	Duration of Airspace lost capacity compared to non- nominal to nominal condition.	YES for Airspace OE Solutions	N/A	N/A	N/A
RES4 Minutes of delays	Minutes	Impact on AUs measured through delays resulting from capacity degradation RES1 and RES2 KPIs drive this PI, though the PI may need to be measured on a condition-by- condition basis (e.g. fog, wind, system outage).	YES	N/A	Not assessed in RTS5/RTS6.	Not assessed in RTS5/RTS6.
RES5 Number of cancellations	Nb flights	Impact on AUs measured through Cancellations resulting from capacity degradation. RES1 and RES2 KPIs drive this PI, though the PI may need to be measured on a condition-by- condition basis (e.g. fog, wind, system outage).	YES	N/A	Not assessed in RTS5/RTS6.	Not assessed in RTS5/RTS6.

4.4.4.3 Extrapolation to ECAC wide

There is no ECAC wide extrapolation required for this KPI.

4.4.4.4 Discussion of Assessment Result

% loss in capacity avoided has been assumed to directly relate to the increase in departure throughput from each of the OI steps. It would be up to individual airports to decide whether to use the increase in throughput to increase airport capacity (schedule extra movements) or improve resilience (not schedule extra movements).

4.4.4.5 Additional Comments and Notes

No additional comments.

4.4.5 Predictability (Flight Duration Variability, against RBT)

4.4.5.1 Performance Mechanism

AO-0329 (OSD) leads to optimised delivery of departure aircraft separations, and AO-0323 (PWS-D) and AO-0304 (WDS-D) leads to reduced wake departure aircraft separations, hence reducing the average ground delay per flight. This will result in less variability between the planned and actual departure time, and departures flying closer to their planned time which will improve on-time operations, and so improves predictability.

4.4.5.2 Assessment Data (Exercises and Expectations)

The following results are taken from the RTS5 validation exercise (with a Heathrow traffic mix).

- AO-0329 (OSD) results showed an average 11.1% reduction in taxi-out time variability compared to RECAT-EU without OSD tools support;
- AO-0323 (PWS-D) results showed an average 11.1% reduction in taxi-out time variability compared to RECAT-EU without OSD tool support.
- AO-0304 (WDS-D) in the context of PWS-D (AO-0323) results showed an average 8.1% reduction in taxi-out time variability compared to RECAT-EU without OSD tools support.

The following results are taken from the RTS6 validation exercise (with a Barcelona traffic mix):

- AO-0323 (PWS-D) results showed on average:
 - 39.7% reduction in taxi-out time variability, when compared to a reference scenario of ICAO departure wake separations;
 - 5.3% reduction in taxi-out time variability, when compared to a reference scenario of RECAT-EU departure wake separations.

4.4.5.3 Extrapolation to ECAC wide

The following PJ.19 common assumptions have been used:

- High density airports traffic contribution to total airport traffic = 59.5%
- Departures traffic contribution to total traffic = 50%
- B2B variance = 49.0 mins²
- Taxi-out contribution to variability = 40%

The following methodology describes how the PRD1metric was obtained for <u>AO-0329 (OSD)</u>:

- 1.) Current Taxi-Out time Variance = 49.0 min² (B2B variance) * 40% (taxi-out contribution to variability) = 19.60 min²
- 2.) Current Taxi-Out time Standard Deviation = sqrt (19.6 mins² (current taxi out time variance)) = 4.43 minutes
- 3.) Improved Absolute Standard Deviation = 4.43 minutes (current taxi-out time variability) * (100-11.1% reduction in taxi-out variability) = 3.94 minutes

^{16 © – 2020 –} EUROCONTROL, THALES AIR SYSTEMS SAS, NATS, ENAIRE, INDRA, LEONARDO GmbH, AIRBUS, AT-ONE, DSNA, SEAC2020. All rights reserved. Licensed to the SJU under conditions.

- 4.) Improved Absolute Variance = 4.43 minutes (current taxi out time variability) ^2 = 15.49 mins^2
- 5.) Absolute Difference in Variance = 15.49 mins² (improved absolute variance) 19.6 mins² (current taxi-out time variance) = -4.11mins²
- 6.) Absolute Predictability difference (PRD1) at ECAC level = -4.11 mins^2 (absolute difference in variance) * 50% (departures traffic contribution) * 59.5% (high density airports traffic contribution) = -1.22 mins^2
- 7.) Relative Predictability difference at ECAC level = -1.22 mins^2 (absolute predictability benefit at ECAC level) / 49.0 mins^2 (B2B variance) * 100 = -2.50%

The following methodology describes how the PRD1metric was obtained for <u>AO-0323 (PWS-D)</u>, when compared to a reference scenario of ICAO departure wake separations:

- 1.) Current Taxi-Out time Variance = 49.0 min² (B2B variance) * 40% (taxi-out contribution to variability) = 19.60 min²
- 2.) Current Taxi-Out time Standard Deviation = sqrt (19.6 mins² (current taxi out time variance)) = 4.43 minutes
- 3.) Improved Absolute Standard Deviation = 4.43 minutes (current taxi-out time variability) * (100-39.7% reduction in taxi-out variability) = 2.67 minutes
- 4.) Improved Absolute Variance = minutes (current taxi out time variability) ^2 = 7.13 mins^2
- 5.) Absolute Difference in Variance = 7.13mins² (improved absolute variance) 19.6 mins²(current taxi-out time variance) = -12.47mins²
- 6.) Absolute Predictability difference (PRD1) at ECAC level = -12.47 mins^2 (absolute difference in variance) * 50% (departures traffic contribution) * 59.5% (high density airports traffic contribution) = -3.71 mins^2
- 7.) Relative Predictability difference at ECAC level = -1.22 mins^2 (absolute predictability benefit at ECAC level) / 49.0 mins^2 (B2B variance) * 100 = -7.57%

The following methodology describes how the PRD1metric was obtained for <u>AO-0323 (PWS-D)</u>, when compared to a reference scenario of RECAT-EU departure wake separations:

Aggregation

1.) Reduction in taxi-out time variability (PRD1) at ECAC level = 11.1 (RTS5) + 5.3 (RTS6)/2 = 8.2%

Extrapolation of Aggregated results

- 1.) Current Taxi-Out time Variance = 49.0 min² (B2B variance) * 40% (taxi-out contribution to variability) = 19.60 min²
- 2.) Current Taxi-Out time Standard Deviation = sqrt (19.6 mins² (current taxi out time variance)) = 4.43 minutes

- 3.) Improved Absolute Standard Deviation = 4.43 minutes (current taxi-out time variability) * (100-8.2% reduction in taxi-out variability) = 4.06 minutes
- 4.) Improved Absolute Variance = 4.06 minutes (current taxi out time variability) ^2 = 16.52 mins^2
- 5.) Absolute Difference in Variance = 16.52 mins² (improved absolute variance) 19.6 mins² (current taxi-out time variance) = -3.08mins²
- 6.) Absolute Predictability difference (PRD1) at ECAC level = -3.08mins^2 (absolute difference in variance) * 50% (departures traffic contribution) * 59.5% (high density airports traffic contribution) = -0.92 mins^2
- 7.) Relative Predictability difference at ECAC level = -0.92 mins^2 (absolute predictability benefit at ECAC level) / 49.0 mins^2 (B2B variance) * 100 = -1.87%

The following methodology describes how the PRD1metric was obtained for AO-0304 (WDS-D):

- 1.) Current Taxi-Out time Variance = 49.0 min² (B2B variance) * 40% (taxi-out contribution to variability) = 19.60 min²
- 2.) Current Taxi-Out time Standard Deviation = sqrt (19.6 mins² (current taxi out time variance)) = 4.43 minutes
- 3.) Improved Absolute Standard Deviation = 4.43 minutes (current taxi-out time variability) * (100-8.1% reduction in taxi-out variability) = 4.07 minutes
- 4.) Improved Absolute Variance = 4.07 minutes (current taxi out time variability) 2 = 16.55 mins²
- 5.) Absolute Difference in Variance = 16.55 mins² (improved absolute variance) 19.6 mins²(current taxi-out time variance) = -3.05mins²
- 6.) Absolute Predictability difference (PRD1) at ECAC level = -3.05 mins^2 (absolute difference in variance) * 50% (departures traffic contribution) * 59.5% (high density airports traffic contribution) = -0.91 mins^2
- 7.) Relative Predictability difference at ECAC level = -0.91 mins^2 (absolute predictability benefit at ECAC level) / 49.0 mins^2 (B2B variance) * 100 = -1.85%

KPIs / PIs	Unit	Calculation	Mandatory	Benefit in SESAR1 (if applicable)	Absolute expected performance benefit in SESAR2020	% expected performance benefit in SESAR2020
PRD1 Variance of Difference in actual & Flight Plan or RBT durations	Minutes ²	Variance of Difference in actual & Flight Plan or RBT durations	YES	N/A	 AO-0329 (OSD) = 1.22mins^2 reduction in flight duration variability, compared to RECAT-EU TBS without OSD tool support, with a Heathrow traffic mix. AO-0323 (PWS-D): 3.71mins^2 reduction in flight duration variability, compared to ICAO without OSD tool support, with a Barcelona traffic mix; O.92mins^2 reduction in flight duration variability, compared to RECAT-EU without OSD tool support, with Heathrow and Barcelona traffic mixes. AO-0304 (WDS-D) in the context of PWS-D (AO-0323) = 0.91 mins^2 reduction in flight duration variability, compared to RECAT-EU without OSD tool support, with Heathrow and Barcelona traffic mixes. 	AO-0329 (OSD) = 2.5% reduction in flight duration variability, compared to RECAT-EU TBS without OSD tool support, with a Heathrow traffic mix. AO-0323 (PWS-D): 7.57% reduction in flight duration variability, compared to ICAO without OSD tool support, with a Barcelona traffic mix; 1.87% reduction in flight duration variability, compared to to RECAT-EU without OSD tool support, with Heathrow and Barcelona traffic mixes. AO-0304 (WDS-D) in the context of PWS-D (AO-0323) = 1.85% reduction in flight duration variability, compared to RECAT-EU without OSD tool support, with a Heathrow traffic mixe.

Table 19 is showing the impact on flight phases (provided when it is possible).

	Taxi out	TMA departure	En- route	TMA arrival	Taxi in
PRD1 Variance of Difference in actual & Flight Plan or RBT durations	 AO-0329 (OSD) = 1.22mins^2 reduction in flight duration variability, compared to RECAT-EU TBS without OSD tool support, with a Heathrow traffic mix. AO-0323 (PWS-D): 3.71mins^2 reduction in flight duration variability, compared to ICAO without OSD tool support, with a Barcelona traffic mix; 	N/A	N/A	N/A	N/A
Founding Members	© – 2020 – EUROCONTROL,	THALES AIR SYSTEN	/IS SAS, NAT	S, ENAIRE, IND	DRA, 1

.

 1.76 mins² reduction in flight duration variability, compared to RECAT-EU without OSD tool support, with a Heathrow traffic mix. 		
AO-0304 (WDS-D) in the context of PWS-D (AO- 0323) = 0.91 mins^2 reduction in flight duration variability, compared to RECAT-EU without OSD tool support, with a Heathrow traffic mix.		

Table 19: Predictability benefit per flight phase, standard deviation improvement

4.4.5.4 Discussion of Assessment Result

The results show an improvement in predictability due to reduce ground delays as a result of improved departure throughput. There is low confidence in the results.

4.4.5.5 Additional Comments and Notes

No additional comments.

4.4.6 Human Performance

4.4.6.1 HP arguments, activities and metrics

PIs	Activities & Metrics	Second level indicators	Covered
HP1 Consistency of human role with respect to human capabilities and limitations	Partner workshop Pre-RTS5 end-user workshop RTS5 Post-RTS5 partner/end-user workshop Structured interviews, observations, WL, SA, UA scales, tailored HP scales	 HP1.1 Clarity and completeness of role and responsibilities of human actors Tower controllers indicated that procedures and practices within their roles are clear to them. Qualitative and quantitative data taken during the listed activities have been processed and results fall within the desired areas. As controller responsibilities for the separation of departing A/C remain the same only with the addition of an automated element, a WL-benefit in a form of a more efficient timemanagement has been observed. For details, see Part IV of the OSED (HP Assessment Report, the corresponding HP Log, tab <i>Issue-Objective-Outcome</i> and <i>Recommendations Register, Requirements Register</i> tabs) HP1.2 Adequacy of operating methods (procedures) in supporting human performance The role of a Tower Supervisor, esp. in AO-0304 (WDS-D) hasn't been assessed thoroughly and remains a requirement for the next stages of the project to analyse For details, see Part IV of the OSED (HP Assessment Report, the corresponding HP Log, tab <i>Issue-Objective-Outcome</i> and <i>Recommendations Register, Requirements Register</i> tabs) HP1.3 Capability of human actors to achieve their tasks in a timely manner, with limited error rate and acceptable workload level 	Yes
20 © _ 2020 _ EUROC		IS SAS NATS ENAIRE INDRA Eounding Memb	aars

20 © - 2020 - EUROCONTROL, THALES AIR SYSTEMS SAS, NATS, ENAIRE, INDRA, LEONARDO GmbH, AIRBUS, AT-ONE, DSNA, SEAC2020. All rights reserved. Licensed to the SJU under conditions. Founding Members

EUROPEAN UNION EUROCONTROL

Pls	Activities & Metrics	Second level indicators	Covered
		Workload data collected during the assessment activities for all OI show acceptable values. HE rates have been reported as slightly higher WRT controller omitting to take SID information into consideration of the separation between departing A/C, where SID separation is not a part of the tool- provided figure. Appropriate mitigations have been produced in a form of Recommendations and Requirements. For details, see Part IV of the OSED (HP Assessment Report, the corresponding HP Log, tab <i>Issue-Objective-Outcome</i> and <i>Recommendations Register, Requirements Register</i> tabs)	
HP2 Suitability of technical system in supporting the tasks of human actors		HP2.1 Adequacy of allocation of tasks between the human and the machine (i.e. level of automation). With the exception described in HP1.2, the use of the technical equipment has been successfully assessed for its suitability in supporting the tasks of human actors. Feedback on the HMI prototypes has been collected as well as HMI- related mitigations in a form of Recommendations and Requirements to residual HP Hazards have been produced. For details, see Part IV of the OSED (HP Assessment Report, the corresponding HP Log, tab <i>Issue-Objective-Outcome</i> and <i>Recommendations Register, Requirements Register</i> tabs)	Yes/Open
	Partner workshop Pre-RTS5 end-user workshop RTS5 Post-RTS5 partner/end-user workshop Structured interviews, observations, tailored HMI questionnaires	 HP2.2 Adequacy of technical systems in supporting Human Performance with respect to timeliness of system responses and accuracy of information provided. HP data collected during the Validation exercise, where the technical system was used in a high-fidelity testing environment, provided acceptable feedback wrt the system timely and accurate performance. Further details were explored during workshop activities and mitigations against residual HP risks have been produced. For details, see Part IV of the OSED (HP Assessment Report, the corresponding HP Log, tab <i>Issue-Objective-Outcome</i> and <i>Recommendations Register, Requirements Register</i> tabs) 	
		HP2.3 Adequacy of the human machine interface in supporting the human in carrying out their tasks. HMI-specific questionnaires were used during the RTS5 exercise and satisfactory feedback gained. Residual HP risks have been addressed - for details; see Part IV of the OSED (HP Assessment Report, the corresponding HP Log, tab <i>Issue-Objective-Outcome</i> and <i>Recommendations Register</i> , <i>Requirements Register</i> tabs).	
HP3 Adequacy of team structure and team communication in supporting the human	Partner workshop Pre-RTS5 end-user workshop RTS5 Post-RTS5 partner/end-user	 HP3.1 Adequacy of team composition in terms of identified roles No changes in team composition HP3.2 Adequacy of task allocation among human actors Please HP1.2 of this table refer to 	Yes Yes/Open

Founding Members

PIs	Activities & Metrics	Second level indicators	Covered
actors	workshop Structured interviews, observations, WL, SA, Teamwork and Communication questionnaires	 HP3.3 Adequacy of team communication with regard to information type, technical enablers and impact on situation awareness/workload Impact on communication requiring mitigations hasn't been identified, with the exception of AO-0304 (WDS-D), where further input from airline representatives has been recorded as a Requirement. Qualitative and quantitative data on teamwork and the ability to communicate effectively are acceptable and show no significant difference from the Reference scenario. For details, see Part IV of the OSED (HP Assessment Report, the corresponding HP Log, tab <i>Issue-Objective-Outcome</i> and <i>Recommendations Register, Requirements Register</i> tabs) 	Yes
HP4	Partner workshop Pre-RTS5 end-user workshop RTS5 Post-RTS5 partner (ond user	 HP4.1 User acceptability of the proposed solution User acceptability data that were collected during the RTS5 exercise show values within the desired range. For details, see Part IV of the OSED (HP Assessment Report, the corresponding HP Log, tab <i>Issue-Objective-Outcome</i> and <i>Recommendations Register, Requirements Register</i> tabs) 	Yes
to HP-related transition factors	workbrop	 HP4.2 Feasibility in relation to changes in competence requirements. No impact has been identified wrt ATC licencing, however training on the use of the tool within the relevant procedures will be required. For details, see Part IV of the OSED (HP Assessment Report, the corresponding HP Log, tab <i>Issue-Objective-Outcome</i> and <i>Recommendations Register, Requirements Register</i> tabs) 	Yes
		HP4.3 Feasibility in relation to changes in staffing levels, shift organization and workforce relocation. No changes identified for AO-0329 (OSD) AO-0323 (PWS-D) AO-0304 (WDS-D)	Yes
		HP4.4 Feasibility in relation to changes in recruitment and selection requirements. No changes identified for AO-0329 (OSD) AO-0323 (PWS-D) AO-0304 (WDS-D)	Yes
		HP4.5 Feasibility in terms of changes in training needs with regard to its contents, duration and modality. The content of training has been analysed and output has	

22 © – 2020 – EUROCONTROL, THALES AIR SYSTEMS SAS, NATS, ENAIRE, INDRA, LEONARDO GmbH, AIRBUS, AT-ONE, DSNA, SEAC2020. All rights reserved. Licensed to the SJU under conditions. Founding Members

EUROPEAN UNION EUROCONTROL

PIs	Activities & Metrics	Second level indicators	Covered
		been recorded in a form of Recommendations and Requirements. Duration and modality will be defined in the future stages of the project. For details, see Part IV of the OSED (HP Assessment Report, the corresponding HP Log, tab <i>Issue-Objective-Outcome</i> and <i>Recommendations Register, Requirements Register</i> tabs)	

4.4.6.2 Extrapolation to ECAC wide

There is no ECAC wide extrapolation required for this KPI.

4.4.6.3 Open HP issues/ recommendations and requirements

PIs	Number of open issues/ benefits	Nr. of recommendations	Number of requirements
HP1 Consistency of human role with respect to human capabilities and limitations	NATS 77 for AO-0304 (WDS-D) 27 for AO-0329 (OSD) 35 for AO-0323 (PWS-D) EUROCONTROL 0 for (WDS-A) 2 for (PWS-A) 0 for (ORD) ENAIRE 4 for (WDS-A) 44 for (PWS-A) N/A for (ORD)	ECTL+NATS 12	ECTL+NATS 126
HP2 Suitability of technical system in supporting the tasks of human actors	NATS 77 for AO-0304 (WDS-D) 27 for AO-0329 (OSD) 35 for AO-0323 (PWS-D) EUROCONTROL 0 for (WDS-A) 0 for (PWS-A) 0 for (ORD) ENAIRE 3 for (WDS-A) 58 for (PWS-A) N/A for (ORD)	ECTL+NATS 36	ECTL+NATS 116

HP3 Adequacy of team structure and team communication in supporting the human actors	NATS 77 for AO-0304 (WDS-D) 27 for AO-0329 (OSD) 35 for AO-0323 (PWS-D) EUROCONTROL 0 for (WDS-A) 0 for (PWS-A) 0 for (ORD) ENAIRE 1 for (WDS-A) 7 for (PWS-A) N/A for (ORD)	0	ECTL+NATS 1 (Please note, this req overlaps with HP1)
HP4 Feasibility with regard to HP-related transition factors	NATS 77 for AO-0304 (WDS-D) 27 for AO-0329 (OSD) 35 for AO-0323 (PWS-D) EUROCONTROL 0 for (WDS-A) 0 for (PWS-A) 0 for (ORD) ENAIRE 2 for (WDS-A) 10 for (PWS-A) N/A for (ORD)	ECTL+NATS 13	ECTL+NATS 33

4.4.6.4 Concept interaction

4.4.6.5 Most important HP issues

Please list here any important issues that might have a major impact on the performance of the solution.

In case issues that impact other solutions are envisaged please list them here to facilitate the aggregation of data into deployment scenarios

PIs	Most important issue of the solution	Most important issues due to solution interdependencies
HP1 Consistency of human role	Clarity and consistency of responsibilities between ATCOs (e.g. APP & TWR), pilots and supervisors, including between mode transition (ECTL+NATS).	
with respect to human capabilities and limitations	Change to procedures and tasks as a result of different modes (ECTL).	

24 @-2020 - EUROCONTROL, THALES AIR SYSTEMS SAS, NATS, ENAIRE, INDRA, LEONARDO GmbH, AIRBUS, AT-ONE, DSNA, SEAC2020. All rights reserved. Licensed to the SJU under conditions.

Founding Members

Pls	Most important issue of the solution	Most important issues due to solution interdependencies
	Potential for human error and reduced trust in system as a result of inability/issues carrying out tasks and incorporating information in a time-efficient manner. Also leading to concerns regarding situation awareness and workload (ECTL).	
HP2 Suitability of technical system in supporting the tasks of human actors	Accuracy of the system information, trust in system and reliable transition from automatic to manual modes and vice versa (ECTL). Over-reliance on tool by ATC and omission of other non- wake related spacing (NATS)	
	Workload of the user (ECTL).	
	Information requirements, timeliness of information, alarms and alerts and HMI/workstation usability. Tool integration and compliance with CWP/platform (ECTL).	
HP3 Adequacy of team structure	Communication load where tool leads to increase in R/T between pilots and ATCOs (ECTL).	
and team communication in supporting the human actors	Current phraseology between ATCOs and pilots does not support some modes (e.g. WDS) (ECTL).	
	WDS-D requires a small change in x-wind value transmission from ATC to air-crews (NATS)	
HP4	Issues related to job satisfaction as a result of tool deployment (ECTL).	
Feasibility with regard to HP- related transition factors	Knowledge and skills, competence and training required to utilise tool effectively (ECTL).	
	Potential licensing concerns (ECTL).	
	Training on the use of the tool required, simulation time, while current skills retained	

4.4.6.6 Additional Comments and Notes

No additional comments,

4.5 Wake Risk Monitoring Concept Solution

4.5.1 Human Performance

4.5.1.1 HP arguments, activities and metrics

The HP assessment performed for the Wake Risk Monitoring function in the scope of the PJ02.01 ensured that relevant aspects have been identified and considered for the operational and technical integration of the Wake Risk Monitoring function, based on the HP Assessment Process methodology. The conclusion of the HP assessment work can be found in a dedicated HP log in Part

IV of the OSED where the requirements, recommendations and HP Maturity Assessment for V1 have been formulated.

PIs	Activities & Metrics	Second level indicators	Covered
1104		HP1.1 Clarity and completeness of role and responsibilities of human actors	Covered
HP1 Consistency of human role with respect to human capabilities and	Stakeholder workshop	HP1.2 Adequacy of operating methods (procedures) in supporting human performance	Covered
limitations	Expert analysis	HP1.3 Capability of human actors to achieve their tasks in a timely manner, with limited error rate and acceptable workload level	Open
		HP2.1 Adequacy of allocation of tasks between the human and the machine (i.e. level of automation).	Open
HP2 Suitability of technical system in supporting the tasks of human actors		HP2.2 Adequacy of technical systems in supporting Human Performance with respect to timeliness of system responses and accuracy of information provided	N/A
		HP2.3 Adequacy of the human machine interface in supporting the human in carrying out their tasks.	Open
НРЗ		HP3.1 Adequacy of team composition in terms of identified roles	N/A
Adequacy of team structure and team communication in supporting the human actors		HP3.2 Adequacy of task allocation among human actors	N/A
		HP3.3 Adequacy of team communication with regard to information type, technical enablers and impact on situation awareness/workload	N/A
		HP4.1 User acceptability of the proposed solution	N/A
HP4		HP4.2 Feasibility in relation to changes in competence requirements	N/A
Feasibility with regard to HP- related transition factors		HP4.3 Feasibility in relation to changes in staffing levels, shift organization and workforce relocation.	N/A
		HP4.4 Feasibility in relation to changes in recruitment and	N/A

26 © – 2020 – EUROCONTROL, THALES AIR SYSTEMS SAS, NATS, ENAIRE, INDRA, LEONARDO GmbH, AIRBUS, AT-ONE, DSNA, SEAC2020. All rights reserved. Licensed to the SJU under conditions.

EUROPEAN UNION EUROCONTROL

PIs	Activities & Metrics	Second level indicators	Covered
		selection requirements.	
		HP4.5 Feasibility in terms of changes in training needs with regard to its contents, duration and modality.	N/A

4.5.1.2 Extrapolation to ECAC wide

There is no ECAC wide extrapolation required for this KPI.

4.5.1.3 Open HP issues/ recommendations and requirements

A total number of 9 issues have been identified for the PJ 02.01 Wake Risk Monitoring function, with 3 of them remaining open.

PIs	Number of open issues / benefits	Nr. of recommendations	Number of requirements
HP1 Consistency of human role with respect to human capabilities and limitations	1 open issue	1 recommendation	1 requirement
HP2 Suitability of technical system in supporting the tasks of human actors	2 open issues		2 requirements
HP3 Adequacy of team structure and team communication in supporting the human actors	0		
HP4 Feasibility with regard to HP-related transition factors	0		

4.5.1.4 Concept interaction

The Wake Risk Monitoring function use will follow an "on demand" process. The way to perform this demand will have to be designed in the next maturity level. Nevertheless the result of a Wake Risk Monitoring report and especially its format have to follow or to be aligned with the existing EU regulation No. 376/2014 and may be compatible additionally with the electronic Wake Turbulence Encounter Reporting (e-WTER) initiative.

4.5.1.5 Most important HP issues

The remaining issues mainly consist of identifying the way to request an analysis of a suspected WVE by use of the Wake Risk Monitoring function. The other points mainly consist of systems requirements especially about the WVE report format and data in order to comply with EU regulation and ensure the interoperability with the e-WTER project.

Pls	Most important issue of the solution	Most important issues due to solution interdependencies
HP1 Consistency of human role with respect to human capabilities and limitations	1.3.3_PJ.01_01 According to the candidate operating method the operator may verify the e-WTER filled automatically by the Wake Risk Monitoring function. The task dedicated to the operator consist to verify the data filled by the function. The task load to use the WM function may be low otherwise this may jeopardize the use of the function by the operator. In turn an acceptable level of workload may positively impact the efficiency.	
HP2 Suitability of technical system in supporting the tasks of human actors	2.1.1_PJ02.01_01 The task allocation between the Wake Risk Monitoring function and the Human actors may be clearly defined otherwise this allocation could be incompatible with human representation of WTE reporting. Actually in the early deployment of the function two types of reporting may be mixed: FC / ANSP subjective reporting and a posteriori objective analysis of ACFT data by the Wake Risk Monitoring.	2.3.1_PJ02.01_01 The type of information provided by the Wake Risk Monitoring may satisfy the involved human actors especially to accomplish their tasks. This required information may also depend of the content of the e-WTER content. In turn this may positively impact the Human Performance.
HP3 Adequacy of team		
structure and team communication in supporting the		
human actors		
HP4		
Feasibility with regard to HP-related		
transition factors		

4.5.1.6 Additional Comments and Notes

No additional comments.

4.6 Wake Decay Enhancing Concept Solution

4.6.1 Safety

4.6.1.1 Safety Criteria and Performance Mechanism

SAC Ref	SAC	Associated Hazard Ref	Associated Hazard
SAC#1	The lifetime of the longest-lived wake vortices for a	Hp#1a	Adverse wake encounter on

	given aircraft type and similar environmental conditions within a safety corridor at the runway ends shall decrease or at least not increase by the introduction of decay enhancing devices.		Final Approach.
SAC#2	The decay enhancing devices shall comply with the requirements set forth by ICAO regarding obstacle clearance and frangibility.	Hp#4	Situation where the intended trajectory of an aircraft is in conflict with terrain or obstacle.

4.6.1.2 Data collection and Assessment

Detailed descriptions of the live trial LT10 data collection and assessment can be found in Appendix J of the VALR.

SAC#1:

During live trial LT10 6888 approaches on runway 16 of Vienna International Airport were conducted from which 5039 were measured by three lidars and 209 were processed. For headwinds below 2 m/s (the headwind range where most wake vortex encounters occur) the lifetime of the long-lived vortices in a safety corridor extending ±50 m from the extended runway centreline is reduced by 30% for all measured landings comprising medium, heavy, and super weight class aircraft. This result considers 239 measurements with plates and 191 measurements without plates.

As a representative for heavy aircraft, landings of B763 aircraft (46 measurements with plates and 37 measurements without plates) have been assessed separately leading to a 29% vortex lifetime reduction. For 113 medium weight category A320 aircraft (57 measurements with plates and 56 measurements without plates) the vortex lifetime could be reduced by 32%.

SAC#2:

A plate line consists of 8 plates separated by 20 m where each plate features dimensions of 4.5 m height and 9 m length. The plate line closer to the runway was installed behind the localizer at a distance of about 400 m to the threshold, thus obeying obstacle clearance requirements.

Frangibility was demonstrated with a plate prototype according to the Autodrome Design Manual, Part 6 Frangibility of ICAO (see VALR). A safety assessment was conducted by the EASA Safety & Compliance Management of Vienna Int. Airport confirming compliance with ICAO regulations. Finally, the installation of the plates and the instrumentation was approved by the authorities (Bundesministerium für Verkehr, Innovation und Technologie).

4.6.1.3 Extrapolation to ECAC wide

Live trial LT10 has demonstrated the technical feasibility employing a temporary plate line design. In SESAR 2020 Wave 2 VLD3 a permanent plate line design shall be developed and approved by authorities. The measurements with the temporal plate line design have demonstrated that the concept works well physically. Given the approval of the permanent plate design by authorities the concept can be installed with relatively little effort at other airports.

4.6.1.4 Discussion of Assessment Result

The established plate line design and positioning successfully passed the safety assessment conducted by the EASA Safety- & Compliance Management of Vienna Int. Airport. It was also approved by the respective authorities (BMVIT, Austria). The plate lines were installed at runway 16 of the Vienna Int. Airport and were operational during approach and landing on that runway. The planned measurement program was accomplished to a substantial part. Although only part of the lidar measurements could be processed and analysed so far, the results are conclusive and statistically sound: The lifetime of the long-lived wake vortices in the flight corridor under calm wind conditions can be reduced by the installation of plate lines by about 30%. More detailed analysis of the measurement data, shedding more light on the effects of individual aircraft types, flight altitudes, and environmental conditions, will be conducted in SESAR 2020 Wave 2 VLD3.

4.6.1.5 Additional Comments and Notes

No additional comments.

4.6.2 Environment / Fuel Efficiency

4.6.2.1 Performance Mechanism

The installation of plate lines reduces the lifetime of the long-lived vortices in a safety corridor along the final approach on average by about 30%. This will reduce the number of encounters during final approach and thus the go-around rate, which in turn will have positive impacts on fuel efficiency.

Reduced vortex lifetime will allow for a revision of existing separation rules (ICAO, RECAT-EU and RECAT-PWS-EU) with smaller wake separations between arrivals in a future project. Reduced separations will reduce the average delay per flight. A reduction in delay per flight will result in reduced fuel burn in the TMA. This has a positive impact on fuel efficiency.

4.6.2.2 Assessment Data (Exercises and Expectations)

Since go-arounds are rare events, evidence of this success criterion can only be achieved indirectly. The analysis of potential wake vortex encounters at Vienna airport indicated that go-arounds due to wake vortex encounters are typically initiated at low altitudes exactly in the same altitude range where the plate lines reduce wake vortex lifetime. The reduction of the lifetime of the long-lived wake vortices by about 30% will certainly reduce the number of go-arounds yielding positive impacts on fuel efficiency.

In a next step the reduction of the lifetime of the long-lived vortices in ground proximity, where most encounters occur, may allow for a revision of existing separation rules. This may lead to a reduction of the average delay per flight which will have a positive impact on fuel efficiency.

4.6.2.3 Extrapolation to ECAC wide

Positive impacts on fuel efficiency by the installation of plate lines can be achieved at any airport where the air traffic density leads to wake vortex encounters during final approach.

4.6.2.4 Discussion of Assessment Result

The reduction of the lifetime of the long-lived wake vortices in the flight corridor under calm wind conditions by about 30% appears conclusive and statistically sound. The reduced number of go-

arounds can be estimated to 10 per airport and year. Potential gains regarding a revision of the separation rules cannot be estimated yet. The LT10 data will be used to estimate potential capacity gains in SESAR 2020 Wave 2 VLD3 employing the same rationale as was used to establish RECAT-EU and RECAT-PWS-EU.

4.6.2.5 Additional Comments and Notes

No additional comments.

4.6.3 Airport Capacity (Runway Throughput Flights/Hour)

4.6.3.1 Performance Mechanism

The installation of plate lines reduces the lifetime of the long-lived vortices in a safety corridor along the final approach on average by about 30%. Final approach is the flight phase with most encounters and thus constitutes the bottleneck for wake vortex separations during arrivals. The vortex lifetime reduction will reduce the number of encounters during final approach and thus the go-around rate leading to positive impacts on capacity.

In a next step reduced vortex lifetime may allow for a revision of existing separation rules (ICAO, RECAT-EU and RECAT-PWS-EU) with smaller wake separations between arrivals. Reduced wake separation for arrivals will increase the runway throughput. Higher runway throughput allows for increased number of movements, leading to higher airport capacity.

4.6.3.2 Assessment Data (Exercises and Expectations)

Live trial LT10 indicates that for headwinds below 2 m/s (the headwind range where most wake vortex encounters occur) the lifetime of the long-lived vortices in a flight safety corridor is reduced by 30% for all measured landings comprising medium, heavy, and super weight class aircraft. For this, 239 measurements with plates and 191 measurements without plates have been considered.

As a representative for heavy aircraft, landings of B763 aircraft (46 measurements with plates and 37 measurements without plates) have been assessed separately leading to a 29% vortex lifetime reduction. For 113 medium weight category A320 aircraft (57 measurements with plates and 56 measurements without plates) the vortex lifetime could be reduced by 32%.

Since final approach is the flight phase with most encounters, widening of this bottleneck may unlock potential to optimize wake vortex separations (RECAT-EU, RECAT-PWS-EU and dynamic pairwise separations).

4.6.3.3 Extrapolation to ECAC wide

LT10 has demonstrated the technical feasibility employing a temporary plate line design. In VLD3 a permanent plate line design shall be developed and approved by authorities. Given the approval of the permanent plate design by Austrian authorities, the concept can be installed with relatively little effort at other airports. The intended future revisions of separation rules can be applied at any airport equipped with plate lines.

4.6.3.4 Discussion of Assessment Result

The established plate line design and positioning successfully passed the safety assessment conducted by the EASA Safety & Compliance Management of Vienna Int. Airport. It was also approved by the respective authorities (BMVIT, Austria). The plate lines were installed at runway 16

of the Vienna Int. Airport and were operational during approach and landing on that runway. The planned measurement program was accomplished to a substantial part. Although only part of the lidar measurements could be processed and analysed so far, the results are conclusive and statistically sound: The lifetime of the long-lived wake vortices in the flight corridor under calm wind conditions can be reduced by the installation of plate lines by about 30%. More detailed analysis of the measurement data, shedding more light on the effects of individual aircraft types, flight altitudes, and environmental conditions, will be conducted in SESAR 2020 Wave 2 VLD3. VLD3 will also estimate potential capacity gains employing the same rationale as was used to establish RECAT-EU and RECAT-PWS-EU. The potential of Dynamic Pairwise Separations for runways equipped with plate lines will also be assessed in VLD3.

4.6.3.5 Additional Comments and Notes

No additional comments.

4.6.4 Resilience (% Loss of Airport & Airspace Capacity Avoided)

4.6.4.1 Performance Mechanism

Reduced vortex lifetime will allow for a revision of existing separation rules (ICAO, RECAT-EU and RECAT-PWS-EU) with smaller wake separations between arrivals in a future project. A reduction of separations will avoid losses of capacity resulting in higher resilience.

4.6.4.2 Assessment Data (Exercises and Expectations)

See section 4.6.3.2.

4.6.4.3 Extrapolation to ECAC wide

N/A

4.6.4.4 Discussion of Assessment Result

N/A

4.6.4.5 Additional Comments and Notes

No additional comments.

4.6.5 Cost Efficiency

Plate lines are passive devices that do not require personnel for operation. Only the plate lines designed for temporary installation need to be manually folded up for operations and have to be secured at the ground afterwards. A permanent plate line design will be developed only in SESAR 2020 Wake 2 VLD3 such that the final costs cannot be specified today. The current plates consist of wooden frames, track tarpaulin, synthetic ropes, metal hinges and ground anchors. As such they are considered cost-effective. The approval process for the permanent plate design will be accomplished in VLD3 building upon the experiences collected for the temporal design and its approval by authorities. Consequently, the plates can be installed at any other airport with substantially reduced effort and costs. Substantial benefits in terms of safety (less encounters during final approach) and, in a next step, also capacity gains for arrivals can be expected.

4.6.5.1 Performance Mechanism

The installation of plate lines at the runway ends may increase safety and capacity at a minimum of recurring costs. Once the passive, relatively low-cost, robust, and safe method has been installed at an airport, the benefits in safety and capacity are made available without additional efforts.

4.6.5.2 Assessment Data (Exercises and Expectations)

N/A

4.6.5.3 Extrapolation to ECAC wide

The safety gains as well as the intended future revisions of separation rules can be exploited at any airport equipped with plate lines.

4.6.5.4 Discussion of Assessment Result

N/A

4.6.5.5 Additional Comments and Notes

No additional comments.

4.7 Gap Analysis

KPI	Validation Targets – Network Level (ECAC Wide)	Expectations at Network Level (ECAC Wide or Local depending	Rationale ¹⁹
FEFF1: Fuel Efficiency – Fuel burn per flight	26.7 kg	ORD (AO-0328) tool support for RECAT- EU TBS = 7.2-21.7 kg compared to, compared to TBS (AO-0303) FTD Indicator only tool support for RECAT- EU TBS, with a Vienna airport traffic mix. AO-0306 (PWS-A) = 3-16 kg , compared to TBS (AO-0303) FTD Indicator only tool support for RECAT-EU TBS, with a Vienna airport traffic mix. AO-0310 (WDS-A) in the context of	Arrivals (AO-0328, AO-0306, AO-0310) The performance target indicates a reduction of 26.7 kg per flight. The expected performance benefits (considering different traffic samples and wind conditions) are in this range with the performance target only with WDS-A (OI AO-0310). For ORD when deployed alone, the best result is 21 kg reduction, still close to the validation target. For PWS-A the best result is 16 kg reduction, which is

¹⁸ Negative impacts are indicated in red.

¹⁹ Discuss the outcome if, and only if, the gap indicates a different understanding of the contribution of the Solution (for example, the Solution is enabling other Solutions and therefore is not contributing a direct benefit).

KPI	Validation Targets – Network Level (ECAC Wide)	Performance Benefits Expectations at Network Level (ECAC Wide or Local depending on the KPI) ¹⁸	Rationale ¹⁹
		 RECAT-EU TBS with ORD (AO-0328) tool support = 27.4-40.46 kg, compared to TBS (AO-0303) FTD Indicator only tool support for RECAT-EU TBS, with a Vienna airport traffic mix. AO-0329 (OSD) = 1.79 kg, compared to RECAT-EU TBS without OSD tool support, with a Heathrow traffic mix. AO-0323 (PWS-D): 10.53kg compared to RECAT-EU without OSD tool support, with a Barcelona traffic mix; 2.28kg compared to RECAT-EU without OSD tool support, with a Heathrow traffic mix; AO-0304 (WDS-D) in the context of PWS-D (AO-0323) = 2.23 kg, compared to RECAT-EU without OSD tool support, with a Heathrow traffic mix. 	well below the target, The confidence in these results is low. <u>Departures (AO-0329, AO-0323, AO-0304)</u> The fuel efficiency results show a reduction in taxi-out time in each of the OI steps due to increased departure throughputs and hence reduced delays. There is low confidence in these results.
CAP3: Airport Capacity – Peak Runway Throughput (Mixed mode).	2.6%	 ORD (AO-0328) tool support for RECAT-EU TBS – 7.9% increase in movements per hour, compared to TBS (AO-0303) FTD Indicator only tool support for RECAT-EU TBS, with a Vienna airport traffic mix. PWS-A (AO-0306) – 0.01% increase, compared to TBS (AO-0303) FTD Indicator only tool support for RECAT-EU TBS, with a Vienna airport traffic mix. WDS-A (AO-0310) in the context of RECAT-EU TBS with ORD (AO-0328) tool support – 0.01% increase, compared to TBS (AO-0303) FTD Indicator only tool support for RECAT-EU TBS, with a Vienna airport traffic mix. WDS-A (AO-0310) in the context of RECAT-EU TBS with ORD (AO-0328) tool support – 0.01% increase, compared to TBS (AO-0303) FTD Indicator only tool support for RECAT-EU TBS, with a Vienna airport traffic mix. OSD (AO-0329) – 1.0% increase, compared to RECAT-EU TBS without OSD tool support, with a Heathrow traffic mix. PWS-D (AO-0323): - 8.65% increase compared to ICAO 	Arrivals (AO-0328, AO-0306, AO-0310) These results meet and exceed the performance targets defined from PJ.19 that was a 2.574% increase in capacity with the exception of ORD when deployed alone (where the best result of 2.3% capacity increase is very close to the validation target). The confidence estimate in the results is moderate, they are based on generic characteristics that are common in other European airports. The benefits identified are an estimation applicable to very large, large and medium airports that are capacity constrained during traffic peaks because of the wake turbulence constraints and the separation delivery on approach. For each local airports the exact benefits are depending on several factors including specific traffic mix, length of traffic peak, wind conditions (especially for WDS), applicable surveillance minima, runway occupancy time, glide length, type of approach, runway layout, airport

34 © – 2020 – EUROCONTROL, THALES AIR SYSTEMS SAS, NATS, ENAIRE, INDRA, LEONARDO GmbH, AIRBUS, AT-ONE, DSNA, SEAC2020. All rights reserved. Licensed to the SJU under conditions. Founding Members

KPI	Validation Targets – Network Level (ECAC Wide)	Performance Benefits Expectations at Network Level (ECAC Wide or Local depending on the KPI) ¹⁸	Rationale ¹⁹
		 without OSD tools support, with a Barcelona traffic mix; 2.41% increase, compared to RECAT-EU without OSD tool support, with a Heathrow traffic mix. 	infrastructure, etc; these factors were taken into account in the FTS as fixed parameters (e.g. ROT) or dynamic parameters modified in each run (e.g. the traffic mix, wind conditions,) to provide as many different cases as possible.
		WDS-D (AO-0304) in the context of PWS-D (AO-0323) – 0.1% increase , compared to RECAT-EU without OSD tool support, with a Heathrow traffic mix.	14 reference scenarios and 20 solution scenarios have been fast time simulated for each of the 4 traffic samples. Each traffic sample varies 7 times the traffic pressure, thus a comprehensive set of results has been obtained and for the PAR we provided a range of values.
			<u>Departures (AO-0329, AO-0323, AO-0304)</u>
			Varying performance between runs for some controllers led to unexpected departure throughput results. It was expected that AO-0329 (OSD) would bring negligible benefit due to keeping the wake separation scheme the same.
			AO-0304 (WDS-D) was expected to have a benefit in-line with AO-0323 (PWS-D) but it shows a smaller benefit. However, because of low departure throughput in the reference scenario the OSD and PWS- D throughputs are higher. Also, controllers noted during WDS-D runs that they were sequencing departures to try to achieve a reduced WDS-D separation, which may have not been the most optimal departure sequence. Hence, the WDS-D benefits showed a lower benefit than PWS-D. Therefore, it is recommended that validation exercises are conducted in the local environment to determine the benefits.
PRD1: Predictability – Variance of Difference in actual & Flight	0.27% ²⁰	ORD (AO-0328) tool support for RECAT- EU TBS- 0.40 minutes reduction (4%) in flight duration, compared to TBS (AO-0303) FTD Indicator only tool support for RECAT-EU TBS, with a	Arrivals (AO-0328, AO-0306, AO-0310) The performance target indicates 0.27%. The % expected performance benefits of

²⁰ In Validation Targets [18] the unit for PRD1 is % Reduction in variance of block-to-block flight time.

Level (ECAC on the KPI) ¹ Wide)	
reduction (5 ⁴ compared to Indicator only EU TBS, with mix. WDS-A (AO-O RECAT-EU TBS support = 0.55 in flight dura (AO-0303) FT support for Vienna airpo (OSD) = 1.22 compared to OSD tool sup traffic mix. AO-0323 (PWS - 3.71mins compared tool sup traffic mix - 0.92 mi compared OSD to Heathrow	 D6) - 0.62 minutes in flight duration, TBS (AO-0303) FTD bol support for RECAT- Vienna airport traffic D0) in the context of ith ORD (AO-0328) tool minutes reduction (6%) on, compared to TBS Indicator only tool ECAT-EU TBS, with a traffic mix.AO-0329 ins reduction (2.5%), ECAT-EU TBS without ort, with a Heathrow o): reduction (7.57%) to ICAO without OSD ort, with a Barcelona s reduction (1.87%), to RECAT-EU without support, with a raffic mix. D) in the context of 323) = 0.91 mins 35%), compared to but OSD tool support,

Table 20: Gap Analysis Summary

5 References

This PAR complies with the requirements set out in the following documents:

- [1] 08.01.03 D47: AIRM v4.1.0
- [2] B05 Performance Assessment Methodology for Step 1
- [3] PJ.19.04 D4.4 Performance Framework (2018), Edition 01.00.00, August 2018
- [4] B.05 Guidance for Performance Assessment Cycle 2013
- [5] B.05 D72, Updated Performance Assessment in 2016

https://stellar.sesarju.eu/servlet/dl/ShowDocumentContent?doc_id=1669873.13&att=attach ment&statEvent=Download

- [6] B05 Data Collection and Repository Cycle 2015
- [7] Methodology for the Performance Planning and Master Plan Maintenance (edition 0.13)

https://stellar.sesarju.eu/servlet/dl/ShowDocumentContent?doc_id=4731333.13&att=attach ment&statEvent=Download

Content Integration

- [8] B.04.01 D138 EATMA Guidance Material
- [9] EATMA Community pages

[10]SESAR ATM Lexicon

Content Development

[11]PJ.19.02.02 D2.1 SESAR 2020 Concept of Operations Edition 2017, Edition 01.00.00, November 2017

System and Service Development

[12]08.01.01 D52: SWIM Foundation v2

[13]08.01.01 D49: SWIM Compliance Criteria

[14]08.03.10 D45: ISRM Foundation v00.08.00

[15]B.04.03 D102 SESAR Working Method on Services

[16]B.04.03 D128 ADD SESAR1

[17]B.04.05 Common Service Foundation Method

Performance Management

[18]PJ.19.04.01 D4.5 Validation Targets (2018), Edition 01.00.00, April 2018

https://stellar.sesarju.eu/servlet/dl/ShowDocumentContent?doc_id=6784461.13&att=attach ment&statEvent=Download

- [19]16.06.06-D68 Part 1 SESAR Cost Benefit Analysis Integrated Model
- [20]16.06.06-D51-SESAR_1 Business Case Consolidated_Deliverable-00.01.00 and CBA
- [21]Method to assess cost of European ATM improvements and technologies, EUROCONTROL (2014)

[22]ATM Cost Breakdown Structure_ed02_2014

[23]Standard Inputs for EUROCONTROL Cost Benefit Analyses

[24]16.06.06_D26-08 ATM CBA Quality Checklist

[25]16.06.06_D26_04_Guidelines_for_Producing_Benefit_and_Impact_Mechanisms

Validation

[26]03.00 D16 WP3 Engineering methodology

[27]Transition VALS SESAR 2020 - Consolidated deliverable with contribution from Operational Federating Projects

[28]European Operational Concept Validation Methodology (E-OCVM) - 3.0 [February 2010]

System Engineering

[29]SESAR Requirements and V&V guidelines

Safety

[30]SESAR, Safety Reference Material, Edition 4.0, April 2016

https://stellar.sesarju.eu/jsp/project/qproject.jsp?objld=1795089.13&resetHistory=true&sta tInfo=Ogp&domainName=saas

[31]SESAR, Guidance to Apply the Safety Reference Material, Edition 3.0, April 2016

https://stellar.sesarju.eu/jsp/project/qproject.jsp?objld=1795102.13&resetHistory=true&sta tInfo=Ogp&domainName=saas

[32]SESAR, Final Guidance Material to Execute Proof of Concept, Ed00.04.00, August 2015

[33] Accident Incident Models – AIM, release 2017

https://stellar.sesarju.eu/servlet/dl/ShowDocumentContent?doc_id=3658775.13&att=attach ment&statEvent=Download

38 © - 2020 - EUROCONTROL, THALES AIR SYSTEMS SAS, NATS, ENAIRE, INDRA, LEONARDO GmbH, AIRBUS, AT-ONE, DSNA, SEAC2020. All rights reserved. Licensed to the SJU under conditions.

Human Performance

[34]16.06.05 D 27 HP Reference Material D27

[35]16.04.02 D04 e-HP Repository - Release note

Environment Assessment

- [36]SESAR, Environment Reference Material, alias, "Environmental impact assessment as part of the global SESAR validation", Project 16.06.03, Deliverable D26, 2014.
- [37]ICAO CAEP "Guidance on Environmental Assessment of Proposed Air Traffic Management Operational Changes" document, Doc 10031.

Security

[38]16.06.02 D103 SESAR Security Ref Material Level

[39]16.06.02 D137 Minimum Set of Security Controls (MSSCs).

[40]16.06.02 D131 Security Database Application (CTRL_S)

5.1 Reference Documents

The following documents were used to provide input / guidance / further information / other:

[41]ED-78A GUIDELINES FOR APPROVAL OF THE PROVISION AND USE OF AIR TRAFFIC SERVICES SUPPORTED BY DATA COMMUNICATIONS.²¹

- [42]D1.1.01 PJ02-01 OSED-SPR-INTEROP (Final) Part I 01.00.00
- [43]D1.1.01 PJ02-01 OSED-SPR-INTEROP (Final) Part II 01.00.00

[44]D1.1.01 - PJ02-01 OSED-SPR-INTEROP (Final) Part IV - 01.00.00

[45]D1.1.02 - PJ02-01 TS/IRS (Final) - 01.00.00

[46]D1.1.03 – PJ02-01 VALP (Final) Part I – 00.01.00

[47]D1.1.03 – PJ02-01 VALP (Final) Part II – 00.01.00

[48]D1.1.03 – PJ02-01 VALP (Final) Part IV – 00.01.00

[49]D1.1.04 - PJ02-01 VALR (Final) - 01.00.00

[50]D1.1.05 - PJ02-01 CBA - 01.00.00

[51]CREDOS Final Concept of Operations Description D4-11, Version 1.0, 10/11/2009

21

[52]PJ02-01 London Heathrow Capacity Benefits Analysis, Version 1.0, November 2019, Huw Murray

Appendix A Detailed Description and Issues of the OI Steps

OI Step ID	Title	Consistency latest Dataset	with
AO-0328	Optimised Runway Delivery on Final Approach	Full (DS20)	
AO-0306	Wake Turbulence Separations (for Arrivals) based on static Aircraft Characteristics	Full (DS20)	
AO-0310	Weather-Dependant Reductions of Wake Turbulence Separations for Final Approach	Full (DS20)	
AO-0329	Optimised Separation Delivery for Departure	Full (DS20)	
AO-0323	Wake Turbulence Separations (for Departures) based on static Aircraft Characteristics	Full (DS20)	
AO-0304	Weather-Dependant Reductions of Wake Turbulence Separations for Departures	Full (DS20)	
AO-0327	Reduction of Wake Turbulence Risk through Wake Risk Monitoring	Full (DS20)	
AO-0325	Reduction of Wake Turbulence Risk considering Acceleration of Wake Vortex Decay in Ground Proximity	Full (DS20)	

Table 21: OI Steps allocated to the Solution

42 © – 2020 – EUROCONTROL, THALES AIR SYSTEMS SAS, NATS, ENAIRE, INDRA, LEONARDO GmbH, AIRBUS, AT-ONE, DSNA, SEAC2020. All rights reserved. Licensed to the SJU under conditions.

-END OF DOCUMENT-