

Final OSED for Madrid TMA (Annex Validation Report)

Document information		
Project title	Full Implementation of P-RNAV in complex TMA	
Project N°	05.07.04	
Project Manager	AENA	
Deliverable Name	Final OSED in Madrid TMA	
Deliverable ID	D03	
Edition	00.00.01	
Template Version	02.00.00	
Task contributors		
AENA		

Please complete the advanced properties of the document

Abstract

The main purpose is to assess the feasibility of the proposed *P*-RNAV scenario, mixed with conventional operations with a high traffic load in high complexity airspace. The aim is to deliver benefits to both, arrival and departure traffic. The methods used were fast-time and real time simulations.

Authoring & Approval

Prepared By			
Name & company	Position / Title	Date	
<name> / <company></company></name>	<position title=""></position>	<date></date>	
	ATC Controller	20/12/2011	

Reviewed By			
Name & company	Position / Title	Date	
<name> / <company></company></name>	<position title=""></position>	<date></date>	
		26/12/2011	

Approved By			
Name & company	Position / Title	Date	
<name> / <company></company></name>	<position title=""></position>	<date></date>	
		26/12/2011	

Document History

Edition	Date	Status	Author	Justification
00.00.01	26/12/2011	Final		This is the final Validation Report that will be included as a part of the Final OSED for Madrid TMA

Intellectual Property Rights (foreground)

The foreground of this deliverable is owned by the SJU.

Table of Contents

ΕX	ECUTIVE SUMMARY	8
1	INTRODUCTION	9
1	I.1 PURPOSE AND SCOPE OF THE DOCUMENT	9
1	I.2 INTENDED AUDIENCE	9
1	I.3 STRUCTURE OF THE DOCUMENT	.11
1	I.4 ACRONYMS AND TERMINOLOGY	.11
2	CONTEXT OF THE VALIDATION	.13
2	2.1 CONCEPT OVERVIEW	.13
2	2.2 SUMMARY OF VALIDATION EXERCISE/S	. 14
	2.2.1 Summary of Expected Exercise/s outcomes	. 14
	2.2.3 Summary of Validation Scenarios	. 27
	2.2.4 Summary of Assumptions	. 28
	2.2.5 Choice of methods and techniques	. 29
	2.2.5.1 Description of methods and techniques	. 29
	2.2.5.1.1 Initial Conditions	. 29
		. 30
	2.2.5.1.2.1 Groups	20
	2.2.5.1.2.1.1 Gloup 1 (Filidi)	. 50
	2.2.5.1.2.1.2 Group 2 (Nined)	31
	2 2 5 1 2 1 4 Group 4 (A/D Feeder)	31
	2 2 5 1 2 1 5 Group 5 (A Feeder)	32
	2251216 Group 6 (High Evolution)	32
	2.2.5.1.2.1.7 Group 7 (Low Evolution)	. 32
	2.2.5.1.2.1.8 Group 8 (Route)	. 32
	2.2.5.1.3 Modulation	. 33
	2.2.5.1.3.1 Data Selection	. 33
	2.2.5.1.3.2 Solving Equations	. 33
	2.2.5.1.3.3 Instant Modulation of All Actions	. 33
	2.2.5.1.3.4 Workload Calculation	. 34
	2.2.5.1.3.5 Calculation of Norvase Indicators	. 34
	2.2.5.1.3.5.1 Description of the indicators	. 35
	2.2.5.1.3.5.2 Implicit Indicators	. 35
	2.2.5.1.3.5.3 Explicit indicators	. 36
	2.2.5.1.3.6 NORVASE Capacity calculation methodology MECANO	. 37
	2.2.5.1.3.6.1 Introduction	. 37
	2.2.5.1.3.6.2 Giving the equivalent in sec	. 38
	2.2.5.1.3.6.3 Instantaneous Modulation of all Actions	. 39
	2.2.5.1.3.0.4 WORKIDAU GAICUIATION	.40
	2.2.5.1.3.0.5 Obidining the calculated capacity	.40
	2.2.0.1.0.7 State Diagrams	. 41
	22513711 Characteristics	41
	2.2.5.1.3.7.1.2 Actions	.41
	2.2.5.1.3.7.2 Quadrant 2	.41
	2.2.5.1.3.7.2.1 Characteristics.	.41
	2.2.5.1.3.7.2.2 Actions	. 42
	2.2.5.1.3.7.3 Quadrant 3	. 42
	2.2.5.1.3.7.3.1 Characteristics	. 42
	2.2.5.1.3.7.3.2 Actions	. 42
	2.2.5.1.3.7.4 Quadrant 4	. 42
	2.2.5.1.3.7.4.1 Characteristics	. 42
	2.2.5.1.3.7.4.2 Actions	. 42
	2.2.6 Validation Exercises List and dependencies	. 42
3	CONDUCT OF VALIDATION EXERCISES	.46

Project ID 05.0 D003 - Final O)7.04. SED for Madrid TMA (Annex Validation Report)	Edition: 00.00.01
3.1 Exerc	SISES PREPARATION	
3.2 Exerc	SISES EXECUTION	
3.3 DEVIA	TIONS FROM THE PLANNED ACTIVITIES	
3.3.1 E	eviations with respect to the Validation Strategy	
3.3.2 D	eviations with respect to the Validation Plan	
4 EXERCIS	ES RESULTS	
4.1 SUMM	ARY OF EXERCISES RESULTS	
4.1.1 F	esults on concept clarification	
4.1.2 F	esults per KPA	
4.1.2.1 C	apacity, Complexity and Workload	
4.1.2.1.1	Sectors ENN, ESN, WNN & WSN (P-RNAV North Configuration)	
4.1.2.1.2	Sectors REN & RWN (P-RNAV)	
4.1.2.1.2.1	Sector REN results (P-RNAV)	
4.1.2.1.2.2	Sector RWN results (P-RNAV)	
4.1.2.1.3	Sectors AFEN & AFWN (P-RNAV)	
4.1.2.1.3.1	Sector AFEN results (P-RNAV)	
4.1.2.1.3.2	Sector DIN	
4.1.2.1.4	Sector DIN results (P_PNAV)	
4.1.2.1.4.1	Sectors FNS FSS W/NS & W/SS (P-RNAV South Configuration)	
41216	Sectors RES & RWS	
4.1.2.1.6.1	Sector RES results (P-RNAV)	
4.1.2.1.6.2	Sector RWS results (P-RNAV)	
4.1.2.1.7	Sectors AFES & AFWS (P-RNAV)	
4.1.2.1.7.1	Sector AFES results (P-RNAV)	
4.1.2.1.7.2	Sector AFWS results (P-RNAV)	
4.1.2.1.8	Sector DIS (P-RNAV)	
4.1.3 F	esults impacting regulation and standardisation initiatives	
4.2 ANALY	SIS OF EXERCISES RESULTS	
4.2.1 Act	UAL SECTOR ENN	
4.2.2 ACT	UAL SECTOR REN	
4.2.3 ACT	UAL SECTOR RWN	
4.2.4 ACT	UAL SECTOR AIN	
4.2.5 SEC		
4.2.6 ANA	LYSIS OF AIRSPACE	
4.2.7 ANA	LYSIS OF PROCEDURES	
4.2.0 ANA 4.2.0 ANA	LYSIS OF COMMUNICATIONS	
4.2.9 ANA 4.2.10 ANA	LISIS OF LASKS	
4.2.10 ANA	Inexpected Rehaviours/Results	
4.3 CONFI	DENCE IN RESULTS OF VALIDATION EXERCISES	160
4.3.1	Juality of Validation Exercises Results	
4.3.2 S	ignificance of Validation Exercises Results	
5 CONCLUS	SIONS AND RECOMMENDATIONS	
5.1 CONC	_USIONS	
5.2 RECO	MMENDATIONS	
6 REFEREN	CES	
6.1 APPLIC	CABLE DOCUMENTS	
6.2 Refer		

List of tables

Table 2: Summary of the expected results15Table 5: Success Criteria18Table 6: List of KPIs and metrics27Table 7: Methods and Techniques29Table 8: Exercises execution/analysis dates47Table 9: Summary of Validation Exercises Results55Table 10: ENN comparison results96Table 11: LEMDREN comparison results100Table 12: LEMDRWN comparison results105Table 13: LEMDAIN, AFEN & AFWN results110Table 14: DIN comparison results111Table 15: Overview: Validation Objectives, Exercises Results and Validation Objectives Analysis	Table 1: Concept Overview	14
Table 5: Success Criteria18Table 6: List of KPIs and metrics27Table 7: Methods and Techniques29Table 8: Exercises execution/analysis dates47Table 9: Summary of Validation Exercises Results55Table 10: ENN comparison results96Table 11: LEMDREN comparison results100Table 12: LEMDRWN comparison results105Table 13: LEMDAIN, AFEN & AFWN results110Table 14: DIN comparison results114Table 15: Overview: Validation Objectives, Exercises Results and Validation Objectives Analysis	Table 2: Summary of the expected results	15
Table 6: List of KPIs and metrics27Table 7: Methods and Techniques29Table 8: Exercises execution/analysis dates47Table 9: Summary of Validation Exercises Results55Table 10: ENN comparison results96Table 11: LEMDREN comparison results100Table 12: LEMDRWN comparison results105Table 13: LEMDRIN, AFEN & AFWN results110Table 14: DIN comparison results114Table 15: Overview: Validation Objectives, Exercises Results and Validation Objectives Analysis	Table 5: Success Criteria	18
Table 7: Methods and Techniques.29Table 8: Exercises execution/analysis dates47Table 9: Summary of Validation Exercises Results55Table 10: ENN comparison results96Table 11: LEMDREN comparison results100Table 12: LEMDRWN comparison results105Table 13: LEMDAIN, AFEN & AFWN results110Table 14: DIN comparison results114Table 15: Overview: Validation Objectives, Exercises Results and Validation Objectives Analysis	Table 6: List of KPIs and metrics	27
Table 8: Exercises execution/analysis dates47Table 9: Summary of Validation Exercises Results55Table 10: ENN comparison results96Table 11: LEMDREN comparison results100Table 12: LEMDRWN comparison results105Table 13: LEMDAIN, AFEN & AFWN results110Table 14: DIN comparison results114Table 15: Overview: Validation Objectives, Exercises Results and Validation Objectives Analysis	Table 7: Methods and Techniques	29
Table 9: Summary of Validation Exercises Results55Table 10: ENN comparison results96Table 11: LEMDREN comparison results100Table 12: LEMDRWN comparison results105Table 13: LEMDAIN, AFEN & AFWN results110Table 14: DIN comparison results114Table 15: Overview: Validation Objectives, Exercises Results and Validation Objectives Analysis	Table 8: Exercises execution/analysis dates	47
Table 10: ENN comparison results96Table 11: LEMDREN comparison results100Table 12: LEMDRWN comparison results105Table 13: LEMDAIN, AFEN & AFWN results110Table 14: DIN comparison results114Table 15: Overview: Validation Objectives, Exercises Results and Validation Objectives Analysis	Table 9: Summary of Validation Exercises Results	55
Table 11: LEMDREN comparison results 100 Table 12: LEMDRWN comparison results 105 Table 13: LEMDAIN, AFEN & AFWN results 110 Table 14: DIN comparison results 110 Table 15: Overview: Validation Objectives, Exercises Results and Validation Objectives Analysis 110	Table 10: ENN comparison results	96
Table 12: LEMDRWN comparison results 105 Table 13: LEMDAIN, AFEN & AFWN results 110 Table 14: DIN comparison results 114 Table 15: Overview: Validation Objectives, Exercises Results and Validation Objectives Analysis 112	Table 11: LEMDREN comparison results	. 100
Table 13: LEMDAIN, AFEN & AFWN results	Table 12: LEMDRWN comparison results	. 105
Table 14: DIN comparison results	Table 13: LEMDAIN, AFEN & AFWN results	. 110
Table 15: Overview: Validation Objectives, Exercises Results and Validation Objectives Analysis	Table 14: DIN comparison results	
	Table 15: Overview: Validation Objectives, Exercises Results and Validation Objectives Analysis	
Status	Status	. 149

List of figures

Figure 2: Groups	30
Figure 3: Final	31
Figure 4: Feeder A	32
Figure 5: Instant Modulation of all actions	34
Figure 6: Calculated Capacity	41
Figure 7: Validation Exercises List and dependencies (North Configuration)	43
Figure 8: Validation Exercises List and dependencies (South Configuration)	44
Figure 9: Validation Exercises List and dependencies (MOPS)	44
Figure 10: Validation Exercises List and dependencies (Sector Integration)	45
Figure 11: Validation Exercises List and dependencies (Single Runway)	45
Figure 12: SCN-05.07.04-VALP-0000-0005	48
Figure 13: SCN-05.07.04-VALP-0000-0007	49
Figure 14: External Sectors for North Configuration	56
Figure 15: Director Sectors for North Configuration	57
Figure 16: REN spreadsheet runs	58
Figure 17: REN Status	58
Figure 18: REN Workload	59
Figure 19: REN calculated capacity	59
Figure 20: REN descriptive 2011	60
Figure 21: REN descriptive 2009	60
Figure 22: RWN spreadsheet runs	61
Figure 23: RWN Status	62
Figure 24: RWN Workload	62
Figure 25: RWN calculated capacity	63
Figure 26: RWN descriptive 2011	63
Figure 27: RWN descriptive 2009	63
Figure 28: AFEN and AFWN for North Configuration	64
Figure 29: AFEN spreadsheet runs	65
Figure 30: AFEN Status	65
Figure 31: AFEN Workload	66
Figure 32: AFEN calculated capacity	66
Figure 33: AFEN descriptive 2011	67
Figure 34: AFEN descriptive 2009	67
Figure 35: AFWN spreadsheet runs	68
Figure 36: AFWN Status	68
Figure 37: AFWN Workload	69
Figure 38: AFWN calculated capacity	69
Figure 39: AFWN descriptive 2011	69
Figure 40: AFWN descriptive 2009	70
Figure 41: DIN Sector	71

Figure 42:	DIN spreadsheet runs	72
Figure 43:	DIN Status	73
Figure 44:	DIN Workload	73
Figure 45:	DIN descriptive 2011	74
Figure 46:	External Sectors for South Configuration	75
Figure 47:	Director Sectors for South Configuration	76
Figure 48:	RES spreadsheet runs	77
Figure 49:	RES Status	78
Figure 50:	RES Workload	78
Figure 51:	RES calculated capacity	79
Figure 52:	RES descriptive 2011	79
Figure 53:	RES descriptive 2009	80
Figure 54:	RWS spreadsheet runs	81
Figure 55:	RWS Status	81
Figure 56:	RWS Workload	82
Figure 50.	PWS calculated capacity	02 82
Figure 57.	PWS descriptive 2011	02
Figure 50.	RWS descriptive 2011	00
Figure 59.		03
Figure 60:	AFES spreadsneet runs	84
Figure 61:	AFES Status	85
Figure 62:	AFES Workload	85
Figure 63:	AFES calculated capacity	86
Figure 64:	AFES descriptive 2011	86
Figure 65:	AFES descriptive 2009	87
Figure 66:	AFWS spreadsheet runs	88
Figure 67:	AFWS Status	89
Figure 68:	AFWS Workload	89
Figure 69:	AFWS descriptive 2011	89
Figure 70:	AFWS descriptive 2009	90
Figure 71:	DIS Sector (with final approach sectors)	91
Figure 72:	DES and DWS Sectors	91
Figure 73:	Future and current comparing sectors	92
Figure 74:	LECMENN graphical representation	93
Figure 75:	LECMENN Spreadsheet runs	93
Figure 76:	LECMENN Descriptive 2006	94
Figure 77:	LECMENN Status	94
Figure 78:	LECMENN Calculated capacity	95
Figure 79:	LEMDREN graphical representation	97
Figure 80:	LEMDREN Spreadsheet runs	97
Figure 81:	I EMDREN Descriptive 2008	98
Figure 82:	I EMDREN Descriptive 2007	98
Figure 83:	I EMDREN Descriptive 2006	98
Figure 84:	I EMDREN Status	aa
Figure 85:	LEMDREN Clarulated canacity	aa
Figure 86:	I EMDRW/N graphical representation	02
Figure 80.	LEMDRWN graphical representation1	02
Figure 07.	LEMDRWN Spreausneer runs	02
Figure 60.	LEMDRWN Descriptive 2006	03
Figure 69.	LEMDRWN Descriptive 2007	03
Figure 90:	LEMDRWN Descriptive 2006	03
Figure 91:	LEMDRWIN Status	04
Figure 92:	LEMDRWN Calculated capacity1	04
⊢igure 93:		07
⊢igure 94:	LEMDAIN Spreadsneet runs	07
⊢igure 95:	LEMDAIN Descriptive 20081	80
⊢igure 96:	LEMDAIN Descriptive 20071	80
Figure 97:	LEMDAIN Descriptive 20061	80
Figure 98:	LEMDAIN Status1	09
Figure 99:	LEMDAIN Calculated capacity1	09
Figure 100): LECMDEN graphical representation1	11
Figure 101	: LECMDEN Spreadsheet runs1	12

Figure	102:	LEMDRWN Descriptive 2006	112
Figure	103:	LECMDEN Status	113
Figure	104:	LECMDEN Calculated capacity	113
Figure	105:	Complexity comparative results – External sectors	116
Figure	106:	Complexity/mov comparative results – External sectors	117
Figure	107:	Coordinations/mov comparative results – External sectors	118
Figure	108:	Actions/mov comparative results – External sectors	119
Figure	109:	Radar vectoring/mov comparative results – External sectors	120
Figure	110:	Workload comparative results – External sectors	121
Figure	111:	Nb of movements comparative results – External sectors	122
Figure	112:	Calculated capacity comparative results – External sectors	123
Figure	113:	Complexity comparative results –Director sectors	124
Figure	114:	Complexity/mov comparative results – Director sectors	125
Figure	115:	Coordinations/mov comparative results – Director sectors	126
Figure	116:	Actions/mov comparative results – Director sectors	127
Figure	117:	Radar vectoring/mov comparative results – Director sectors	128
Figure	118:	Workload comparative results – Director sectors	129
Figure	119:	Nb of movements comparative results – Director sectors	130
Figure	120:	Calculated capacity comparative results – Director sectors	131
Figure	121:	Complexity comparative results – Final approach sectors	132
Figure	122:	Complexity/mov comparative results – Final approach sectors	133
Figure	123:	Coordinations/mov comparative results – Final approach sectors	134
Figure	124:	Actions/mov comparative results – Final approach sectors	135
Figure	125:	Radar vectoring comparative results – Final approach sectors	136
Figure	126:	Workload comparative results – Final approach sectors	137
Figure	127:	Nb of movements comparative results – Final approach sectors	138
Figure	128:	Calculated capacity comparative results – Final approach sectors	139
Figure	129:	Complexity comparative results – Departure sectors	140
Figure	130:	Complexity comparative results – External sectors	141
Figure	131:	Complexity comparative results – External sectors	142
Figure	132:	Complexity/mov comparative results – Departure sectors	143
Figure	133:	Radar vectoring comparative results – Departure sectors	144
Figure	134:	Workload comparative results – Departure sectors	145
Figure	135:	Nb of movements comparative results – Departure sectors	146
Figure	136:	Calculated capacity comparative results – Departure sectors	147

Executive summary

The main purpose is to assess the feasibility of:

- Mixed Mode Operations: Integration of P-RNAV & conventional routes used by a mix of P-RNAVcompliant and Conventional aircraft in high traffic density TMAs.
- High Terrain and bad weather
- Controller Mode of Operation: MOPS change
- Maximum capacity of P-RNAV Arrivals/Transitions/SIDs/STARs
- Suitable descent slope for P-RNAV Arrivals in all meteorological conditions.
- P-RNAV CDAs in high density traffic
- Continuous Climb Departures enabled by the enhanced horizontal performance of P-RNAV
- Impact on departure sequencing due to aircraft performance mix (climb rates, turn capability, etc), which creates different departure routes for different performance levels.

The main conclusions are:

- • Handling non-PRNAV traffic in the approach sequence with high traffic workload is difficult. A lot of coordination and attention paid to conventional traffic is needed between the final sector, director and feeders.
- In general terms the arrival sequence is easier to carry out compared to the current TMA. The departures sequence doesn't change but departures can be monitored in their initial climb by the same controller so that a potential reaching is being observed and solved quickly.
- • The continuous climb departures are enabled by the enhanced horizontal performance of P-RNAV.
- • It will be interesting to study more SID's to facilitate the air traffic flow (e.g. traffic via DGO should proceed direct to DGO or RBO-DGO).
- • The delay times due to holding have been reduced.
- • It seems that these procedures make possible the increasing of traffic. However it hasn't been tested with a lot of traffic coming or going to LETO which would need more coordination.
- • When the runway in use in LETO is RWY23 for departures, either arrivals or departures to or from LEMD should be stopped.

1 Introduction

1.1 Purpose and scope of the document

This document provides the Validation Report for "Full implementation of P-RNAV in TMA" (05.07.04 project) and is involved within the Operational Focus Area (OFA) test case "Optimized RNP structures". These are the results and conclusions of the simulation carried out to prove the feasibility of the implementation of P-RNAV in TMA operations. The project aims to extend the results to generic complex TMAs in Europe.

The project took the Madrid TMA as a reference test case.

Actors

The validation activities were carried out by 4 Air traffic controllers who worked in the design of the scenario (arrivals/departures) and exercises for the simulation.

In the simulation there were 10 Air traffic controllers and 9 pseudo-pilots who were in charge of performing the exercises.

4 people collecting NORVASE data. The objective of the Regulations for Sector Validation (NORVASE), compiled in the document "Regulations for Sector Validation Version 2.0" Code I-98ION-T01-1, is to establish criteria and standard procedures for the validation of the existing control sectors. As sectorisation has important operational and economic repercussions, the aforementioned criteria and procedures should be effective, homogeneous and provide optimum sectorisation.

Furthermore, the aim of NORVASE is that the analysis, evaluation, validation and creation of sectors be standardised and ordered, and guarantee the success and effectiveness of any and all sectors or ATC configuration.

Background

AENA

1.Works made for the new Madrid- Barajas TMA P-RNAV (20/11/2009)

2.P-RNAV Implementation in Spain. Analysis of the proposal and design for the new Palma de Mallorca TMA (08/04/2010)

3. Project TMA P-RNAV Madrid Document, Initial Study (13/08/08)

4.TMA Madrid PRNAV-"Transition codification North and South Configuration"

5.For the TMA Madrid PRNAV" (08/09/2008)

6.TMA Madrid PRNAV. Justification and proposal of Project development (12/02/89)

7.TMA Madrid 2008. Analysis of the new entry procedures (08/04/2008)

8.RETACDA.- Reduction of emissions in terminal areas by using continuous descent (30/09/09)

1.2 Intended audience

EURCONTROL and SJU are involved indirectly in all the activities of the projects. Indeed, SJU will determine what is acceptable or not during the whole lifecycle of the project.

Airspace Users

The utilization of P-RNAV based on transitions, will help airspace users to better predict and plan their trajectories.

The AU's are represented by the pilots / (pseudo-pilots) / AUs involved in the simulation.

Military Airspace Users

ATC

The display of the trajectories at the controller working position assists the controller in building and maintaining the traffic picture. This will give a better knowledge of the situation, adding a safety layer and a higher capacity. There also can be implemented with other ATC supporting tools (e.g. AMAN or Early detection systems).

Controllers participated in the sessions providing feedback and assessment of the operational procedures.

Military Airspace Managers

Ensure military aviation needs are correctly captured.

Airports

The airport and the surrounding areas are affected in this project due to the modification of TMA, STARs and SIDs that might affect Madrid-Barajas airport.

ANSPs AENA (NATS and ENAV as stakeholders)

They are directly involved in the structure and standardization working methods for the implementation of P-RNAV in the TMA.

They supervised the activities during the simulation.

Industry

There is no need of Industry involvement until the future implementation (out of the scope of this project) when it is going to be a necessity to demonstrate that these procedures are flyable in a real scenario (AIRBUS).

EASA

Regulator, Inspector

This Real-time simulation was performed in Madrid ACC.

There are also several projects that can be interested in this document:

Transversal projects:

5.2 - Consolidation of Operational Concept Definition and Validation

5.3 - Integrated and Pre-Operational Validation & Cross Validation

These project validation activities are going to be considered in the integration of AMAN in the procedures.

5.7 - TMA Trajectory and Separation Management

Operational projects:

4.7.3 - Use of Performance Based Navigation (PBN) for En Route Separation Purposes

- 5.6.2 QM-2 Improving Vertical Profile
- 5.6.3 QM-3 Approach Procedure with Vertical Guidance (APV)

5.6.4 - QM-4 - Tactical TMA and En-route Queue Management

5.7.2 - Development of 4D Trajectory-Based Operations for separation management using RNAV/PRNAV

1.3 Structure of the document

This document is composed of seven chapters:

- Chapter 1 presents an introduction to the document, the purpose, scope, intended audience, background and a glossary of terms, acronyms and terminology.
- Chapter 2 provides an overview on the context of the validation: summary of exercises, objectives, validation scenario and methods and techniques used.
- Chapter 3 depicts detailed operational environment with details about analyses performed, _ exercises preparation, execution and deviation from planned activities.
- Chapter 4 analyses the exercises results: capacity, complexity and workload
- Chapter 5 includes the conclusions and recommendations. _
- Chapter 6 presents the validation reports. _
- Chapter 7 includes a list of applicable documents and reference documents.

1.4 Acronyms and Terminology

Term	Definition
ADD	Architecture Definition Document
АТМ	Air Traffic Management
CDO	Continuous Descent Operations
DOD	Detailed Operational Description
E-ATMS	European Air Traffic Management System
E-OCVM	European Operational Concept Validation Methodology
GCA	Ground Control Approach
IRS	Interface Requirements Specification
INTEROP	Interoperability Requirements
MEA	Minimum En-Route Altitude
MVA	Minimum Vectoring Altitude
OFA	Operational Focus Areas
ΟΙ	Operational Improvement
OSED	Operational Service and Environment Definition
ΡΑΡΟ	Support Position
P-RNAV	Precision Radio Navigation

Edition: 00.00.01

Term	Definition
RETACDA	Reduction of emissions in terminal areas by using continuous descent approaches
SESAR	Single European Sky ATM Research Programme
SESAR Programme	The programme which defines the Research and Development activities and Projects for the SJU.
SJU	SESAR Joint Undertaking (Agency of the European Commission)
SJU Work Programme	The programme which addresses all activities of the SESAR Joint Undertaking Agency.
SPR	Safety and Performance Requirements
SUA	Special Use of Airspace
SUT	System Under Test
TAD	Technical Architecture Description
ТМА	Terminal Manoeuvring area
TS	Technical Specification
TWR	Tower
VALP	Validation Plan
VALR	Validation Report
VALS	Validation Strategy
VALP	Verification Plan
VR	Verification Report
VS	Verification Strategy

Context of the Validation 2

This document provides the Validation Report for Workstream 1 of Project 05.07.04 related to "Full implementation of P-RNAV procedures in complex TMAs" (Edition 00.00.01).

The Operational Service and Environment Definition (Initial OSED- Madrid TMA. D02. Edition 00.00.01) addresses the operational environment for PRNAV implementation in Madrid-Barajas TMA. It describes the operational procedures that are intended to support "the optimization of the RNP structures" with environmental sustainability.

Moreover, it addresses to the approach procedures with vertical guidance as well as to the departures. The document will collate and reference all the requirements which will serve as an input to be validated within the scheduled validation plan.

2.1 Concept Overview

Validation Exercise ID and Title	EXE-05.07.04-VALP-142: Full Implementation of P- RNAV in Madrid TMA	
Leading organization	AENA	
Validation exercise objectives	 Mixed Mode Operations: Integration of P-RNAV & conventional routes used by a mix of P-RNAV-compliant and Conventional aircraft in high traffic density TMAs. High Terrain and bad weather Controller Mode of Operation: MOPS change Maximum capacity of P-RNAV Arrivals/Transitions/SIDs/STARs Reduce both the pilot and controller workload. P-RNAV CDAs in high density traffic Continuous Climb Departures enabled by the enhanced horizontal performance of P-RNAV Impact on departure sequencing due to aircraft performance mix (climb rates, turn capability, etc), which creates different departure routes for different performance levels. Demonstrate that the delay times due to holding have been reduced Demonstrate that the design is compatible with missed approach procedures. Demonstrate that the possibility of runway closure doesn't affect the procedures. 	
Rationale		
Supporting DOD / Operational Scenario / Use Case	5.2 DOD / Madrid TMA	
OI steps addressed	AOM-0601 Terminal Airspace Organization Adapted through Use of Best practice, PRNAV and FUA (where suitable) AOM 0602 – Enhanced Terminal Airspace with Curved/Segmented Approaches and PRNAV Approaches (where suitable) AUO-0501 Visual Contact Approaches when Appropriate Visual Condition prevail AOM-0404 Optimized Route Network using advanced	

	RNP1	
	AOM-0603 Enhanced Terminal Airspace for RNP- based Operations	
	AO-0703 Aircraft Noise Management and Mitigation at and around Airports	
Enablers addressed	n/a	
Applicable Operational Context	Optimized RNP structures in European Complex TMA	
Expected results per KPA	 Environment (Fuel Burn per Flight)-0.03%TMA Arrival Cost Effectiveness (Direct cost / flight)-0.06% TWR APP controller productivity / TWR APP Technology r. Predictability (Flight duration variability) - 0.04%TMA Departure Airspace Capacity (Throughput / vol & time) +0.40%Improved Separation / Complexity Management TMA 	
Validation Technique		
Dependent Validation Exercises	EXE-05.07.04-VALP-228	
	EXE-05.07.04-VALP-229	
	EXE-05.03-VALP-034	

Table 1: Concept Overview

2.2 Summary of Validation Exercise/s

2.2.1 Summary of Expected Exercise/s outcomes

EXPECTED EXERCISES OUTCOMES	RELEVANT STAKEHOLDERS
Integration of P-RNAV & conventional routes used by a mix of P-RNAV compliant and conventional aircraft in high density TMAs.	Airspace Users Companies, Civil and Military pilots(574.01) and Industry (574.05).
	As long as all aircraft are P-RNAV equipped, this mix mode operation allows the companies to gradually change the equipments.
The procedures are compliant with bad weather conditions: storms or hard wind.	Airspace Users Civil and Military pilots (574.01)
Demonstrate the success of the controller change mode of operation.	ATC (574.02) and ANSPs (AENA,574.04)
Provide the maximum capacity of P-RNAV arrivals/transitions/SIDs/STARs.	Airspace Users Companies, Civil and Military pilots and Industry. (574.01) Airports ?(574.03)
Reduce both the pilot and controller workload.	ATC (574.02) and ANSPs (AENA,574.04)
Continuous climb departures enabled by the enhanced horizontal performance of P-RNAV.	Airspace Users Civil and Military pilots (574.01), ATC (574.02) and ANSPs (AENA,574.04). Airports?(574.03)
Different departure routes for different performance levels.	Airspace Users Civil and Military pilots (574.01), ATC (574.02) and ANSPs (AENA,574.04). Airports? ?(574.03)
To reduce delay times due to holding .	Airspace Users Civil and Military pilots (574.01), ATC (574.02) and ANSPs (AENA,574.04).
Runway closure for any circumstance and night	Airports, ATC, Airspace Users and ANSPs (AENA 574.04)

configuration due to environmental impact.	
To test that the closed RNAV STARs help to minimise fuel burn.	Airports, ATC, Airspace Users and ANSPs (AENA 574.04)
To check what will be the change in the ATC mode of operation to the new procedures	Airports, ATC, Airspace Users and ANSPs (AENA 574.04)
Usage of PRNAV procedures to improve the manoeuvres safety in the TMA where there is a high terrain and where bad weather conditions makes a limited usage of airspace.	Airports, ATC, Airspace Users and ANSPs (AENA 574.04)
Look for solutions to optimize the separation between PRNAV aircrafts.	Airports, ATC, Airspace Users and ANSPs (AENA 574.04)
To reach the maximum capacity with PRNAV STARs and SIDs.	Airports, ATC, Airspace Users and ANSPs (AENA 574.04)
Suitable descent slope for PRNAV aircrafts in all weather conditions	Airports, ATC, Airspace Users and ANSPs (AENA 574.04)
Reduction of CO2 emissions and fuel consumption.	Airports, ATC, Airspace Users and ANSPs (AENA 574.04)
Identify the deficiencies in safety, efficiency and compatibility with capacity and human limitations	Airports, ATC, Airspace Users and ANSPs (AENA 574.04)
To guarantee that the new procedures have a margin error tolerance	Airports, ATC, Airspace Users and ANSPs (AENA 574.04)

Table 2: Summary of the expected results

2.2.2 Summary of Validation Objectives and success criteria

VALIDATION OBJECTIVES	SUCCESS CRITERIA	VALIDATION SCENARIO	OPERATIONAL PACKAGES
OBJ-05.07.04 VALP-0000.0001 Demonstrate feasibility of the integration of P-RNAV & conventional routes in high traffic density TMAs. Associated Operational Requirements New SIDs and STARs compliant with P-RNAV procedures along with conventional ones.	CRT-05.07.04 VALP-0001.0001 VALP-0001.0002 VALP-0001.0003 VALP-0001.0004 The procedures are accepted by the controller, pilot and supervisor. The report provides evidence about the feasibility of the objective in terms of capacity, flexibility, efficiency and predictability ¿?	SCN-05.07.04 VALP-0000.0001 VALP-0000.0002 VALP-0000.0003 VALP-0000.0004 Madrid-(Barajas, Torrejón & Getafe). North and south configurations. High density traffic. Civil, GA and military. Sectors: Arrival 1 (Enroute-clearance limits) Arrival 2 (Clearance limits- BENJI/MONTE) Arrival 3 (BENJI_MONTE-FAP) Departure1 (airborne-7000ft)	PACKAGES 1.Operational package Efficient and green terminal airspace operations sub-package Improved Vertical profiles OFA Optimized RNP structures
		Departure3 (13000ft-FL200)	

Edition: 00.00.01

OBJ-05.07.04	CRT-05.07.04	SCN-05.07.04	1.Operational package
VALP-0000.0002	VALP-0001.0001	VALP-0000.0001	Efficient and green
Demonstrate that the	VALP-0001.0002	VALP-0000.0002	terminal airspace operations
procedures are compliant with bad weather conditions:	VALP-0001.0003	VALP-0000.0003	sub-package
Storms and hard wind	VALP-0001.0007	VALP-0000.0004	Improved Vertical profiles
(coming from North-West)			OFA
	The procedures are	Madrid-(Barajas, Torrejón & Getafe).	Optimized RNP structures
	pilot and supervisor.	North or south configurations. High	
	The final report provides	density traffic. Civil, GA and military.	
	evidence about the feasibility of P-RNAV	Contorro	
	procedures in bad weather	Arrival 1 (Eproute algorance limite)	
	procedures. ¿?	Arrival 2 (Clearance limits)	
		BENJI/MONTE)	
		Arrival 3 (BENJI_MONTE-FAP)	
		Departure1 (airborne-7000ft)	
		Departure2 (7000ft-13000ft)	
		Departure3 (13000ft-FL200)	
OBJ-05.07.04	CRT-05.07.04	SCN-05.07.04	1.Operational package
VALP-0000.0003	VALP-0001.0008	VALP-0000.0001	Moving from airspace to
Demonstrate the success of	VALP-0001.0002	VALP-0000.0002	trajectory management
the controller mode of operation	VALP-0001.0009	VALP-0000.0003	sub-package
oporation	VALP-0001.0010	VALP-0000.0004	Traffic Synchronization
			OFA
	The procedures are	Change MOPS (from North to South	Optimized RNP AMAN+Point Merge
	accepted by the controller, pilot and supervisor.	Configuration)	°,
	A final report provides	Madrid-(Barajas, Torrejón & Getafe). High density traffic. Civil,GA and	
Associated Operational Requirements	evidence about the	military.	
	change procedure (e.g.: the		
The "trenchese" shered	pre-advisory time for MOPS change has been reduced)	Sectors:	
STARs are the same for		Arrival1 (Enroute-clearance limits)	
both configurations(north and south) until		Arrival2 (Clearance limits- BENJI/MONTE)	
MONTE/BENJI.		Arrival3 (BENJI_MONTE-FAP)	
Reduction of the runway change impact.		Departure1 (airborne-7000ft)	
g		Departure2 (7000ft-13000ft)	
		Departure3 (13000ft-FL200)	
OBJ-05.07.04	CRT-05.07.04	SCN-05.07.04	1 Operational package
VALP-0000.0004	VALP-0001.0001	VALP-0000.0003.	Moving from airspace to
Provide the maximum	VALP-0001.0002		trajectory management
capacity of P-RNAV	VALP-0001.0003	Change MOPS (from South to North	sub-package
ARs.	VALP-0001.0011	Configuration)	Traffic Synchronization
		Madrid-(Barajas, Torrejón & Getafe).	OFA
	The procedures are		Optimized RNP

Operational

with

accepted by the controller,		AMAN+Point Merge
pilot and supervisor.	Sectors:	2.Operational package
	Arrival1 (Enroute-clearance limits) Arrival2 (Clearance limits-	Integrated and collaborative Network Management.
	BENJI/MONTE)	sub-package
	Arrival3 (BENJI_MONTE-FAP) Departure1 (airborne-7000ft)	Demand and capacity
	Departure2 (7000ft-13000ft)	OFA
	Departure3 (13000ft-FL200)	Environmental sustainability
CRT-05.07.04	SCN-05.07.04	1.Operational package
VALP-0001.0005	VALP-0000.0001	Moving from airspace to
VALP-0001.0006	VALP-0000.0002	trajectory management
VALP-0001.0003	VALP-0000.0003	Traffic Synchronization
VALP-0001.0012	VALP-0000.0004	OFA
		Optimized RNP AMAN+Point Merge
CRT-05.07.04	SCN-05.07.04	1.Operational package
VALP-0001.0001 VALP-0001.0002	VALP-0000.0001	Efficient and green terminal airspace operations
VALP-0001.0003		sub-package
VALP-0001.0013		Improved Vertical profiles
		OFA
		Optimized RNP structures
CRT-05.07.04	SCN-05.07.04	1.Operational package
VALP-0001.0005	VALP-0000.0001	Efficient and green terminal airspace
VALP-0001.0003	VALP-0000.0003	
VALP-0001.0014	VALP-0000.0004	Improved Vertical profiles
		OFA
		Optimized RNP structures
CRT-05.07.04	SCN-05.07.04	1.Operational package
VALP-0001.0005	VALP-0000.0001	Efficient and green
VALP-0001.0006	VALP-0000.0002	operations
VALP-0001.0003	VALP-0000.0003	sub-package
VALP-0001.0015	VALP-0000.0004	Improved Vertical profiles
		OFA
		Optimized KNP structures
CRT-05.07.04	SCN-05.07.04	1.Operational package
VALP-0001.0005	VALP-0000.0001	woving from airspace to

Introduction of closed P-RNAV transitions to the localizer in order to avoid radar vectoring. OBJ-05.07.04 CRT-05.0 VALP-0000.0005 VALP-00 Reduce both the pilot and VALP-00 controller workload. VALP-00 VALP-00

OBJ-05.07.04

Associated

Requirements

procedures

conventional ones.

New SIDs and STARs compliant with P-RNAV

along

VALP-0000.0006

Demonstrate the feasibility of P-RNAV CDAs in high density traffic scenarios.

OBJ-05.07.04 VALP-0000.0007

Continuous climb departures enabled by the enhanced horizontal performance of P-RNAV.

OBJ-05.07.04

VALP-0000.0008

Demonstrate the impact on departure sequencing due to aircraft performance mix, which creates different routes departure for different performance levels.

OBJ-05.07.04

VALP-0000.0009

Demonstrate that the delay times due to holding have VALP-0001.0006 VALP-0001.0003

VALP-0000.0002

VALP-0000.0003

trajectory management

sub-package

Edition: 00.00.01

Project ID 05.07.04.	
D003 - Final OSED for Madrid TMA (Annex Validation F	Report)

Edition: 00.00.01

been reduced.	VALP-0001.0016	VALP-0000.0004	Traffic Synchronization
			OFA
			Optimized RNP AMAN+Point Merge
			2.Operational package
			Integrated and collaborative Network Management.
			sub-package
			Demand and capacity balancing En-route
			OFA
			Environmental sustainability
			3.Operational package
			Efficient and green terminal airspace operations
			sub-package
			Improved Vertical profiles
			OFA
			Optimized RNP structures
OBJ-05.07.04	CRT-05.07.04	SCN-05.07.04	
VALP-0000.0010	VALP-0001.0005	VALP-0000.0001	
Demonstrate that the design	VALP-0001.0006	VALP-0000.0002	
approach procedures.	VALP-0001.0003	VALP-0000.0003	
	VALP-0001.0017	VALP-0000.0004	
OBJ-05.07.04	CRT-05.07.04	SCN-05.07.04	1.Operational package
VALP-0000.0011	VALP-0001.0005	VALP-0000.0003	Moving from airspace to
Demonstrate that the	VALP-0001.0006	VALP-0000.0004	trajectory management
doesn't affect the	VALP-0001.0003	VALP-0000.0005	sub-package
procedures.	VALP-0001.0018	VALP-0000.0006	Traffic Synchronization
		Change MOPS	
		Runway closure	AMAN+Point Merge

Table 3: Success Criteria

2.2.2.1 Choice of metrics and indicators

Here is the list of used Key Performance Indicators (KPIs) and metrics in 5.7.4 project:

KPIs and metrics	Linked to (project objectives)
	OBJ-05.07.04 VALP-0000.0001
	OBJ-05.07.04 VALP-0000.0003
Complexity	OBJ-05.07.04 VALP-0000.0004
	OBJ-05.07.04 VALP-0000.0005
	OBJ-05.07.04 VALP-0000.0006

	OBJ-05.07.04 VALP-0000.0007
	OBJ-05.07.04 VALP-0000.0008
	OBJ-05.07.04 VALP-0000.0009
	OBJ-05.07.04 VALP-0000.0010
	OBJ-05.07.04 VALP-0000.0011
	OBJ-05.07.04 VALP-0000.0001
	OBJ-05.07.04 VALP-0000.0003
	OBJ-05.07.04 VALP-0000.0004
	OBJ-05.07.04 VALP-0000.0005
Complexity per movement	OBJ-05.07.04 VALP-0000.0006
complexity per movement	OBJ-05.07.04 VALP-0000.0007
	OBJ-05.07.04 VALP-0000.0008
	OBJ-05.07.04 VALP-0000.0009
	OBJ-05.07.04 VALP-0000.0010
	OBJ-05.07.04 VALP-0000.0011
	OBJ-05.07.04 VALP-0000.0001
	OBJ-05.07.04 VALP-0000.0003
	OBJ-05.07.04 VALP-0000.0004
	OBJ-05.07.04 VALP-0000.0005
Workload per movement	OBJ-05.07.04 VALP-0000.0006
	OBJ-05.07.04 VALP-0000.0007
	OBJ-05.07.04 VALP-0000.0008
	OBJ-05.07.04 VALP-0000.0009
	OBJ-05.07.04 VALP-0000.0010
	OBJ-05.07.04 VALP-0000.0011
	OBJ-05.07.04 VALP-0000.0001
	OBJ-05.07.04 VALP-0000.0003
	OBJ-05.07.04 VALP-0000.0004
	OBJ-05.07.04 VALP-0000.0005
Movement Workload	OBJ-05.07.04 VALP-0000.0006
	OBJ-05.07.04 VALP-0000.0007
	OBJ-05.07.04 VALP-0000.0008
	OBJ-05.07.04 VALP-0000.0009
	OBJ-05.07.04 VALP-0000.0010
	OBJ-05.07.04 VALP-0000.0011
	OBJ-05.07.04 VALP-0000.0001
	OBJ-05.07.04 VALP-0000.0003
	OBJ-05.07.04 VALP-0000.0004
	OBJ-05.07.04 VALP-0000.0005
Mean Flight Time (min)	OBJ-05.07.04 VALP-0000.0006
	OBJ-05.07.04 VALP-0000.0007
	OBJ-05.07.04 VALP-0000.0008
	OBJ-05.07.04 VALP-0000.0009
	OBJ-05.07.04 VALP-0000.0010
	OBJ-05.07.04 VALP-0000.0011

	OBJ-05.07.04 VALP-0000.0001
	OBJ-05.07.04 VALP-0000.0003
	OBJ-05.07.04 VALP-0000.0004
	OBJ-05.07.04 VALP-0000.0005
Demonstrate Time in Evolution (climb (descent)	OBJ-05.07.04 VALP-0000.0006
Percentage Time in Evolution (climb/descent)	OBJ-05.07.04 VALP-0000.0007
	OBJ-05.07.04 VALP-0000.0008
	OBJ-05.07.04 VALP-0000.0009
	OBJ-05.07.04 VALP-0000.0010
	OBJ-05.07.04 VALP-0000.0011
	OBJ-05.07.04 VALP-0000.0001
	OBJ-05.07.04 VALP-0000.0003
	OBJ-05.07.04 VALP-0000.0004
	OBJ-05.07.04 VALP-0000.0005
	OBJ-05.07.04 VALP-0000.0006
Number of Movements	OBJ-05.07.04 VALP-0000.0007
	OBJ-05.07.04 VALP-0000.0008
	OBJ-05.07.04 VALP-0000.0009
	OBJ-05.07.04 VALP-0000.0010
	OB.I-05.07.04 VALP-0000.0011
	OB 1-05 07 04 VAL P-0000 0001
	OB.I-05.07.04 VALP-0000.0003
	OB 1-05 07 04 VAL P-0000 0004
	OBJ-05 07 04 VALP-0000 0005
	OB 1-05 07 04 VAL P-0000 0006
Max. Simultaneous Aircrafts	OB 1-05 07 04 VAL P-0000 0007
	OB 1-05 07 04 VAL -0000.0007
	OBJ-05.07.04 VALP-0000.0008
	OBJ-05.07.04 VALP-0000.0009
	OBJ-05.07.04 VALP-0000.0011
	OBJ-05.07.04 VALP-0000.0001
	OBJ-05.07.04 VALP-0000.0003
	OBJ-05.07.04 VALP-0000.0004
	OBJ-05.07.04 VALP-0000.0005
Min. Simultaneous Aircrafts	OBJ-05.07.04 VALP-0000.0006
	OBJ-05.07.04 VALP-0000.0007
	OBJ-05.07.04 VALP-0000.0008
	OBJ-05.07.04 VALP-0000.0009
	OBJ-05.07.04 VALP-0000.0010
	OBJ-05.07.04 VALP-0000.0011
	OBJ-05.07.04 VALP-0000.0001
	OBJ-05.07.04 VALP-0000.0003
Actions in arrivals	OBJ-05.07.04 VALP-0000.0004
	OBJ-05.07.04 VALP-0000.0005
	OBJ-05.07.04 VALP-0000.0006

	OBJ-05.07.04 VALP-0000.0007
	OBJ-05.07.04 VALP-0000.0008
	OBJ-05.07.04 VALP-0000.0009
	OBJ-05.07.04 VALP-0000.0010
	OBJ-05.07.04 VALP-0000.0011
	OBJ-05.07.04 VALP-0000.0001
	OBJ-05.07.04 VALP-0000.0003
	OBJ-05.07.04 VALP-0000.0004
	OBJ-05.07.04 VALP-0000.0005
Actions in departures	OBJ-05.07.04 VALP-0000.0006
	OBJ-05.07.04 VALP-0000.0007
	OBJ-05.07.04 VALP-0000.0008
	OBJ-05.07.04 VALP-0000.0009
	OBJ-05.07.04 VALP-0000.0010
	OBJ-05.07.04 VALP-0000.0011
	OBJ-05.07.04 VALP-0000.0001
	OBJ-05.07.04 VALP-0000.0003
	OBJ-05.07.04 VALP-0000.0004
	OBJ-05.07.04 VALP-0000.0005
Actions in over flight	OBJ-05.07.04 VALP-0000.0006
	OBJ-05.07.04 VALP-0000.0007
	OBJ-05.07.04 VALP-0000.0008
	OBJ-05.07.04 VALP-0000.0009
	OBJ-05.07.04 VALP-0000.0010
	OBJ-05.07.04 VALP-0000.0011
	OBJ-05.07.04 VALP-0000.0001
	OBJ-05.07.04 VALP-0000.0003
	OBJ-05.07.04 VALP-0000.0004
	OBJ-05.07.04 VALP-0000.0005
Actions	OBJ-05.07.04 VALP-0000.0006
Actors	OBJ-05.07.04 VALP-0000.0007
	OBJ-05.07.04 VALP-0000.0008
	OBJ-05.07.04 VALP-0000.0009
	OBJ-05.07.04 VALP-0000.0010
	OBJ-05.07.04 VALP-0000.0011
	OBJ-05.07.04 VALP-0000.0001
	OBJ-05.07.04 VALP-0000.0003
	OBJ-05.07.04 VALP-0000.0004
	OBJ-05.07.04 VALP-0000.0005
Actions due to Movement	OBJ-05.07.04 VALP-0000.0006
	OBJ-05.07.04 VALP-0000.0007
	OBJ-05.07.04 VALP-0000.0008
	OBJ-05.07.04 VALP-0000.0009
	OBJ-05.07.04 VALP-0000.0010
	OBJ-05.07.04 VALP-0000.0011

	OBJ-05.07.04 VALP-0000.0001
	OBJ-05.07.04 VALP-0000.0003
	OBJ-05.07.04 VALP-0000.0004
	OBJ-05.07.04 VALP-0000.0005
Arrival constration or Sequencing Actions	OBJ-05.07.04 VALP-0000.0006
Arrival separation or Sequencing Actions	OBJ-05.07.04 VALP-0000.0007
	OBJ-05.07.04 VALP-0000.0008
	OBJ-05.07.04 VALP-0000.0009
	OBJ-05.07.04 VALP-0000.0010
	OBJ-05.07.04 VALP-0000.0011
	OBJ-05.07.04 VALP-0000.0001
	OBJ-05.07.04 VALP-0000.0003
	OBJ-05.07.04 VALP-0000.0004
	OBJ-05.07.04 VALP-0000.0005
	OBJ-05.07.04 VALP-0000.0006
Departure separation or Sequencing Actions	OBJ-05.07.04 VALP-0000.0007
	OBJ-05.07.04 VALP-0000.0008
	OBJ-05.07.04 VALP-0000.0009
	OBJ-05.07.04 VALP-0000.0010
	OBJ-05.07.04 VALP-0000.0011
	OBJ-05.07.04 VALP-0000.0001
	OBJ-05.07.04 VALP-0000.0003
	OBJ-05.07.04 VALP-0000.0004
	OBJ-05.07.04 VALP-0000.0005
	OBJ-05.07.04 VALP-0000.0006
Overflight separation or Sequencing Actions	OBJ-05.07.04 VALP-0000.0007
	OBJ-05.07.04 VALP-0000.0008
	OBJ-05.07.04 VALP-0000.0009
	OBJ-05.07.04 VALP-0000.0010
	OBJ-05.07.04 VALP-0000.0011
	OBJ-05.07.04 VALP-0000.0001
	OBJ-05.07.04 VALP-0000.0003
	OB.I-05.07.04 VALP-0000.0004
	OBJ-05.07.04 VALP-0000.0005
	OBJ-05.07.04 VALP-0000.0006
Sep. Or Seq. Actions per Movement	OBJ-05.07.04 VALP-0000.0007
	OB.I-05.07.04 VALP-0000.0008
	OB.1-05.07.04 VALP-0000.0009
	OB 1-05 07 04 VAL P-0000 0010
	OB.I-05.07.04 VALP-0000.0011
	OB 1-05 07 04 VAL P-0000 0001
	OB 1-05 07 04 VAL 2-0000 0003
Number of vector per arrival	OB 1-05 07 04 VAL P-0000 0004
	OB 1-05 07 04 VAL P-0000 0005
	065-05.07.04 VALM-0000.0006

	OBJ-05.07.04 VALP-0000.0007
	OBJ-05.07.04 VALP-0000.0008
	OBJ-05.07.04 VALP-0000.0009
	OBJ-05.07.04 VALP-0000.0010
	OBJ-05.07.04 VALP-0000.0011
	OBJ-05.07.04 VALP-0000.0001
	OBJ-05.07.04 VALP-0000.0003
Number of vector per departure	OBJ-05.07.04 VALP-0000.0004
	OBJ-05.07.04 VALP-0000.0005
	OBJ-05.07.04 VALP-0000.0006
	OBJ-05.07.04 VALP-0000.0007
	OBJ-05.07.04 VALP-0000.0008
	OBJ-05.07.04 VALP-0000.0009
	OBJ-05.07.04 VALP-0000.0010
	OBJ-05.07.04 VALP-0000.0011
	OBJ-05.07.04 VALP-0000.0001
	OBJ-05.07.04 VALP-0000.0003
	OBJ-05.07.04 VALP-0000.0004
	OBJ-05.07.04 VALP-0000.0005
Number of vector per overflight	OBJ-05.07.04 VALP-0000.0006
	OBJ-05.07.04 VALP-0000.0007
	OBJ-05.07.04 VALP-0000.0008
	OBJ-05.07.04 VALP-0000.0009
	OBJ-05.07.04 VALP-0000.0010
	OBJ-05.07.04 VALP-0000.0011
	OBJ-05.07.04 VALP-0000.0001
	OBJ-05.07.04 VALP-0000.0003
	OBJ-05.07.04 VALP-0000.0004
	OBJ-05.07.04 VALP-0000.0005
Heading instructions due to movement	OBJ-05.07.04 VALP-0000.0006
	OBJ-05.07.04 VALP-0000.0007
	OBJ-05.07.04 VALP-0000.0008
	OBJ-05.07.04 VALP-0000.0009
	OBJ-05.07.04 VALP-0000.0010
	OBJ-05.07.04 VALP-0000.0011
	OBJ-05.07.04 VALP-0000.0001
	OBJ-05.07.04 VALP-0000.0003
	OBJ-05.07.04 VALP-0000.0004
	OBJ-05.07.04 VALP-0000.0005
Arrival monitoring	OBJ-05.07.04 VALP-0000.0006
, and monitoring	OBJ-05.07.04 VALP-0000.0007
	OBJ-05.07.04 VALP-0000.0008
	OBJ-05.07.04 VALP-0000.0009
	OBJ-05.07.04 VALP-0000.0010
	OBJ-05.07.04 VALP-0000.0011

Departure Monitoring	OBJ-05.07.04 VALP-0000.0001
	OBJ-05.07.04 VALP-0000.0003
	OBJ-05.07.04 VALP-0000.0004
	OBJ-05.07.04 VALP-0000.0005
	OBJ-05.07.04 VALP-0000.0006
	OBJ-05.07.04 VALP-0000.0007
	OBJ-05.07.04 VALP-0000.0008
	OBJ-05.07.04 VALP-0000.0009
	OBJ-05.07.04 VALP-0000.0010
	OBJ-05.07.04 VALP-0000.0011
	OBJ-05.07.04 VALP-0000.0001
	OBJ-05.07.04 VALP-0000.0003
	OBJ-05.07.04 VALP-0000.0004
	OBJ-05.07.04 VALP-0000.0005
Quarflight Manitarian	OBJ-05.07.04 VALP-0000.0006
Overnight Monitoring	OBJ-05.07.04 VALP-0000.0007
	OBJ-05.07.04 VALP-0000.0008
	OBJ-05.07.04 VALP-0000.0009
	OBJ-05.07.04 VALP-0000.0010
	OBJ-05.07.04 VALP-0000.0011
	OBJ-05.07.04 VALP-0000.0001
	OBJ-05.07.04 VALP-0000.0003
	OBJ-05.07.04 VALP-0000.0004
	OBJ-05.07.04 VALP-0000.0005
Monitoring due to movement	OBJ-05.07.04 VALP-0000.0006
Monitoring due to movement	OBJ-05.07.04 VALP-0000.0007
	OBJ-05.07.04 VALP-0000.0008
	OBJ-05.07.04 VALP-0000.0009
	OBJ-05.07.04 VALP-0000.0010
	OBJ-05.07.04 VALP-0000.0011
	OBJ-05.07.04 VALP-0000.0001
	OBJ-05.07.04 VALP-0000.0003
	OBJ-05.07.04 VALP-0000.0004
	OBJ-05.07.04 VALP-0000.0005
Complexity (%) due to arrival	OBJ-05.07.04 VALP-0000.0006
	OBJ-05.07.04 VALP-0000.0007
	OBJ-05.07.04 VALP-0000.0008
	OBJ-05.07.04 VALP-0000.0009
	OBJ-05.07.04 VALP-0000.0010
	OBJ-05.07.04 VALP-0000.0011
	OBJ-05.07.04 VALP-0000.0001
	OBJ-05.07.04 VALP-0000.0003
Complexity (%) due to departure	OBJ-05.07.04 VALP-0000.0004
	OBJ-05.07.04 VALP-0000.0005
	OBJ-05.07.04 VALP-0000.0006

	OBJ-05.07.04 VALP-0000.0007
	OBJ-05.07.04 VALP-0000.0008
	OBJ-05.07.04 VALP-0000.0009
	OBJ-05.07.04 VALP-0000.0010
	OBJ-05.07.04 VALP-0000.0011
	OBJ-05.07.04 VALP-0000.0001
	OBJ-05.07.04 VALP-0000.0003
	OBJ-05.07.04 VALP-0000.0004
	OBJ-05.07.04 VALP-0000.0005
Complexity (%) due to overflight	OBJ-05.07.04 VALP-0000.0006
	OBJ-05.07.04 VALP-0000.0007
	OBJ-05.07.04 VALP-0000.0008
	OBJ-05.07.04 VALP-0000.0009
	OBJ-05.07.04 VALP-0000.0010
	OBJ-05.07.04 VALP-0000.0011
	OBJ-05.07.04 VALP-0000.0001
	OBJ-05.07.04 VALP-0000.0003
	OBJ-05.07.04 VALP-0000.0004
	OBJ-05.07.04 VALP-0000.0005
Movement Complexity	OBJ-05.07.04 VALP-0000.0006
	OBJ-05.07.04 VALP-0000.0007
	OBJ-05.07.04 VALP-0000.0008
	OBJ-05.07.04 VALP-0000.0009
	OBJ-05.07.04 VALP-0000.0010
	OBJ-05.07.04 VALP-0000.0011
	OBJ-05.07.04 VALP-0000.0001
	OBJ-05.07.04 VALP-0000.0003
	OBJ-05.07.04 VALP-0000.0004
	OBJ-05.07.04 VALP-0000.0005
Workload (%) due to arrival	OBJ-05.07.04 VALP-0000.0006
	OBJ-05.07.04 VALP-0000.0007
	OBJ-05.07.04 VALP-0000.0008
	OBJ-05.07.04 VALP-0000.0009
	OBJ-05.07.04 VALP-0000.0010
	OBJ-05.07.04 VALP-0000.0011
	OBJ-05.07.04 VALP-0000.0001
	OBJ-05.07.04 VALP-0000.0003
	OBJ-05.07.04 VALP-0000.0004
	OBJ-05.07.04 VALP-0000.0005
	OBJ-05.07.04 VALP-0000.0006
	OBJ-05.07.04 VALP-0000.0007
	OBJ-05.07.04 VALP-0000.0008
	OBJ-05.07.04 VALP-0000.0009
	OBJ-05.07.04 VALP-0000.0010
	OBJ-05.07.04 VALP-0000.0011

	OBJ-05.07.04 VALP-0000.0001
	OBJ-05.07.04 VALP-0000.0003
	OBJ-05.07.04 VALP-0000.0004
	OBJ-05.07.04 VALP-0000.0005
workload (%) due to overflight	OBJ-05.07.04 VALP-0000.0006
workload (%) due to overhight	OBJ-05.07.04 VALP-0000.0007
	OBJ-05.07.04 VALP-0000.0008
	OBJ-05.07.04 VALP-0000.0009
	OBJ-05.07.04 VALP-0000.0010
	OBJ-05.07.04 VALP-0000.0011
	OBJ-05.07.04 VALP-0000.0001
	OBJ-05.07.04 VALP-0000.0003
	OBJ-05.07.04 VALP-0000.0004
	OBJ-05.07.04 VALP-0000.0005
Movement Workland	OBJ-05.07.04 VALP-0000.0006
Novement workload	OBJ-05.07.04 VALP-0000.0007
	OBJ-05.07.04 VALP-0000.0008
	OBJ-05.07.04 VALP-0000.0009
	OBJ-05.07.04 VALP-0000.0010
	OBJ-05.07.04 VALP-0000.0011
	OBJ-05.07.04 VALP-0000.0001
	OBJ-05.07.04 VALP-0000.0003
	OBJ-05.07.04 VALP-0000.0004
	OBJ-05.07.04 VALP-0000.0005
Holdings	OBJ-05.07.04 VALP-0000.0006
noluings	OBJ-05.07.04 VALP-0000.0007
	OBJ-05.07.04 VALP-0000.0008
	OBJ-05.07.04 VALP-0000.0009
	OBJ-05.07.04 VALP-0000.0010
	OBJ-05.07.04 VALP-0000.0011
	OBJ-05.07.04 VALP-0000.0001
	OBJ-05.07.04 VALP-0000.0003
	OBJ-05.07.04 VALP-0000.0004
	OBJ-05.07.04 VALP-0000.0005
Coordinations	OBJ-05.07.04 VALP-0000.0006
Coordinations	OBJ-05.07.04 VALP-0000.0007
	OBJ-05.07.04 VALP-0000.0008
	OBJ-05.07.04 VALP-0000.0009
	OBJ-05.07.04 VALP-0000.0010
	OBJ-05.07.04 VALP-0000.0011
	OBJ-05.07.04 VALP-0000.0001
	OBJ-05.07.04 VALP-0000.0003
Percentage of time in evolution*	OBJ-05.07.04 VALP-0000.0004
	OBJ-05.07.04 VALP-0000.0005
	OBJ-05.07.04 VALP-0000.0006

	OBJ-05.07.04 VALP-0000.0007	
	OBJ-05.07.04 VALP-0000.0008	
	OBJ-05.07.04 VALP-0000.0009	
	OBJ-05.07.04 VALP-0000.0010	
	OBJ-05.07.04 VALP-0000.0011	
	OBJ-05.07.04 VALP-0000.0001	
	OBJ-05.07.04 VALP-0000.0003	
	OBJ-05.07.04 VALP-0000.0004	
	OBJ-05.07.04 VALP-0000.0005	
Number of arrivals	OBJ-05.07.04 VALP-0000.0006	
	OBJ-05.07.04 VALP-0000.0007	
	OBJ-05.07.04 VALP-0000.0008	
	OBJ-05.07.04 VALP-0000.0009	
	OBJ-05.07.04 VALP-0000.0010	
	OBJ-05.07.04 VALP-0000.0011	
	OBJ-05.07.04 VALP-0000.0001	
	OBJ-05.07.04 VALP-0000.0003	
	OBJ-05.07.04 VALP-0000.0004	
	OBJ-05.07.04 VALP-0000.0005	
Number of departures	OBJ-05.07.04 VALP-0000.0006	
Number of departures	OBJ-05.07.04 VALP-0000.0007	
	OBJ-05.07.04 VALP-0000.0008	
	OBJ-05.07.04 VALP-0000.0009	
	OBJ-05.07.04 VALP-0000.0010	
	OBJ-05.07.04 VALP-0000.0011	
	OBJ-05.07.04 VALP-0000.0001	
	OBJ-05.07.04 VALP-0000.0003	
Number of Overflights	OBJ-05.07.04 VALP-0000.0004	
	OBJ-05.07.04 VALP-0000.0005	
	OBJ-05.07.04 VALP-0000.0006	
	OBJ-05.07.04 VALP-0000.0007	
	OBJ-05.07.04 VALP-0000.0008	
	OBJ-05.07.04 VALP-0000.0009	
	OBJ-05.07.04 VALP-0000.0010	
	OBJ-05.07.04 VALP-0000.0011	

Table 4: List of KPIs and metrics

The Indicators and metrics should be selected from the list provided by the X.02 Validation Strategy in the Performance Framework Section but due to the lack of maturity of these metrics and KPIs the projects has used its own indicators and KPIs. The reason why the OBJ-05.07.04 VALP-0000.0002 is not appearing in the table above is because the simulator doesn't provide any evidence in terms of indicators related with the amount of wind introduced or turbulence in a bad weather situation.

2.2.3 Summary of Validation Scenarios

Airspace characteristics.- Madrid (Barajas, Getafe & Torrejón) TMA in high traffic density.

Involved Actors.- APP controllers, pilots, pseudo-pilots and supervisors.

SCN-05.07.04-VALP-0000.0001

Scenario.- North configuration. Maximum capacity.

Mixed mode operations.

High terrain and bad weather (storms) Descent slope. CDAs, CCDs. Aircraft performances. Delay times. Missed approaches. Single Runway.

Aircrafts profile.- Civil, GA and Military.

SCN-05.07.04-VALP-0000.0002

Scenario.- South configuration. Maximum capacity.

Mixed mode operations.

High terrain and bad weather. Descent slope. CDAs, CCDs. Aircraft performances. Delay times. Missed approaches. Single Runway.

Aircrafts profile.- Civil, GA and Military.

SCN-05.07.04-VALP-0000.0003

Scenario.- Change MOPS (from North to south configuration). Maximum capacity.

Mixed mode operations.

High terrain and bad weather. Descent slope. CDAs, CCDs. Aircraft performances. Delay times Aircrafts profile.- Civil, GA and Military.

SCN-05.07.04-VALP-0000.0004

Scenario.- Change MOPS (from South to North configuration). Maximum capacity. Mixed mode operations.

High terrain and bad weather. Descent slope. CDAs, CCDs. Aircraft performances. Delay times. Aircrafts profile.- Civil, GA and Military.

SCN-05.07.04-VALP-0000.0005

Scenario.- Single Runway (North configuration).

SCN-05.07.04-VALP-0000.0006

Scenario.- Single Runway (South configuration).

2.2.4 Summary of Assumptions

ASS-05-07-04-VALP-0005-0001	Real traffic samples
ASS-05-07-04-VALP-0005-0002	Mixed aircraft types
ASS-05-07-04-VALP-0005-0003	Strong wind and crosswind during the simulation in both configurations
ASS-05-07-04-VALP-0005-0004	11 Operative sectors

D003 - Final OSED for Madrid TMA (Annex Validation Report)		
ASS-05-07-04-VALP-0005-0005	Mixed mode Operations, both conventional and P-RNAV procedures	
ASS-05-07-04-VALP-0005-0006	Hard meteorological Conditions (Storms)	
ASS-05-07-04-VALP-0005-0007	Noise constraints	
ASS-05-07-04-VALP-0005-0008	Airspace capacity	

Project ID 05.07.04.

2.2.5 Choice of methods and techniques

This section briefly describes all methods and techniques used in the experiment to obtain the metrics and indicators.

Supported Metric / Indicator	Platform / Tool	Method or Technique
Sector Capacity	SACTA Simulator + NORVASE tool	NORVASE workload/capacity assessment
ATC Workload	SACTA Simulator + NORVASE tool	NORVASE workload/capacity assessment
Complexity	SACTA Simulator + NORVASE tool	NORVASE workload/capacity assessment
HF		Questionnaires
Environment (Fuel Consumption and gas emissions)	AEM3	Analysis of PALESTRA files
Environment	PALESTRA	Radar and flight plans information and updates recording

Table 5: Methods and Techniques

2.2.5.1 Description of methods and techniques

2.2.5.1.1 Initial Conditions

This section deals with all those criteria which were included in the NORVASE Report with the aim of providing more and better quality information. The intention is that said report be more easily understandable.

• With respect to the NORVASE indicators, a breakdown of the indicators which distinguish the flight phase of aircraft is given in the file for each sector included in the second section of the report. In this way the operational behaviour of the sector being studied may be fully analysed.

In the case of the final and feeder groups, the breakdown distinguishes between arrivals and departures, while for the evolution and route groups the breakdown distinguishes between aircraft in evolution and those in overflight.

NOTE: Throughout the document Evolution is used to mean "Traffic in Climb and Descent". There is a breakdown of the following NORVASE indicators: actions, coordinations, Radar Vector and complexity.

• The mean values of the NORVASE indicators given both in the second part of each section as well as in the executive summary of each of the groups refer to the historic mean values of the groups being studied. Included in the calculation of said mean values are data from sectors, of the same group, that reported in each of the last three years.

Edition: 00.00.01

• With respect to workload, workload figures are calculated for each of the sectors bearing in mind that all available data over the last two years is used to determine the sector mean value (See Chapter 11.- NORVASE CAPACITY CALCULATION METHODOLOGY: MECANO). For sectors studied in P05.07.04 there is no historic information

2.2.5.1.2Sector Classification

2.2.5.1.2.1Groups

The aim of this preamble is to describe the different types of sector, both TMA and Route, based on their operational characteristics. The diagram below shows the sector groupings.

It is important to distinguish between sectors which generally deal with traffic in evolution (climbing or descending), and those which mainly handle overflight traffic. By looking at the chart "Percentage of Time in Overflight" it is possible to detect a big jump in the value of this variable. This jump enables us to distinguish between TMA Sectors and Route Sectors.

Within TMA Sectors the type of traffic handled varies according to whether the sector manages final approach or not. As such the classification is as follows:

2.2.5.1.2.1.1Group 1 (Final)

This group comprises all those sectors responsible for handling ARRIVALS in their final approach phase and Radar Vector towards ILS localizer interception. Once it is intercepted, the aircraft is transferred to TWR.

The main characteristics are:

•Sectors which exclusively or mainly handle arrivals.

•Sectors with a high degree of specialisation.

Figure 2: Final

2.2.5.1.2.1.2Group 2 (Mixed)

This group comprises all sectors responsible for handling ARRIVALS in their final approach phase which are Radar Vector towards TWR, as well as DEPARTURES coming from TWR. The principal characteristics are:

•Sectors handling arrivals and departures transferred by TWR.

•TMA sectors with a low degree of specialisation.

2.2.5.1.2.1.3Group 3 (Departures)

Group comprising all sectors responsible for managing departures coming from TWR. The chief characteristics are:

•Sectors which mainly or exclusively manage departures.

•Sectors with a high degree of specialisation.

2.2.5.1.2.1.4Group 4 (A/D Feeder)

Group comprising all sectors responsible for handling ARRIVALS (final approach not included) that give Radar Vector towards final approach sectors, as well as managing DEPARTURES proceeding directly from TWR, or from a sector to which TWR has transferred departures.

The main characteristics are:

•TMA sectors which manage ascending and descending aircraft.

•TMA sectors with a high/medium level of specialisation.

2.2.5.1.2.1.5Group 5 (A Feeder)

Group comprising all sectors responsible for handling mainly ARRIVALS (final approach not included) that are Radar Vector towards final approach sectors. They differ from Group 4 due to the minor relevance of departures. The Evolution Index is used to classify route sectors. It takes into account the time the aircraft spends in evolution (climb, descent) in the sector, the impact the evolution (climb, descent) has on controllers actions, and the complexity of these actions. The formula for the index is as follows:

ievolution = (%Tevol + %ActEvol + %CompEvol) / 3

Based on the intervals established by this index, the following groups may be identified.

2.2.5.1.2.1.6Group 6 (High Evolution)

Sectors which show high evolution, being as they are route sectors. They are therefore transition sectors between pure TMA sectors and those which are more characteristically route sectors. Their Evolution Index given by the following expression: ievolution > 50

2.2.5.1.2.1.7Group 7 (Low Evolution)

Sector with low evolution but greater than that of pure route sectors. The value of their Evolution Index is: 15 < i evolution < 50

2.2.5.1.2.1.8Group 8 (Route)

N/A

2.2.5.1.3Modulation

Once the sectors have been grouped, the workload and complexity of each sector can be calculated using the information provided by the data samples.

This section explains the process by which the workload of each control action is determined. This process includes data sampling and solving the equations.

Both in the system solving phase and in the later workload calculation process a new concept, Action Modulation, is required. The value assigned to the actions will be an initial value which will vary in line with variations in the operational situation in the sector.

The Complexity is modulated in the same way. It is modulated instantaneously based on the number of simultaneous aircraft in the mean flight time.

2.2.5.1.3.1Data Selection

Representative data is selected in different workload intervals, depending on the groupings being studied. Likewise, they will be statistical control of the actions in each group or interval. Data samples will be selected whose number of actions falls within the mean group values.

2.2.5.1.3.2Solving Equations

Once the data samples which make up the system of equations for each group have been selected, general restrictions are imposed on the actions, according to the group being studied.

As such we obtain results for the each kind of typical action. The remaining results are obtained by interpolation.

2.2.5.1.3.3Instant Modulation of All Actions

Given the difference in control difficulty, depending on the state of instantaneous saturation in each sector, we modulate the workload value registered every minute.

The instantaneous load in a given sector depends not only on the simultaneous aircraft (Asim) in the same, but also on the useful volume of said sector. By qualifying the number of simultaneous aircraft within a registered mean flight time (Tmv), one obtains a measure of the implicit difficulty in managing the aircraft present in the same without taking into account the dimensions of the sector.

The difficulty of traffic situations outside the low workload zone will vary in line with the number of communications that the controller makes until the saturation zone, in which, an increase in the communications will not resolve the existing complex traffic situation.

For this reason, the modulator factor is given by a function that relates simultaneous aircraft and the mean flight time.

The x-axis shows the Asim/Tmv variable, and the y-axis gives the Com10 variable.

To select the point of maximum complexity in an operation, for a given value of Asim/Tmv, it is best to choose that point with the maximum Com10 value. In that way the most complex situation for an operation recorded in the sector is obtained.

Afterwards, the graph of the series of data points is plotted, which may be exponential, polynomial, logarithmic or lineal; and the best fit is chosen, as long as it continually increases along the whole operation. In this way we get the curve equation which is used to modulate the workload.

The modulation is assigned a reference value which will be the starting point. This value will be the midpoint of the curve (Xref= Asim /TMV), the mean value of Asim/TMV.

The first value of the variable Asim/TMV will be taken as the starting point for the modulation. Similarly the final value of the variable will be the last value of the modulation.

An intermediate point is chosen as the "no modulation" point. In this way modulation decreases the workload in zones below this point, and increases the workload in zones above this point.

Figure 4: Instant Modulation of all actions

2.2.5.1.3.4 Workload Calculation

Once the initial workload for each control action has been determined, the workload for each data sample will be calculated in the opposite way, i.e. the corresponding minute-by-minute value for each action is substituted, modulating the workload according to the corresponding modulator value for that particular minute.

To avoid over-dimensioning when modulating, the maximum workload per sector is limited as explained below. The number of communications is related to the number of actions, so that if we divide the communications made in a ten minute block by ten, we get a number which is representative of the actions carried out in one minute. To calculate the workload that a minute of maximum difficulty would have, we assume that the maximum number (plus one) of actions registered in the sector are carried out and also, for safety reasons, that the actions carried out in that minute are those of greatest value for the group in question (*).

(*) This number of actions will be multiplied by the weighting of the highest value action which takes place in the type being considered. For sectors of Types 1, 2, 3, 4 or 5 the action to be considered is Radar Vector. In high and low evolution sectors (Types 6 or 7) the value of arrival-departure actions will be used. Finally for those where the evolution is not significant, Route (Type 8) the value of overfligh actions overflight will be used. In this way, the maximum workload per minute is given by:

WLminmax = (Com10/10+1)*Selected Action

With this limitation the workload is not excessive. In those minutes where the modulated workload value exceeds WLminmax, the value WLminmax will be automatically assigned.

One of the advantages of calculating the workload in this way is that we can keep track of number of minutes in which a sector reaches the maximum (WLminmax), i.e. the number of minutes in which the sector has clearly been saturated can be known.

2.2.5.1.3.5Calculation of Norvase Indicators

Using CALCUNOR the data sampled in each sector is treated to give a series of indicators which enable us analyse the operational characteristics of the sector and thus evaluate its situation. An explanation of how the most relevant NORVASE indicators are obtained is given below:

founding members

2.2.5.1.3.5.1Description of the indicators

Before we begin with a definition of the indicators that CALCUNOR calculates, we must clarify two things: 1. Although the duration of the data sample is an implicit value of the sample, it is decisive for CALCUNOR, therefore:

- If the data sample lasts more than one hour, only the hour with the greatest number of movements will be used. This means that the remainder of the data sample will be ruled out.
- Those data samples which last exactly 60 minutes are not modified.

2. The definitions which follow refer to a single data sample. In the case of more than one data sample, the result used will be the mean of the data samples in the sector, e.g. the sum of the indicators divided by the number of data samples.

As an aid to understanding this document the indicators have been classified as: Implicit Indicators which are those indicators calculated from the data recorded during sampling and Explicit Indicators which are calculated using a combination of implicit indicators.

2.2.5.1.3.5.2Implicit Indicators

An implicit indicator is an indicator which is obtained solely from the data recorded during sampling. The Guidelines for NORVASE Evaluation Teams (Data Sampling) Code I-05ION¬T06-2 details the aspects to be considered for each of the indicators mentioned below.

Actions is defined as the indicator that reflects all of the control actions carried out by the controller on the aircraft present in the data sample, be they IFR or VFR. This indicator gives the sum total of actions, separations, sequencing and Radar Vector.

Overflight Actions: Overflight Actions are those actions that are not unexpected and which are recorded for an aircraft in overflight phase, ruling out those actions which are noted after starting descent and adding those noted after starting overflight.

It must be stressed that start overflight is purely a milestone and is not considered to be an action, while start descent is considered to be an overflight action.

- Separation or Sequencing Actions (A) is the indicator which reflects the number of separation or sequencing actions carried out by the controller on all the aircraft present in the data sample, be they IFR or VFR.
- Arrival/Departure Separation/Sequencing Actions: separation or sequencing actions on Arrival/Departure are those actions which are noted for an aircraft in descent or climb phase, ruling out those which are noted after starting overflight and including those noted after a starting descent.
- Overflight Separation/Sequencing Actions: separation or sequencing actions on overflight are those actions which are noted for an aircraft in overflight phase, ruling out those which are noted after starting descent and including those noted after starting overflight.
- Radar Vector (S) is the indicator which reflects the number of times Radar Vector has been carried out by the controller on all of the aircraft present in the data sample, be they IFR or VFR.
- Unexpected Radar Vector (S): Unexpected Radar Vector is Radar Vector which is noted in the first three minutes of unexpected traffic entering a sector.
- Arrival/Departure Radar Vector (S): Arrival/Departure Radar Vector is Radar Vector which is not unexpected and is noted for an aircraft in descent or climb phase, ruling out Radar Vector after starting overflight and including those noted after starting descent.
- Departure Radar Vector (S): Departure Radar Vector is Radar Vector which is not unexpected and is noted for an aircraft in climb phase, ruling out Radar Vector noted after starting overflight and including Radar Vector noted after starting descent.
- Arrival Radar Vector (S): Arrival Radar Vector is Radar Vector which is not unexpected and is noted for an aircraft in descent phase, ruling out Radar Vector noted after starting overflight and including that Radar Vector noted after starting descent.
- Overflight Radar Vector (S): Overflight Radar Vector is Radar Vector which is not unexpected and is noted for an aircraft in overflight phase, ruling out Radar Vector which is noted after starting descent and including Radar Vector noted after starting overflight.

- Radar Vector (X) is the indicator that reflects the number of times standard Radar Vector has been carried out by the controller on all the aircraft in the data sample, be they IFR or VFR.
- Unexpected Radar Vector (X): Unexpected Radar Vector is Radar Vector that is noted in the first three minutes of unexpected traffic entering a sector.
- Arrival/Departure Radar Vector (X): Arrival/Departure Radar Vector is Radar Vector that is not unexpected and is noted for an aircraft in descent or climb phase, ruling out Radar Vector that is noted after starting overflight and including Radar Vector noted after starting descent.
- Departure Radar Vector (X): Departure Radar Vector is Radar Vector that is not unexpected and is noted for an aircraft in climb phase, ruling out Radar Vector that is noted after starting overflight and including Radar Vector noted after a starting descent.
- Arrival Radar Vector (X): Arrival Radar Vector is Radar Vector is Radar Vector that is not is not unexpected and is for an aircraft in descent phase, ruling out Radar Vector that is noted after starting overflight and including Radar Vector noted after a starting descent.
- Overflight Radar Vector (X): Overflight Radar Vector is Radar Vector that is not unexpected and is noted for an aircraft in overflight phase, ruling out Radar Vector that is noted after starting descent and including Radar Vector those noted after starting overflight.
- Surveillance is the indicator which reflects the work generated for the controller by aircraft simply being in communication. For this the duration of the aircraft in the data sample is analysed, be they IFR or VFR. To avoid exorbitant values, principally in the Route Group Sectors, it has been converted to a scalar (i.e. having no dimension), dividing the indicator by 60 minutes.
- Unexpected Surveillance: unexpected Surveillance is the total number of minutes of surveillance for unexpected traffic, i.e. during the first three minutes after unexpected traffic entering a sector.
- Arrival/Departure Surveillance: Arrival/Departure Surveillance is the total number of minutes of • surveillance for aircraft in descent or climb phase, ruling out those departures that have begun overflight and including those in overflight that have begun descent.
- Overflight Surveillance: Overflight Surveillance is the total number of minutes of surveillance for aircraft in overflight phase, ruling out those which have begun descent and including those departures which have begun overflight.
- Coordinations: this is the indicator that gives the number of co-ordinations, not due to actions in the system, which the controller has carried out for all the aircraft present in the data sample, be they IFR or VFR.
- Coordinations in the System: gives the number of actions in the system that the controller has carried • out for all the aircraft present in the data sample, be they IFR or VFR.
- Waits gives the number of waits that the controller has carried out for all the aircraft present in the data • sample, be they IFR or VFR.
- No. of Visual Flights: number of visual movements to VFR aircraft with an entry time.
- No. of Movements Data Sample: defined as the number of movements per data sample for IFR aircraft with an entry time.
- No. of Departures: number of aircraft with Departure flight group (D, U/D) of all aircraft considered to be data sample movement.
- No. of Arrivals: number of aircraft both with Arrival flight group (A, U/A) and those with Overflight flight group (O, U/O) but with a begin descent action, of all aircraft considered to be data sample movement.
- Actions due to Movements: guotient of the number of actions noted in data sample (Normal Actions to Unexpected Traffic + Arrival/Departure Actions + Overflight Actions) and the No. of Movements - Data Sample.
- Actions due to Departures: quotient of the number of actions noted as departures in the data sample and the Number of Departures.
- Actions due to Arrivals: quotient of the number of actions noted as arrivals in the data sample and the Number of Arrivals.
- Coordinations due to Movements: quotient of number of coordinations, be they due to actions in the system or not, and the No. of Movements – Data Sample.
- Coordinations due to Departures: quotient of the number of coordinations noted as Departures in the data sample, be they due to actions in the system or not, and the No. of Departures.
- Coordinations due to Arrivals: quotient of the number of coordinations noted as Arrivals in the data sample, be they due to actions in the system or not, and the No. of Arrivals.

2.2.5.1.3.5.3Explicit indicators

- Explicit Indicators are those indicators which are obtained by mathematical calculation using implicit indicators, obtained by direct observation, and assigned their corresponding value.
- Complexity: an indicator given by the following equation:

- Unexpected Actions * (Complexity Weighting) + Arrival/Departure Actions * (Complexity Weighting) +
 Overflight Actions * (Complexity Weighting) + Unexpected Surveillance * (Complexity Weighting) +
 Arrival/Departure Surveillance * (Complexity Weighting) + Overflight Surveillance * (Complexity
 Weighting) + Arrival/Departure Sep/Seq Act * (Extra Complexity Weighting) + Overflight Sep/Seq Act *
 (Extra Complexity Weighting) + (Coordinations + 2*General Coordinations) * (Complexity Weighting) +
 (System Coordinations) * (Complexity Weighting) + Unexpected Radar Vector * (Extra Complexity
 Weighting) + Arrival/Departure Radar Vector * (Extra Complexity Weighting) + Overflight Radar Vector *
 (Extra Complexity Weighting)
- Movement Complexity: quotient of the complexity of the data sample and the Num. of Movements Data Sample.
- Arrival Complexity: quotient of complexity associated with aircraft in descent phase and number of arrivals.
- Departure Complexity: quotient of complexity associated with aircraft in climb phase and number of departures.
- Overflight Complexity: quotient of complexity associated with aircraft in overflight phase and number of overflights.
- Percentage of Time in Evolution (climb, descent): this indicator reflects the percentage of time of IFR movements with entry times that are in evolution phase with respect to the total time of those IFR movements with entry times that are in evolution phase in the sector.
- Percentage of Traffic in Evolution: this indicator reflects the percentage of IFR movements with entry times that are in evolution phase with respect to those IFR movements with entry times that are in evolution phase in the sector.
- Mean Flight Time: NORVASE considers that an aircraft enters the sector when it first establishes communication, and leaves the sector when it transfers to the following sector. The calculation consists of dividing the total minutes between the number of aircraft, taking into account all IFR aircraft with entry and exit times.
- Maximum Simultaneous Aircraft: NORVASE considers simultaneous aircraft to be all those that are IFR and are in communication in the same one minute period of the data sample. For a given data sample that minute where the maximum number of aircraft is recorded will be selected.
- Mean Simultaneous Aircraft: NORVASE considers simultaneous aircraft to be all those that are IFR and are in communication in the same one minute period of the data sample. The mean simultaneous aircraft is obtained by dividing the total simultaneous aircraft in each minute by the number of minutes of the data sample.
- Maximum Communications in 10 Minute Blocks: NORVASE considers any action or coordination carried out in the sector to be communication. 10 minute blocks are considered as the blocks that only last 10 minutes fixed with other pieces. To determine the maximum communication in 10 minute blocks the communications in the 10 minute blocks that comprise the data sample are analysed and that which has the maximum recorded number of communications is selected.
- Mean Communications in 10 Minute Blocks: NORVASE considers any action or coordination carried out in the sector to be communication. To determine the mean communication in 10 minute blocks the communications in the 10 minute blocks that comprise the data sample are analysed and the mean is calculated for each period.
- Workload: this is an indicator of the workload in seconds that the sector controller has during the data sample and is calculated as follows:
- Unexpected Actions * (Workload Weighting) + Arrival/Departure Actions * (Workload Weighting) + Overflight Actions * (Workload Weighting) + Unexpected Surveillance * (Workload Weighting) + Arrival/Departure Surveillance * (Workload Weighting) + Overflight Surveillance * (Workload Weighting) + Arrival/Departure Sep/Seq Action * (Extra Workload Weighting) + Overflight Sep/Seq Action * (Extra Workload Weighting) + Holdings * (Workload Weighting) + (Coordinations + 2 * General Coordinations) * (Workload Weighting) + (Actions in the System) * (Workload Weighting) + Unexpected Radar Vector * (Extra Workload Weighting) + Arrival/Departure Radar Vector * (Extra Workload Weighting) + Overflight Radar Vector * (Extra Workload Weighting)

2.2.5.1.3.6NORVASE Capacity calculation methodology MECANO

2.2.5.1.3.6.1Introduction

MECANO (MEtodología de cálculo de CApacidad NORVASE - NORVASE Capacity Calculation Methodology), MECANO, has defined an approach for determining the capacity of the control sectors, using the NORVASE data samples taken in each sector.

There were two principal issues:

•Giving the equivalent of the Workload, WL, in seconds.

•Obtaining the graph "workload / number of movements" for the sector, using all the data samples taken in said sector in the last 3 years (in such cases where the data is consistent with the current year's data samples).

2.2.5.1.3.6.2 Giving the equivalent in sec

When evaluating the effort required to perform the activities carried out by air traffic controllers, the general aeronautical community has established the concept workload, which measures in seconds the time per hour a controller has been busy.

The maximum time a controller can work in one hour is 3,600 seconds. In fact, the limit is 2,520 seconds (70% of one hour). This gives a margin which guarantees safe control of aircraft and the permits the handling of momentary peaks in traffic which may lead to increased workload. It also takes into account the differing levels of expertise in air control personnel working in the same sector. This has been contemplated by NORVASE in the observation and data sampling procedure. The 70% limit is used to calculate Nominal Capacity.

This reference value has been accepted by the aeronautical community following different studies carried out by EUROCONTROL, DFS and NLR.

Taking as a reference the NORVASE weighting table, which scores the different events as per Table 1, the different NORVASE actions are assigned a weighting in seconds. This is done by developing a system of equations of the type:

200G + 300D + 1A + 61P + 51F = 2520

The first term represents a NORVASE data sample. The unknowns are the each of the NORVASE actions identified and the corresponding constant the number of times that the data sample was repeated.

Since 2004, the variables corresponding to the Separation or Sequencing Actions and the Actions in the System are included, as well as the variable corresponding to the Surveillance minutes of the data sample. Since 2006, the variable corresponding to standard Radar Vector has been included. In the previous example:

200 G Two hundred Arrivals/Departures that required action

300 D 300 minutes of Arrival/Departure Surveillance

1 A One Coordination

61 P Sixty-one Arrival/Departure Radar Vector

51 F Fifty-one Arrival/Departure Sep/Seq Actions

The second term of the equation is the maximum workload per hour in a sector, i.e. 2520 seconds (70% of one hour).

Said system of equations has been mathematically solved using an optimisation algorithm (simulated annealing), which consists of varying the unknowns and automatically evaluating them until arriving at the values which give the best fit for each of the equations.

Furthermore, it should not be forgotten that the value of each action is modulated as explained in point 3.3. -MODULATION.

The quality of the data samples chosen greatly determines the validity of the results; as such a method has been established to enable the selection to be made in the most precise and objective way possible. The steps are as follows:

1Variety in the workload intervals: representative data samples are chosen in different workload intervals, according to the group being studied.

2Statistical Control is carried out on the actions in each group and interval. Data samples are chosen whose action values are within the mean values of the group. The interval is increased starting from the mean value to ensure sufficient data samples.

3Representative sectors are chosen for each of the established sector groups (final, mixed, departures, A/D feeder, A feeder, high evolution, low evolution, route), hence their positions in the State Diagram is studied. 4We use the highest possible number of data samples, using those data samples which we know to have been carried out according to the correct NORVASE methodology. Furthermore, the data samples should satisfy the following:

•The NORVASE indicators are coherent.

•The number of movements (IFR only) is representative. Specifically, the number of movements of the data sample should be greater than or equal to the registered mean value of the sector for NORVASE data samples. Furthermore, the capacity and NORVASE percentile are taken into account.

•The number of actions, coordinations and complexity (including VFR ones) should be above the sector mean. •The data samples have been carried out as and from 2004 by the NORVASE Local Team.

Once the data samples that make up the system of equations for each of the groups have been chosen, general restrictions are imposed on the actions depending on the group being studied. Said restrictions are imposed to ensure that any error obtained on applying them will be as small as possible.

After applying the algorithm we take the average of the 50 best solutions.

In this way we get the most representative actions for each type and the rest of the actions are obtained by interpolation.

2.2.5.1.3.6.3Instantaneous Modulation of all Actions

As the level of difficulty in control varies depending on the state of instantaneous saturation in each sector, we modulate the workload value recorded every minute.

The instantaneous load in a given sector depends not only on the simultaneous aircraft in the same but also on the useful volume of the sector. By qualifying the number of simultaneous aircraft within a registered mean flight time, one obtains a measure of the implicit difficulty in managing the aircraft present in the same without taking into account the dimensions of the sector.

The difficulty of traffic situations outside the low workload zone will vary in line with the number of communications that the controller makes until the saturation zone, in which, an increase in the communications will not resolve the existing complex traffic situation.

For this reason, the modulator factor is given by a function that relates simultaneous aircraft and the mean flight time, such that the workload for every minute, and consequently for every data sample will be given by the following expression:

MINUTE 1 WL MINUTE 1 = (n1*Act+n2*A+n3*S+n4*coord. +...) *f (Asim / TMV) MINUTE 2 WL MINUTE 2 = (m1*Act+m2*A+m3*S+m4*coord. +...)* f (Asim / TMV) . MINUTE 60 WL MINUTE 60 = (p1*Act+p2*A+p3*S+p4*coord. +...) * f (Asim / TMV) DATA SAMPLE WL = Σ WL MINUTE i

The variables used in workload modulation are:

Asim: the average value of simultaneous aircraft corresponding to the 10 minute block that begins in that minute. TMV: of the corresponding sector for the year studied.

Com10: Communications made by the controller in 10 minutes.

To determine the indicator we have taken into account the relationship between Asim and Com10.

The x-axis shows the Asim/Tmv variable, and the y-axis gives the Com10 variable.

To select the point of maximum complexity in an operation, for a given value of Asim/Tmv, it is best to choose that point with the maximum Com10 value. In that way the most complex situation for an operation recorded in the sector is obtained.

Afterwards, the graph of the series of data points is plotted, which may be exponential, polynomial, logarithmic or lineal; and the best fit is chosen, as long as it continually increases along the whole operation.

In this way we get the curve equation which is used to modulate the workload.

The modulation is assigned a reference value which will be the starting point. This value will be the midpoint of the curve (Xref= Asim /TMV), the mean value of Asim/TMV.

The first value of the variable Asim/TMV will be taken as the starting point for the modulation. Similarly the final value of the variable will be the last value of the modulation.

An intermediate point is chosen as the "no modulation" point. In this way modulation decreases the workload in zones below this point, and increases the workload in zones above this point.

The modulator expression will be of the form:

Mod=f(X)/f(Xref), the function being:

•Logarithmic: f(X)=C0+C1 InX or •Polynomial: f(X)= C0+ C1X+ C2X2 or •Lineal: f(X)= C0+C1X

2.2.5.1.3.6.4Workload Calculation

Once the initial workload for each control action has been determined, the workload of each data sample will be calculated in the opposite way, i.e. the corresponding minute-by-minute value for each action is substituted, modulating the workload according to the corresponding modulator value for that particular minute. (Process explained in the previous section).

To avoid over-dimensioning when modulating, the maximum workload per sector is limited as follows.

The number of communications is related to the number of actions, so that if we divide the communications made in a ten minute block by ten, we get the number which is representative of the actions carried out in one minute. To calculate the workload that a minute of maximum difficulty would have, we assume that the maximum number (plus one) of actions registered in the sector are carried out and also, for safety reasons, that the actions carried out in that minute are those of greatest value for the group in question (*).

(*) This number of actions will be multiplied by the weighting of the highest value action which takes place in the type being considered. For sectors of Types 1, 2, 3, 4 or 5 the action to be considered is Radar Vector. In high and low evolution sectors (Types 6 or 7) the value of arrival-departure actions will be used. Finally for those where the evolution is not significant, Route (Type 8) the value of overflight actions will be used.

In this way, the maximum workload per minute is given by:

WLminmax = (Com10/10+1)*Selected Action

With this limitation the workload is not excessive. In those minutes where the modulated workload value exceeds WLminmax, the value WLminmax will be automatically assigned.

One of the advantages of calculating the workload in this way is that we can keep track of number of minutes in which a sector reaches the maximum (WLminmax), i.e. when it is at its limit in terms of communications possible and as such at the limit of its capacity.

2.2.5.1.3.6.5Obtaining the calculated capacity

The nominal calculated capacity of the sector is the number of movements that corresponds to the maximum permitted workload of 2,520 seconds.

MECANO PLUS

The reference value of 70% occupation of controllers, 2,520 seconds per hour, is used. This gives sufficient margin and has been accepted and used in similar studies carried out by EUROCONTROL, DFS, NLR.

Figure 5: Calculated Capacity

2.2.5.1.3.7State Diagrams

State Diagrams illustrate the state of the sectors using a chart with four quadrants. These quadrants are delimited by the medians of absolute complexity and complexity per movement for every sector group in the last four years

2.2.5.1.3.7.1Quadrant 1

2.2.5.1.3.7.1.1Characteristics

Low Absolute Complexity Sectors, High Complexity / Movement Sectors, Sectors with a low number of movements per sample. High number of actions and coordinations per movement.

2.2.5.1.3.7.1.2Actions

Modification of Operating Procedures Suppression of coordinations by the modification of LoA's. Study Sector Design / Functions.

2.2.5.1.3.7.2Quadrant 2

2.2.5.1.3.7.2.1 Characteristics

High Absolute Complexity Sectors, derived from a high number of movements and actions / coordinations. High Complexity / Movement Sectors, high number of actions and coordinations per movement. Sectors at the limit of their capacity.

2.2.5.1.3.7.2.2Actions

Modification of Operating Procedures (LoA's) Modification of Sector Design / Functions. Revision of Flows. If the previous is not possible, Re-sectorise.

2.2.5.1.3.7.3Quadrant 3

2.2.5.1.3.7.3.1Characteristics

Low Absolute Complexity Sectors, derived from a high number of movements. Sectors with Low Complexity / Movements. Sectors at the limit of their capacity and good utilisation.

2.2.5.1.3.7.3.2Actions

Ideal sector. Only if it does not absorb demand, re-sectorise or revise flows.

2.2.5.1.3.7.4Quadrant 4

2.2.5.1.3.7.4.1Characteristics

Low Absolute Complexity Sector. Sectors with Low Complexity / Movement. The further to the right of the quadrant, the better the utilisation. The higher in the quadrant, the greater the possibility of absorbing demand if the actions / coordinations are not acted upon.

2.2.5.1.3.7.4.2Actions

Revise the flows of other sectors to increase the demand (utilisation). Consider using part-time or integration with other sectors.

2.2.6 Validation Exercises List and dependencies

This section contains the list of validation exercises performed, providing details about the methodological approach undertaken as well as about the dependencies between the different exercises and between different experiment or runs:

Edition: 00.00.01

Figure 6: Validation Exercises List and dependencies (North Configuration)

founding members

Figure 7: Validation Exercises List and dependencies (South Configuration)

Figure 8: Validation Exercises List and dependencies (MOPS)

Figure 9: Validation Exercises List and dependencies (Sector Integration)

Figure 10: Validation Exercises List and dependencies (Single Runway)¹

¹ EXE-05.07.04-VP-142.0039 and EXE-05.07.04-VP-142.0040 were simulated with SCN-05.07.04-VP-0000-0006

Conduct of Validation Exercises 3

3.1 Exercises Preparation

The exercises have been prepared according to the following activities performed (in order):

- Sectorization and procedures design •
- Simulator preparation and technical acceptance criteria •
- Database introduction according to the operative environment to execute the exercises •
- Preparation of 40 exercises (1h of duration each one) •
- 6 Sector Control Units •
- 9 Pseudo-Pilots (9 PPL)
- 10 ATCOs •
- Training •
 - One week of training providing the necessary material for both controllers and pseudo-pilots 0

3.2 Exercises Execution

Here is listed the exercises executed during the 2 weeks of simulation with its corresponding dates:

Exercise ID	Exercise Title	Actual Exercise execution start date	Actual Exercise execution end date	Actual Exercise start analysis date	Actual Exercise end date
EXE-05.07.04- VALP-142.0001	Eastern Nucleus - NC (50% traffic sample)	-	-	-	-
EXE-05.07.04- VALP-142.0002	Eastern Nucleus - NC (50% + 30% traffic sample)	17/10/2011	28/10/2011	31/10/2011	30/12/2011
EXE-05.07.04- VALP-142.0003	Western Nucleus - NC (50% traffic sample)	-	-	-	-
EXE-05.07.04- VALP-142.0004	Western Nucleus - NC (50% traffic sample)	-	-	-	-
EXE-05.07.04- VALP-142.0005	Eastern Nucleus - NC (60% traffic sample + Hard Wind)	-	-	-	-
EXE-05.07.04- VALP-142.0006	Eastern Nucleus - NC (60% traffic sample + Hard Wind)	-	-	-	-
EXE-05.07.04- VALP-142.0007	Western Nucleus - NC (60% traffic sample + Hard Wind)	-	-	-	-
EXE-05.07.04- VALP-142.0008	Western Nucleus - NC (60% traffic sample + Hard Wind)	-	-	-	-
EXE-05.07.04- VALP-142.0009	Eastern Nucleus - NC (60% traffic sample + Storms at DULCI)	-	-	-	-
EXE-05.07.04- VALP-142.0010	Eastern Nucleus - NC (60% + 10% traffic sample + Storms at DULCI)	17/10/2011	28/10/2011	31/10/2011	30/12/2011
EXE-05.07.04- VALP-142.0011	Western Nucleus - NC (60% traffic sample + Storms at GRECO)	-	-	-	-
EXE-05.07.04- VALP-142.0012	Western Nucleus - NC (60% + 10% traffic sample + Storms at GRECO)	17/10/2011	28/10/2011	31/10/2011	30/12/2011
EXE-05.07.04- VALP-142.0013	Eastern Nucleus - NC (Maximum capacity)	-	-	-	-
EXE-05.07.04- VALP-142.0014	Eastern Nucleus - NC (Maximum capacity)	17/10/2011	28/10/2011	31/10/2011	30/12/2011
EXE-05.07.04- VALP-142.0015	Western Nucleus - NC (Maximum capacity)	17/10/2011	28/10/2011	31/10/2011	30/12/2011
EXE-05.07.04- VALP-142.0016	Western Nucleus - NC (Maximum capacity)	-	-	-	-
EXE-05.07.04- VALP-142.0017	Eastern Nucleus - SC (50% traffic sample + hard Wind)	-	-	-	-
EXE-05.07.04- VALP-142.0018	Eastern Nucleus - SC (60% traffic sample + hard Wind)	-	-	-	-
EXE-05.07.04- VALP-142.0019	Western Nucleus - SC (50% traffic sample + hard Wind)	-	-	-	-

Project ID 05.07.04.			
D003 - Final OSED for	Madrid TMA (A	nnex Validation Rep	ort)

Edition: 00.00.01

EXE-05.07.04- VALP-142.0020	Western Nucleus - SC (60% traffic sample + hard Wind)	-	-	-	-
EXE-05.07.04- VALP-142.0021	Eastern Nucleus - SC (Maximum capacity)	-	-	-	-
EXE-05.07.04- VALP-142.0022	Eastern Nucleus - SC (Maximum capacity + Hard Wind)	-	-	-	-
EXE-05.07.04- VALP-142.0023	Western Nucleus - SC (Maximum capacity)	-	-	-	-
EXE-05.07.04- VALP-142.0024	Western Nucleus - SC (Maximum capacity + Hard Wind)	-	-	-	-
EXE-05.07.04- VALP-142.0025	Eastern Nucleus (MOPS NC to SC at 15' - Maximum Capacity)	-	-	-	-
EXE-05.07.04- VALP-142.0026	Eastern Nucleus (MOPS NC to SC at 15' - Maximum Capacity)	-	-	-	-
EXE-05.07.04- VALP-142.0027	Western Nucleus (MOPS NC to SC at 15' - Maximum Capacity)	17/10/2011	28/10/2011	31/10/2011	30/12/2011
EXE-05.07.04- VALP-142.0028	Western Nucleus (MOPS NC to SC at 20' - Maximum Capacity)	-	-	-	-
EXE-05.07.04- VALP-142.0029	Eastern Nucleus (MOPS SC to NC at 20' - Maximum Capacity)	17/10/2011	28/10/2011	31/10/2011	30/12/2011
EXE-05.07.04- VALP-142.0030	Eastern Nucleus (MOPS SC to NC at 20' - Maximum Capacity)	-	-	-	-
EXE-05.07.04- VALP-142.0031	Western Nucleus (MOPS SC to NC at 20' - Maximum Capacity)	-	-	-	-
EXE-05.07.04- VALP-142.0032	Western Nucleus (MOPS SC to NC at 20' - Maximum Capacity)	-	-	-	-
EXE-05.07.04- VALP-142.0033	Eastern and Western Nucleus - NC (60% traffic sample + Sectors integrated)	-	-	-	-
EXE-05.07.04- VALP-142.0034	Eastern and Western Nucleus - NC (Maximum capacity + Sectors integrated + Hard Wind)	17/10/2011	28/10/2011	31/10/2011	30/12/2011
EXE-05.07.04- VALP-142.0035	Eastern and Western Nucleus - SC (60% + 20% traffic sample + Sectors integrated)	17/10/2011	28/10/2011	31/10/2011	30/12/2011
EXE-05.07.04- VALP-142.0036	Eastern and Western Nucleus - SC (Maximum capacity + Sectors integrated + Hard Wind)	17/10/2011	28/10/2011	31/10/2011	30/12/2011
EXE-05.07.04- VALP-142.0037	Single Runway - NC (30% traffic sample + sectors integrated)	17/10/2011	28/10/2011	31/10/2011	30/12/2011
EXE-05.07.04- VALP-142.0038	Single Runway - NC (40% traffic sample + sectors integrated)	17/10/2011	28/10/2011	31/10/2011	30/12/2011
EXE-05.07.04- VALP-142.0039	Single Runway - SC (30% traffic sample + sectors integrated)	-	-	-	-
EXE-05.07.04- VALP-142.0040	Single Runway - SC (40% traffic sample + sectors integrated)	-	-	-	-

Table 6: Exercises execution/analysis dates

3.3 Deviations from the planned activities

There was no deviation from planned activities. At a exercise level there were some exercises that couldn't be simulated according to the validation plan and represented in the table above.

3.3.1 Deviations with respect to the Validation Strategy

5.7.4 EXE-142 is compliant with 5.2 Validation Strategy with no delays in planned activities.

3.3.2 Deviations with respect to the Validation Plan

During the integration of procedures in the simulator, in order to simulate the single runway exercises in both configurations, there was an inconvenient to try to introduce the transitions assigned from one runway to the

other one. The quick solution was to carry out open arrivals after the IAF so the controller would be able to perform the sequence through radar vectoring to intercept the ILS localizer. The result was a scenario like is show in the following figure for North configuration (same for South Configuration):

Figure 11: SCN-05.07.04-VALP-0000-0005

Figure 12: SCN-05.07.04-VALP-0000-0007

After the validation exercises, the recording session was generated and the commitment with Simulation Madrid ACC department was to generate PALESTRA files, to reproduce them in PC environment (what was seen on the radar screen during the simulation).

There were some exercises not simulated due to technical and time problems. The pseudo-pilots availability was too constrained and the validation activities were able to simulate until 2:00 PM. The constantly problems with communications (voice channel in sector control units) lead to cancel many exercises and had to be repeated. The schedule plan for the two weeks of simulation was to perform 4 exercises of 1 hour of duration each day.

It wasn't generated the corresponding flight plans exportation, vertical profiles traffic sample... etc. Sim Madrid ACC division doesn't have the infrastructure necessary to perform exportation process to PALESTRA. The only information available is .j01 files of the simulation days. J01 files are files which can be reproduced by PALESTRA like a session and it represents what was shown on the radar screen during the simulation activities. The compromise to deliver an environmental case is not possible at this stage where the generated files only shows a 2D representation of the scenario and a quantitative study cannot be perform. The effort spend in the generation of j01 was too high and the resources are not available for 5.7.4 post-validation activities.²

² Palestra is one of the SACTA functions:

The support subsystem consists of a set of processors and off line applications for the generation of adaptation and configuration data of the GEODESYS (Geographical Operation Data System) and for the reduction and exploration of all the data recorded by the PALESTRA system. GEODESYS: The Adaptation Database Manager enables the different SACTA subsystems to be configured to adjust to the geographical surroundings where they are

installed and to the evolution of air space, as well as the different operative procedures for each one of them. It also makes maps that are viewed by the controllers in Control Positions. Furthermore, it is the tool that contains the technical parameterization. Through this application, SACTA can operate in aeronautical environments as different as the Peninsula and the Balearic or Canary Islands. Likewise, reliable simulations

have been made of air spaces in Germany, Hungry, Greece and the United Kingdom. This tool has enhanced capabilities for information capture from external sources and information distribution to interested users.

Data analysis programmes: This is a group of applications used to operate and analyze the data recorded when the system is running. It allows for both the reproduction of past situations and the operational statistics for components, subsystems or traffic. Specific applications exist for surveillance, flight plans, supervision and weather and flight data.

The integration of all these tools is called PALESTRA

4 Exercises Results

4.1 Summary of Exercises Results

Exercise ID	Exercise Title	Validation Objective ID	Validation Objective Title	Success Criterion	Exercise Results
EXE-05.07.04 VALP-142.00 02	North Configuration (Eastern Nucleus). Missed approaches	OBJ-05.07.04- VALP- 0000.0001 OBJ-05.07.04- VALP- 0000.0003 OBJ-05.07.04- VALP- 0000.0005 OBJ-05.07.04- VALP- 0000.0007 OBJ-05.07.04- VALP- 0000.0008 OBJ-05.07.04- VALP- 0000.0009 OBJ-05.07.04- VALP- 0000.0009	Mixed Mode Operations MOPS change Workload CCDs Aircraft performances Delay times Missed approaches	CRT-05.07.04- VALP-0001.0001 VALP-0001.0002 VALP-0001.0003 VALP-0001.0003 VALP-0001.0004 VALP-0001.0005 VALP-0001.0006 VALP-0001.0009 VALP-0001.0010 VALP-0001.0012 VALP-0001.0015 VALP-0001.0015 VALP-0001.0017	See Norvase Results
EXE-05.07.04 VALP-142.00 10	North Configuration (Eastern Nucleus) - Storms	OBJ-05.07.04- VALP- 0000.0001 OBJ-05.07.04- VALP- 0000.0003 OBJ-05.07.04- VALP- 0000.0005 OBJ-05.07.04- VALP- 0000.0007 OBJ-05.07.04- VALP- 0000.0008 OBJ-05.07.04- VALP-	Mixed Mode Operations MOPS change Workload CCDs Aircraft performances Delay times Missed approaches	CRT-05.07.04- VALP-0001.0002 VALP-0001.0003 VALP-0001.0003 VALP-0001.0003 VALP-0001.0004 VALP-0001.0005 VALP-0001.0006 VALP-0001.0008 VALP-0001.0010 VALP-0001.0010 VALP-0001.0012 VALP-0001.0015 VALP-0001.0016 VALP-0001.0017	See Norvase Results

Exercise ID	Exercise Title	Validation Objective ID	Validation Objective Title	Success Criterion	Exercise Results		
		0000. 0009 OBJ-05.07.04- VALP- 0000. 0010					
EXE-05.07.04 VALP-142.00 12	Storms	OBJ-05.07.04- VALP- 0000.0001 OBJ-05.07.04- VALP- 0000.0002 OBJ-05.07.04- VALP- 0000.0003 OBJ-05.07.04- VALP- 0000.0005 OBJ-05.07.04- VALP- 0000.0007 OBJ-05.07.04- VALP- 0000.0008 OBJ-05.07.04- VALP- 0000.0009	Mixed Mode Operations High Terrain and bad weather MOPS change Workload CCDs Aircraft performances Delay times	CRT-05.07.04- VALP-0001.0001 VALP-0001.0002 VALP-0001.0003 VALP-0001.0005 VALP-0001.0006 VALP-0001.0007 VALP-0001.0009 VALP-0001.0010 VALP-0001.0010 VALP-0001.0015 VALP-0001.0015 VALP-0001.0016	See Norvase Results		
EXE-05.07.04 VALP-142.00 14	North Configuration (Eastern Nucleus) - Max. Capacity	OBJ-05.07.04- VALP- 0000.0001 OBJ-05.07.04- VALP- 0000.0003 OBJ-05.07.04- VALP- 0000.0005 OBJ-05.07.04- VALP- 0000.0007 OBJ-05.07.04- VALP- 0000.0008 OBJ-05.07.04- VALP- 0000.0009 OBJ-05.07.04-	Mixed Mode Operations MOPS change Workload CCDs Aircraft performances Delay times Missed approaches	CRT-05.07.04- VALP-0001.0002 VALP-0001.0003 VALP-0001.0003 VALP-0001.0003 VALP-0001.0003 VALP-0001.0005 VALP-0001.0006 VALP-0001.0009 VALP-0001.0010 VALP-0001.0012 VALP-0001.0015 VALP-0001.0015 VALP-0001.0017	See Norvase Results		

Exercise ID	Exercise Title	Validation Objective ID	Validation Objective Title	Success Criterion	Exercise Results		
		VALP- 0000. 0010					
		OBJ-05.07.04- VALP- 0000. 0001					
		OBJ-05.07.04- VALP- 0000. 0004	Mixed Mode Operations				
		OBJ-05.07.04- VALP-	Maximum capacity	CRT-05.07.04-			
		0000. 0005	Workload	VALP-0001.0001 VALP-0001.0002			
EXE-05.07.04 VALP-142.00 15 N	Maximum capacity	OBJ-05.07.04- VALP- 0000. 0007	CCDs	VALP-0001.0003 VALP-0001.0004 VALP-0001.0005 VALP-0001.0006	See Norvase Results		
		OBJ-05.07.04- VALP- 0000. 0008	Aircraft performances	VALP-0001.0011 VALP-0001.0012 VALP-0001.0014			
		OBJ-05.07.04- VALP- 0000.0009	Delay times	VALP-0001.0015 VALP-0001.0016 VALP-0001.0017			
		0000.0000	Missed approaches				
		OBJ-05.07.04- VALP- 0000. 0010					
		OBJ-05.07.04- VALP- 0000. 0001					
		OBJ-05.07.04- VALP- 0000. 0003	Mixed Mode Operations	CRT-05.07.04-			
		OBJ-05.07.04- VALP-	MOPS change	VALP-0001.0001 VALP-0001.0002			
		0000. 0004	Maximum capacity	VALP-0001.0003 VALP-0001.0004 VALP-0001.0005			
EXE-05.07.04 VALP-142.00 27	Maximum capacity Eastern sectors. North configuration	OBJ-05.07.04- VALP- 0000. 0005	Workload	VALP-0001.0006 VALP-0001.0008 VALP-0001.0009	See Norvase Results		
		OBJ-05.07.04- VALP- 0000. 0007	CCDs	VALP-0001.0010 VALP-0001.0011 VALP-0001.0012 VALP-0001.0014			
		OBJ-05.07.04- VALP- 0000. 0008	Aircraft performances	VALP-0001.0015 VALP-0001.0016			
		OBJ-05.07.04- VALP- 0000. 0009	Delay times				
EXE-05.07.04 VALP-142.00 27	Configuration (Eastern	OBJ-05.07.04- VALP-	Mixed Mode	CRT-05.07.04-	See Norvase Results		

Exercise ID	Exercise Title	Validation Objective ID	Validation Objective Title	Success Criterion	Exercise Results
	Nucleus) - Max.	0000.0001	Operations	VALP-0001.0001	
	Capacity	OBJ-05.07.04- VALP- 0000. 0003	MOPS change Maximum capacity	VALP-0001.0002 VALP-0001.0003 VALP-0001.0004 VALP-0001.0005 VALP-0001.0006	
		VALP- 0000. 0004	Workload	VALP-0001.0008 VALP-0001.0009 VALP-0001.0010 VALP-0001.0011	
		OBJ-05.07.04- VALP- 0000. 0005	CCDs	VALP-0001.0012 VALP-0001.0014 VALP-0001.0015 VALP-0001.0016	
		OBJ-05.07.04- VALP- 0000. 0007	Aircraft performances		
		OBJ-05.07.04- VALP- 0000. 0008	Delay times		
		OBJ-05.07.04- VALP- 0000. 0009			
		OBJ-05.07.04- VALP- 0000. 0001	Mixed Mode		
		OBJ-05.07.04- VALP- 0000. 0003	Operations MOPS change	CRT-05.07.04-	
		OBJ-05.07.04- VALP- 0000. 0004	Maximum capacity	VALP-0001.0001 VALP-0001.0002 VALP-0001.0003 VALP-0001.0004 VALP-0001.0005	
EXE-05.07.04 VALP-142.00 34	Maximum capacity Western sectors. North configuration	OBJ-05.07.04- VALP- 0000. 0005	Workload	VALP-0001.0006 VALP-0001.0008 VALP-0001.0009 VALP-0001.0010	See Norvase Results
		OBJ-05.07.04- VALP-	CCDs	VALP-0001.0011 VALP-0001.0012	
		OBJ-05.07.04- VALP-	Aircraft performances	VALP-0001.0014 VALP-0001.0015 VALP-0001.0016	
		0000. 0008 OBJ-05.07.04- VALP- 0000. 0009	Delay times		
		OBJ-05.07.04-	Mixed Mode	CRT-05.07.04-	
	South configuration	0000. 0001	Operations	VALP-0001.0001	
EXE-05.07.04 VALP-142.00 35	South configuration (Eastern & western nucleus) Final approach	OBJ-05.07.04- VALP- 0000. 0003	MOPS change	VALP-0001.0002 VALP-0001.0003 VALP-0001.0004 VALP-0001.0005	
	sectors	OBJ-05.07.04- VALP-	vvorkioad CCDs	VALP-0001.0006 VALP-0001.0008 VALP-0001.0009	

Exercise ID	Exercise Title	Validation Objective ID	Validation Objective Title	Success Criterion	Exercise Results
		0000. 0005 OBJ-05.07.04- VALP- 0000. 0007 OBJ-05.07.04- VALP- 0000. 0008 OBJ-05.07.04- VALP- 0000. 0009 OBJ-05.07.04- VALP- 0000. 0010	Aircraft performances Delay times Missed approaches	VALP-0001.0010 VALP-0001.0012 VALP-0001.0014 VALP-0001.0015 VALP-0001.0016 VALP-0001.0017	
EXE-05.07.04 VALP-142.00 36	South configuration (Eastern & western nucleus) Final approach sectors. Maximum capacity	OBJ-05.07.04- VALP- 0000.0001 OBJ-05.07.04- VALP- 0000.0003 OBJ-05.07.04- VALP- 0000.0004 OBJ-05.07.04- VALP- 0000.0005 OBJ-05.07.04- VALP- 0000.0007 OBJ-05.07.04- VALP- 0000.0008 OBJ-05.07.04- VALP- 0000.0009 OBJ-05.07.04- VALP- 0000.0010	Mixed Mode Operations MOPS change Maximum capacity Workload CCDs Aircraft performances Delay times Missed approaches	CRT-05.07.04- VALP-0001.0001 VALP-0001.0002 VALP-0001.0003 VALP-0001.0005 VALP-0001.0006 VALP-0001.0009 VALP-0001.0010 VALP-0001.0011 VALP-0001.0011 VALP-0001.0015 VALP-0001.0015 VALP-0001.0017	See Norvase Results
EXE-05.07.04 VALP-142.00 37	North configuration (Eastern & western nucleus). Single runway	OBJ-05.07.04- VALP- 0000. 0001 OBJ-05.07.04- VALP- 0000. 0003 OBJ-05.07.04- VALP- 0000. 0005 OBJ-05.07.04-	Mixed Mode Operations MOPS change Workload CCDs	CRT-05.07.04- VALP-0001.0001 VALP-0001.0002 VALP-0001.0003 VALP-0001.0004 VALP-0001.0004 VALP-0001.0005 VALP-0001.0006 VALP-0001.0008 VALP-0001.0009 VALP-0001.0010	See Norvase Results

Project ID 05.07.04.		
D003 - Final OSED for Madrid TMA	(Annex Validation	Report)

Edition: 00.00.01

Exercise ID	Exercise Title	Validation Objective ID	Validation Objective Title	Success Criterion	Exercise Results
		VALP- 0000. 0007 OBJ-05.07.04- VALP- 0000. 0008 OBJ-05.07.04- VALP- 0000. 0009 OBJ-05.07.04- VALP- 0000. 0011	Aircraft performances Delay times Single runway as contingency procedure	VALP-0001.0012 VALP-0001.0014 VALP-0001.0015 VALP-0001.0016 VALP-0001.0018	
EXE-05.07.04 VALP-142.00 38	North configuration (Eastern & western nucleus). Single runway Maximum capacity	OBJ-05.07.04- VALP- 0000.0001 OBJ-05.07.04- VALP- 0000.0003 OBJ-05.07.04- VALP- 0000.0005 OBJ-05.07.04- VALP- 0000.0007 OBJ-05.07.04- VALP- 0000.0009 OBJ-05.07.04- VALP- 0000.0011	Mixed Mode Operations MOPS change Workload CCDs Aircraft performances Delay times Single runway as contingency procedure	CRT-05.07.04- VALP-0001.0002 VALP-0001.0003 VALP-0001.0003 VALP-0001.0003 VALP-0001.0003 VALP-0001.0005 VALP-0001.0006 VALP-0001.0008 VALP-0001.0010 VALP-0001.0011 VALP-0001.00115 VALP-0001.0015 VALP-0001.0018	See Norvase Results

Table 7: Summary of Validation Exercises Results

4.1.1 Results on concept clarification

It didn't require any concept clarification.

4.1.2 Results per KPA

Here is listed the results per KPA

4.1.2.1 Capacity, Complexity and Workload

4.1.2.1.1 Sectors ENN, ESN, WNN & WSN (P-RNAV North **Configuration**)

With a vertical limit of FL 205, these sectors are in charge of the traffic coming into and going out of TMA boundaries.

Figure 13: External Sectors for North Configuration

They are also in charge of over-flying traffic below 205 FL. The indicated airspeed in this airspace is 250kts at the clearance limits. The horizontal separation is adjusted to 5-7 NM (3NM of radar separation minima). The controllers in charge of these feeder sectors transfer the traffic to the director sectors.

4.1.2.1.2Sectors REN &RWN (P-RNAV)

With a vertical limit of FL145, these sectors are in charge of the traffic proceeding from external sectors and in charge of Torrejón and Getafe.

Figure 14: Director Sectors for North Configuration

The indicated airspeed in this airspace area is 230kts at BENJI or MONTE. The horizontal separation is adjusted to 5 NM (3NM of radar separation minima). The controllers in charge of these director sectors transfer the traffic to the final approach sectors after sequencing it and before reaching the respective IAF.

4.1.2.1.2.1Sector REN results (P-RNAV)

This sector manages the external East trombone of the approach to RWY 33 R It also manages approaches to RWY 23 of Torrejón Air Base The sector is included in the GROUP 1 (Arrival Sectors). The sector will be managed from Madrid ACC. Vertical limits are from GND to 14500 ft. Evolution time in the sector is 100%

DEPENDENCY SECTOR			L	LE EML	CM DREI	v				YEAR OF STUDY:						Med.	Máx.
Complexity		16	12		Workload 2158					Simultaneous aircrafts						3.8	8.0
Time in evolution (%)		100						2.00		Comr	nunica	tions	10 mi	n.		28.5	39.2
Mean flight time (min)			6						communications / formits							20,0	00,2
mean night ante (min)																	
		1ª	2ª	3ª	4ª	5ª	6ª	7ª	8ª	9ª	10ª	11ª	12ª	13ª	14ª	15ª	Media
Incidents actions		0	0	0	0	0	0	0	0	0	0	0	0	0			0,0
Departures/Arrivals actions		231	140	148	148	132	211	201	122	67	167	98	190	191			157,4
Over-flights actions		0	0	0	0	0	0	0	0	0	0	0	0	0			0.0
Incidents surveillance		0	0	0	0	0	0	0	0	0	0	0	0	0			0,0
Departures/Arrivals surveillance		341	198	169	204	196	355	283	147	93	296	185	266	263			230.5
Over-flights surveillance		0	0	0	0	0	0	0	0	0	0	0	0	0			0.0
Arrivals/Departures Sep/Seq act		134	49	42	55	61	66	127	11	27	74	33	105	49			64,1
Over-flights Sep/Seg actions		0	0	0	0	0	0	0	0	0	0	0	0	0			0,0
Holdings		0	0	0	2	0	2	0	0	1	0	0	0	0			0,4
Number of visual flights		0	0	0	0	1	1	1	0	0	0	0	1	1			0,4
Shared Traffic		0	0	0	0	1	1	1	0	0	0	0	1	1			0,4
Coordination		4	4	13	3	9	3	6	27	4	13	13	9	4			8,6
System Coordination		0	0	0	0	0	0	0	0	0	0	0	0	0			0,0
Incident radar vectoring		0	0	0	0	0	0	0	0	0	0	0	0	0			0,0
Departure/Arrivals radar vectori		1	0	0	1	1	0	0	1	0	9	0	3	1			1,3
Over-flights radar vectoring		0	0	0	0	0	0	0	0	0	0	0	0	0			0,0
Standar radar vectoring (X)		0	0	0	0	0	0	0	0	0	0	0	0	1			0,1
Movements per test run (IFR)		44	30	31	39	35	40	38	31	18	40	29	41	42			35
Run date		OC17	OC19	OC19	OC20	OC20	OC21	OC24	0C24	OC25	0C26	OC26	0C27	OC28			
Day		L	×	×	J	J	v	L	L	м	×	×	J	V I			
Hour		12:38	9:20	11:20	11:46	13:05	9:30	9:20	10:50	10:55	11:00	13:00	9:55	9:15			
Departures	0.08	Arriva	ds						35 15	Numb	erofr	noven	nents	- Rup			35
Actions per departure	0.46	Actio	ns ner	arriva					4 40	Actio	ns ner	move	ment	Auri			4 40
Coordinations per departure	0,40	Coord	linatio	ns ner	arriva				0.26	Coordinations per movement						0.26	
Radar Vectoring per departure	0,00	Radar	Vecto	ring p	er arri		0,20	Radar	Vecto	ring per	er mor	vemer	nt		0,20		
Complexity per departure	7.64	Comm	Jevity	ner er	ci di li rival	vai			42.04	Comm	Jevity	ning p		ant			42.02
complexity per departure	7,94	.54 Complexity per arrival 44									3.84 Complexity per movement						93,32

Figure 15: REN spreadsheet runs

Figure 16: REN Status

Figure 18: REN calculated capacity

founding members

Figure 19: REN descriptive 2011

Figure 20: REN descriptive 2009

The State Diagram shows a sector whose general complexity increases in direct proportion to the traffic growth. This probably is due to the amount of time that the traffic remains under the responsibility of the sector.

The increment is much less in individual complexity per movement which depicts a sector able to handle amounts of traffic around the calculated capacity (49 Movs/hour).

For higher traffic loads some procedural changes will be needed, above all in the relationship with external feeders, to reduce the number of coordinations.

The number of ATC interventions is high, since these sectors are responsible of sequencing the traffic for the approach; nevertheless, the radar vectoring is very low. This fact reduces also significantly the complexity per movement.

4.1.2.1.2.2Sector RWN results (P-RNAV)

This sector manages the external West trombone of the approach to RWY 33L

founding members

It also manages approaches to Getafe Air Base The sector is included in the GROUP 1 (Arrival Sectors). The sector will be managed from Madrid ACC. Vertical limits are from GND to 14500 ft. Evolution time in the sector is 100%

Aena

Radar Vectoring per departure

Complexity per departure

DEPENDENCY SECTOR		LECM LEMDRWN									YEAR OF STUDY:						Máx.
Complexity Time in evolution (%) Mean flight time (min)		14 1	105 00 7		Workload 1868					Simul Comr	taneoi nunica	us airc itions	n.		4,3 28,0	12,0 36,4	
		1ª	2ª	3ª	4 ª	5ª	6ª	7ª	8ª	9ª	10ª	11ª	12ª	13ª	14ª	15ª	Media
Incidents actions		0	0	0	0	0	0	0	0	0	0	0	0				0,0
Departures/Arrivals actions		135	153	166	119	165	208	179	78	187	115	162	236				158,6
Over-flights actions		0	0	0	0	0	0	0	0	0	0	0	0				0,0
Incidents surveillance		0	0	0	0	0	0	0	0	0	0	0	0				0,0
Departures/Arrivals surveillance		273	266	334	174	223	358	329	117	232	164	252	361				256,9
Over-flights surveillance		0	0	0	0	0	0	0	0	0	0	0	0				0,0
Arrivals/Departures Sep/Seq act		35	58	79	27	55	98	94	30	75	49	81	137				68,2
Over-flights Sep/Seq actions		0	0	0	0	0	0	0	0	0	0	0	0				0,0
Holdings		0	0	0	0	0	0	0	0	0	0	0	0				0,0
Number of visual flights		0	0	0	0	0	0	0	0	0	0	0	0				0,0
Shared Traffic		0	0	0	0	0	0	0	0	0	0	0	0				0,0
Coordination		0	8	1	1	2	2	0	15	2	12	0	2				3,8
System Coordination		0	1	0	0	0	0	0	0	0	0	0	0				0,1
Incident radar vectoring		0	0	0	0	0	0	0	0	0	0	0	0				0,0
Departure/Arrivals radar vectori		0	0	0	0	0	12	0	0	0	1	0	2				1,3
Over-flights radar vectoring		0	0	0	0	0	0	0	0	0	0	0	0				0,0
Standar radar vectoring (X)		0	0	0	0	0	0	0	0	0	0	0	0				0,0
Movements per test run (IFR)		35	41	40	31	42	49	41	20	39	33	40	45				38
Run date		OC18	OC18	OC18	OC19	OC19	0C20	0C21	OC25	OC26	OC26	OC27	0C28				
Day		м	м	м	х	х	J	v	м	×	х	J	v				
Hour		3:24	11:16	12:38	9:20	11:20	10:10	9:32	11:00	11:00	12:55	9:50	10:30				
Departures	0,08	0.08 Arrivals								37,92 Number of movements - Run							38
Actions per departure	0,17	Actio	ns per	arriva	l i				4,14	Action	ns per	move	ment				4,13
Coordinations per departure	0,08	Coord	linatio	ns per	· arriva	d 👘			0,13	Coord	linatio	ns per	move	ment			0,13

Figure 21: RWN spreadsheet runs

0.03 Radar Vectoring per movement

35,53 Complexity per movement

0.00 Radar Vectoring per arrival

1.83 Complexity per arrival

0,03 35,50

Figure 22: RWN Status

Figure 24: RWN calculated capacity

Figure 25: RWN descriptive 2011

As their homonym for east RWY's, the complexity per movement remains low as the traffic increases. This shows a situation in which the controllers work load is a direct consequence of the amount of time dedicated to radar surveillance, whilst the number of interventions to handle individual traffic remains very similar.

The sector improves the actual situation in Madrid, with a calculated capacity of 44 Movs/hour versus 36Movs/hour which is the actual situation.

The situation in the state diagram also shows the necessity of improving coordination procedures with feeder to be able to handle a higher amount of traffic.

4.1.2.1.3Sectors AFEN & AFWN (P-RNAV)

The vertical limit is FL105. These sectors are in charge of the final sequencing of the traffic proceeding from director sectors.

Edition: 00.00.01

Figure 27: AFEN and AFWN for North Configuration

The indicated airspeed in this area is between 180kts and 210kts. The horizontal separation is adjusted to 3 NM or higher depending on the wake turbulence. The controllers in charge decide the transition that the aircraft has to follow to intercept the ILS localizer. When established in the localizer, they transfer the traffic to the tower (TWR).

4.1.2.1.3.1Sector AFEN results (P-RNAV)

This is the sector in charge of the grid and final approach to RWY 33R in Barajas. The sector is included in the GROUP 1 (Final Approach Sectors). The sector will be managed from Madrid ACC. Vertical limits are from GND to 10500 ft. Evolution time in sector LEMDAFEN is 100%

DEPENDENCY SECTOR	LECM LEMDAFEN							YEAR OF STUDY:						2011	Med	Máy.
Complexity Time in evolution (%) Mean flight time (min)	1207 Workload 806 100 10					806	Simultaneous aircrafts Communications / 10 min.						5,5 20,9	11,0 34,0		
	1ª	2ª	3ª	4ª	5ª	6ª	7ª	8ª	9ª	10ª	11ª	12ª	13ª	14ª	15ª	Media
Incidents actions	0	0	0	0	0	0	0	0	0							0,0
Departures/Arrivals actions	132	127	78	131	120	117	106	153	112							119,6
Over-flights actions	0	0	0	0	0	0	0	0	0							0,0
Incidents surveillance	0	0	0	0	0	0	0	0	0							0,0
Departures/Arrivals surveillance	349	259	292	437	380	304	348	250	336							328,3
Over-flights surveillance	0	0	0	0	0	0	0	0	0							0,0
Arrivals/Departures Sep/Seq act	37	46	14	44	33	13	30	59	30							34,0
Over-flights Sep/Seq actions	0	0	0	0	0	0	0	0	0							0,0
Holdings	0	0	2	0	2	0	0	0	0							0,4
Number of visual flights	0	0	0	0	0	0	0	0	0							0,0
Shared Traffic	0	0	0	0	0	0	0	0	0							0,0
Coordination	0	4	11	5	2	2	2	3	4							3,7
System Coordination	0	0	0	0	0	0	0	0	0							0,0
Incident radar vectoring	0	0	0	0	0	0	0	0	0							0,0
Departure/Arrivals radar vectori	6	6	3	1	7	4	4	7	3							4,6
Over-flights radar vectoring	0	0	0	0	0	0	0	0	0							0,0
Standar radar vectoring (X)	0	0	0	0	0	0	0	0	0							0,0
Movements per test run (IFR)	40	27	30	40	38	37	34	27	37							34
Run date	OC17	OC19	OC19	OC20	OC21	OC24	OC26	OC26	OC27							
Day	L	×	×	J	V	L	х	х	J							
Hour	12:38	9:20	11:20	11:46	9:30	9:20	11:00	12:55	9:55							
Departures 0.0	Arrive	ale							Numb	er of r	noven	aante	Dup			24
Actions per departure 0.0	0.00 Actions per arrival						2.56	Action	ne ner	moven	ment	Auri			2.56	
Coordinations per departure 0.0	00 Coordinations per arrival						0.11	Coorr	linatio	ns ner	move	ment			0.11	
Radar Vectoring per departure 0.0	00 Dadar Vectoring per arrival						0.14	Radar	Vecto	ring p	er more	veme	nt		0.14	
Complexity per departure 0.0	00 Complexity per arrival						35,56	Comp	lexity	per m	oveme	ent			35,56	

Figure 28: AFEN spreadsheet runs

Figure 29: AFEN Status

Figure 30: AFEN Workload

Figure 32: AFEN descriptive 2011

Figure 33: AFEN descriptive 2009

The sector complexity shows a low value (1207) compared with the mean of sectors of this group (1700) calculated upon the data pick-up carried out along 2011.

Also sector Work-load is very low (806) compared with the actual approach sector in LEMD (1847).

The resulting overall picture shows a very well balanced sector, with operational procedures adapted to the traffic performance and to the route structure.

The calculated capacity value (50) reflects the reduced need of intervention of ATCO as a consequence of the very few radar vectoring registered.

It is also noted in the data pick up the progress experimented in controller's skills as the simulation advanced, this is reflected in the reduction of interventions, well in accordance with the amount of traffic simulated, except in the 2nd register corresponding to the 19th of October in which the increment in coordinations is a consequence of the injection of a higher number of non-P-RNAV equipped aircrafts.

4.1.2.1.3.2Sector AFWN results (P-RNAV)

This sector manages the grid and final approach to RWY 33L The sector is included in the GROUP 1 (Final Approach Sectors). The sector will be managed from Madrid ACC. Vertical limits are from GND to 10500 ft. Evolution time in the sector is 100%

DEPENDENCY SECTOR	LECM LEMDAFWN						YEAR OF STUDY:						2011	Med	1 44v		
Complexity Time in evolution (%) Mean flight time (min)		14 10 1	76 00 0		Workload 979				Simultaneous aircrafts Communications / 10 min.							5,8 19,0	11,0 29,2
		1ª	2ª	3ª	4ª	5ª	6ª	7ª	8ª	9ª	10ª	11ª	12ª	13ª	14ª	15ª	Media
Incidents actions		0	0	0	0	0	0	0	0	0	0	0	0				0,0
Departures/Arrivals actions		101	144	134	66	108	154	147	111	114	127	60	59				110,4
Over-flights actions		0	0	0	0	0	0	0	0	0	0	0	0				0,0
Incidents surveillance		0	0	0	0	0	0	0	0	0	0	0	0				0,0
Departures/Arrivals surveillance		438	430	398	289	336	420	451	280	351	365	260	164				348,5
Over-flights surveillance		0	0	0	0	0	0	0	0	0	0	0	0				0,0
Arrivals/Departures Sep/Seq act		18	63	43	9	24	60	58	26	44	53	0	13				34,3
Over-flights Sep/Seq actions		0	0	0	0	0	0	0	0	0	0	0	0				0,0
Holdings		0	0	1	0	0	0	0	0	0	0	0	0				0,1
Number of visual flights		0	0	0	0	0	0	0	0	0	0	0	0				0,0
Shared Traffic		0	0	0	0	0	0	0	0	0	0	0	0				0,0
Coordination		2	3	0	0	1	2	5	0	3	1	0	0				1,4
System Coordination		0	0	0	0	0	0	0	0	0	0	0	0				0,0
Incident radar vectoring		0	0	0	0	0	0	0	0	0	0	0	0				0,0
Departure/Arrivals radar vectori	[0	3	4	2	3	0	1	0	3	0	1	0				1,4
Over-flights radar vectoring		0	0	0	0	0	0	0	0	0	0	0	0				0,0
Standar radar vectoring (X)		0	0	0	0	0	0	0	0	0	0	0	0				0,0
Movements per test run (IFR)		38	41	38	28	40	42	37	36	36	38	29	22				35
Run date Day Hour		OC18 M 9:21	OC18 M 11:15	OC18 M 12:33	0C19 X 9:20	0C19 X 11:20	OC20 J 10:10	OC24 L 9:20	0C25 M 9:11	0C26 × 9:15	0C26 X 11:00	OC26 X 12:55	OC28 V 10:30				
Departures Actions per departure Coordinations per departure Radar Vectoring per departure Complexity per departure	0,25 0,19 0,00 0,00 1,89	 Arrivals Actions per arrival Coordinations per arrival Radar Vectoring per arrival Complexity per arrival 						35,17 3,07 0,04 0,04 40,03	Numb Action Coord Radar Comp	er of r ns per linatio Vecto lexity	noven move ns per ring p per m	nents ment move er mov oveme	- Run ment vemer ent	nt		35 3,06 0,04 0,04 40,05	

Figure 34: AFWN spreadsheet runs

Figure 35: AFWN Status

Project ID 05.07.04. D003 - Final OSED for Madrid TMA (Annex Validation Report)

Figure 37: AFWN calculated capacity

Figure 39: AFWN descriptive 2009

The sector performance is satisfactory. Three of the four samples placed in the second quadrant of the state diagram where picked up the 18th which was the first day of formal operation of the sector. Later on we find samples with similar traffic load and with less complexity per movement.

The traffic sample of 32 movements was affected by a greater number of non P-RNAV equipped traffic, to test procedures. Is due to this that the number of coordinations (5) and controller's interventions (58) is high and thus the complexity.

In the comparative graphic we can appreciate that the sector complexity is below the mean of Group 1 sectors studied with NORVASE during 2011.

4.1.2.1.4Sector DIN

This sector manages the initial departure paths from RWY 36 R and L The sector is included in the GROUP 3 (Departure Sectors). The sector will be managed from Madrid ACC. Vertical limits are from GND to 7500 ft. Evolution time in the sector is 100%

Figure 40: DIN Sector

4.1.2.1.4.1Sector DIN results (P-RNAV)

DEPENDENCY SECTOR		L	LE EMI	CM DDIN	1					YEAR	OF STI	JDY:		2011		
Complexity Time in evolution (%) Mean flight time (min)	462 100 3				Workload 592				Simultaneous aircrafts Communications / 10 min.							Max. 6,0 16,0
	1ª	2ª	3ª	4ª	5ª	6ª	7ª	8ª	9ª	10ª	11ª	12ª	13ª	14ª	15ª	σ
Incidents actions	0	0	0	0												0.0
Departures/Arrivals actions	61	39	36	67												50,8
Over-flights actions	0	0	0	0												0,0
Incidents surveillance	0	0	0	0												0,0
Departures/Arrivals surveillance	97	105	99	156												114,3
Over-flights surveillance	0	0	0	0												0,0
Arrivals/Departures Sep/Seq act	1	0	0	0												0,3
Over-flights Sep/Seq actions	0	0	0	0												0,0
Holdings	0	0	0	0												0,0
Number of visual flights	0	0	0	0												0,0
Shared Traffic	0	0	0	0												0,0
Coordination	4	0	0	0												1,0
System Coordination	0	0	0	0												0,0
Incident radar vectoring	0	0	0	0												0,0
Departure/Arrivals radar vectori	0	0	0	0												0,0
Over-flights radar vectoring	0	0	0	0												0,0
Standar radar vectoring (X)	0	0	0	0												0,0
Movements per test run (IFR)	32	38	36	33												35
Run date	0C17	0C18	0C18	0C18												
Dav	1	M	M	M												
Hour	12:38	9:23	11:14	12:33												

Departures
Actions per departure
Coordinations per departure
Radar Vectoring per departure
Complexity per departure

. 34.

34,75	Arrivais		
1,49	Actions	per	arrival

- 0.03 Coordinations per arrival
- 0.00 Radar Vectoring per arrival
- 13,56 Complexity per arrival

0,00	Number of movements - Run	35
0,00	Actions per movement	1,49
0,00	Coordinations per movement	0,03
0,00	Radar Vectoring per movement	0,00
0,00	Complexity per movement	13,56

Figure 41: DIN spreadsheet runs

Figure 42: DIN Status

Figure 43: DIN Workload

Project ID 05.07.04. D003 - Final OSED for Madrid TMA (Annex Validation Report)

Figure 44: DIN descriptive 2011

With the observation of the sector during the four samples picked up, and the situation of this samples very low in the 4th quadrant of the state diagram, we can affirm that the sector is able to manage an amount of traffic well above the airport departure RWY's throughput.

This observation was repeated for the south configuration with exactly the same result.

Departures are completely deconflicted with arrivals, so these sectors only have to monitor possible deviations from the nominal departure trajectory with minimum intervention by ATC.

4.1.2.1.5Sectors ENS, ESS, WNS & WSS (P-RNAV South Configuration)

With a vertical limit of FL205, these sectors are in charge of the traffic coming into and going out of TMA boundaries.

Figure 45: External Sectors for South Configuration

They are also in charge of over-flying traffic below 205 FL. The indicated airspeed in this airspace is 250 kts at the clearance limits. The horizontal separation is adjusted to 5-7 NM with 3NM of radar separation minima. The controllers in charge of these feeder sectors transfer the traffic to the director sectors.

The sample is not representative enough to calculate the sectors capacity. We have used the same North configuration capacity data.

4.1.2.1.6Sectors RES & RWS

With a vertical limit of FL145, these sectors are in charge of the merging traffic coming from external sectors and in charge of Torrejón and Getafe airbases.

Figure 46: Director Sectors for South Configuration

The indicated airspeed in this area is about 230 kts at BENJI and MONTE. The horizontal separation is adjusted to 5 NM (3NM of radar separation minima). The controllers in charge of these director sectors transfer the traffic to the final approach sectors after sequencing it and before reaching the respective IAF.

4.1.2.1.6.1Sector RES results (P-RNAV)

This sector manages the external East trombone of the approach to RWY 18 L It also manages approaches to RWY 23 of Torrejón Air Base The sector is included in the GROUP 1 (Arrival Sectors). The sector will be managed from Madrid ACC. Vertical limits are from GND to 14500 ft. Evolution time in the sector is 100%

Aena

DEPENDENCY SECTOR		L		CM DRES	;					YEAR	OF STI	JDY:		2011		
Complexity Time in evolution (%) Mean flight time (min)	1215 Workload 1615 100 5			Simultaneous aircrafts Communications / 10 min.							Med. 3,0 23,4	Máx. 7,0 35,5				
	1ª	2ª	3ª	4ª	5ª	6ª	7ª	8ª	9ª	10ª	11ª	12ª	13ª	14ª	15ª	Media
Incidents actions	0	0	0	0												0,0
Departures/Arrivals actions	108	150	143	125												131,5
Over-flights actions	0	0	0	0												0,0
Incidents surveillance	0	3	0	0												0,8
Departures/Arrivals surveillance	156	249	184	137												181,5
Over-flights surveillance	0	0	0	0												0,0
Arrivals/Departures Sep/Seq act	39	80	41	20												45,0
Over-flights Sep/Seq actions	0	0	0	0												0,0
Holdings	0	0	0	0												0,0
Number of visual flights	0	0	0	0												0,0
Shared Traffic	0	0	0	0												0,0
Coordination	17	6	9	9												10,3
System Coordination	0	0	1	0												0,3
Incident radar vectoring	0	0	0	0												0,0
Departure/Arrivals radar vectori	0	1	2	0												0,8
Over-flights radar vectoring	0	0	0	0												0,0
Standar radar vectoring (X)	0	0	0	0												0,0
Movements per test run (IFR)	30	34	34	33												33

Run date	OC19	OC25	OC26	0C27
Day	×	м	×	J
Hour	13:00	12:35	9:15	11:30

Departures	0
Actions per departure	
Coordinations per departure	
Radar Vectoring per departure	
Complexity per departure	0

0,00 Arrivals

0.00 Actions per arrival

0.00 Coordinations per arrival

0.00 Radar Vectoring per arrival 0.00 Complexity per arrival

32,75	Number of movements - Run	33
4,00	Actions per movement	4,00
0,32	Coordinations per movement	0,33
0,02	Radar Vectoring per movement	0,02
36,69	Complexity per movement	36,90

Figure 47: RES spreadsheet runs

Project ID 05.07.04. D003 - Final OSED for Madrid TMA (Annex Validation Report)

Edition: 00.00.01

Movements

Figure 49: RES Workload

Project ID 05.07.04. D003 - Final OSED for Madrid TMA (Annex Validation Report)

Figure 50: RES calculated capacity

Figure 51: RES descriptive 2011

founding members

Project ID 05.07.04. D003 - Final OSED for Madrid TMA (Annex Validation Report)

Figure 52: RES descriptive 2009

The behavior of the sector is very similar to LEMDREN. In fact is the same sector but serving south configuration.

Bad weather situations with strong wind conditions have been simulated with this configuration and it has showed the necessity to increase separation between traffics under these conditions.

As for the north configuration, a need to improve procedures to reduce coordinations will be needed for higher amounts of traffic.

4.1.2.1.6.2Sector RWS results (P-RNAV)

This sector manages the external West trombone of the approach to RWY 18 R It also manages approaches to Getafe Air Base The sector is included in the GROUP 1 (Arrival Sectors). The sector will be managed from Madrid ACC. Vertical limits are from GND to 14500 ft. Evolution time in the sector is 100%

Project ID 05.07.04. D003 - Final OSED for Madrid TMA (Annex Validation Report)

Edition: 00.00.01

DEPENDENCY SECTOR			L	LEO EMD	CM RW:	s					YEAR	OF ST	JDY:		2011		
Complexity Time in evolution (%) Mean flight time (min)		12 1	288 00 6			Wo	rkload	1698		Simu Com	iltaneo munica	us airc ations /	rafts 10 mi	n.		Med. 3,9 26,8	Máx. 9,0 37,0
		1ª	2ª	3ª	4ª	5ª	6 ^a	7ª	8ª	9ª	10ª	11ª	12ª	13ª	14ª	15ª	Media
Incidents actions		0	0	0													0,0
Departures/Arrivals actions		152	130	180													154,0
Over-flights actions		0	0	0													0,0
Incidents surveillance		0	0	0													0,0
Departures/Arrivals surveillance		300	208	201													236,3
Over-flights surveillance		0	0	0													0,0
Arrivals/Departures Sep/Seq act		52	46	88													62,0
Over-flights Sep/Seq actions		0	0	0													0,0
Holdings		0	0	0													0,0
Number of visual flights		0	0	0													0,0
Shared Traffic		0	0	0													0,0
Coordination		0	2	1													1,0
System Coordination		0	0	0													0,0
Incident radar vectoring		0	0	0													0,0
Departure/Arrivals radar vectori		0	7	3													3,3
Over-flights radar vectoring		0	0	0													0,0
Standar radar vectoring (X)		0	0	0													0,0
Movements per test run (IFR)		42	35	40													39
Run date		OC19	0C26	0C27													
Day		×	х	J													
Hour		13:00	9:15	11:30													
Demontrine	0.00	Ami	-1-							Harris	hanaf			Duur			
Actions per departure	0,00	Arriva		-					39,00	Num	ber of	noven	rents	- Kun			39
Actions per departure	0,00	Actio	ns per	arriva	arrive	a			3,94	Actio	ns per	nove	ment	mort			3,34
Deder Vestering per departure	0,00	Dodar	unatio	ns per	arriva	u vol			0,03	Dode	unado	ns per	nove	ment			0,03
Complexity per departure	0,00	Correct	vecto	ning p	er arm rivel	vdi			0,09	Rada	n vecto	ning p	er mo	veme	nt		0,09
complexity per departure	0,00	comp	лехиу	per ar	ivai				32,96	Com	plexity	per m	overne	ent			32,96

Figure 55: RWS Workload

Figure 56: RWS calculated capacity

Figure 57: RWS descriptive 2011

Figure 58: RWS descriptive 2009

The sector is exactly the same as for the north configuration.

The higher capacity value for this sector is based upon a limited number of samples due to simulator failure. This value needs to be modulated with a higher number of data pick-up, and probably will trend towards a value near 44 Movs/hour.

This sector is particularly affected by bad weather conditions in the final approach to RWY 18R, since it has to transfer the traffic to the final approach sector with an increased separation.

Compared with the actual sector in Madrid, the management of traffic improves, as it is conducted more towards south and thus farther from high terrain.

The capacity of the actual equivalent sector is 32 Movs/hour.

4.1.2.1.7Sectors AFES & AFWS (P-RNAV)

With a vertical limit of 11500ft. these sectors are in charge of the final sequencing of the traffic coming from the director sectors. The indicated airspeed in this area is between 180kts and 210kts. The horizontal separation is adjusted to 3NM (radar separation minima) or depending on the wake turbulence existing at that moment.

4.1.2.1.7.1Sector AFES results (P-RNAV)

This sector manages the grid and final approach to RWY 18L The sector is included in the GROUP 1 (Final Approach Sectors). The sector will be managed from Madrid ACC. Vertical limits are from GND to 11500 ft. Evolution time in the sector is 100%

DEPENDENCY SECTOR			L	LE EMD	CM AFE	s					YEAR	OF ST	JDY:		2011	Med	Máy
Complexity		9	96			Wo	rkload	585		Simu	Itaneo	us airc	rafts			5.0	10.0
Time in evolution (%)		1	00							Com	munica	tions	10 mi	n.		18,9	28,8
Mean flight time (min)		1	0														-
		1ª	2ª	3ª	4ª	5ª	6ª	7ª	8ª	9ª	10ª	11ª	12ª	13ª	14ª	15ª	Media
Incidents actions		0	0	0	3	0	0										0,5
Departures/Arrivals actions		118	103	118	102	130	80										108,5
Over-flights actions		0	0	0	4	0	0										0,7
Incidents surveillance		0	0	0	3	0	0										0,5
Departures/Arrivals surveillance		322	341	296	295	288	260										300,3
Over-flights surveillance		0	0	0	0	0	0										0,0
Arrivals/Departures Sep/Seq act		22	27	17	12	34	24										22,7
Over-flights Sep/Seq actions		0	0	0	1	0	0										0,2
Holdings		0	0	0	0	0	0										0,0
Number of visual flights		0	0	1	0	0	1										0,3
Shared Traffic		0	0	1	0	0	1										0,3
Coordination		1	1	4	0	0	2										1,3
System Coordination		0	0	0	0	0	0										0,0
Incident radar vectoring		0	0	0	0	0	0										0,0
Departure/Arrivals radar vectori		2	0	0	0	0	0										0,3
Over-flights radar vectoring		0	0	0	0	0	0										0,0
Standar radar vectoring (X)		0	0	0	0	0	0										0,0
Movements per test run (IFR)		31	34	32	32	32	30										32
Run date		0C19	0C20	0C24	0C25	0C26	0C27										
Day		×		L .	M	×											
Hour		13:00	13:05	10:50	12:35	9:15	11:30										
Departures	0,17	Arriva	als						31,83	Numb	ber of i	noven	nents -	- Run			32
Actions per departure	0,00	Actio	ns per	arriva	d.				3,41	Actio	ns per	move	ment				3,44
Coordinations per departure	0,00	Coord	linatio	ns per	r arriva	al			0,04	Coor	dinatio	ns per	move	ment			0.04

Figure 59: AFES spreadsheet runs

Complexity per departure

Radar Vectoring per departure 0.00 Radar Vectoring per arrival

0,00 Complexity per arrival

0.01 Radar Vectoring per movement

30,93 Complexity per movement

0,01

31.26

Figure 60: AFES Status

Figure 61: AFES Workload

Figure 62: AFES calculated capacity

Figure 63: AFES descriptive 2011

Figure 64: AFES descriptive 2009

This is the best resolver sector of the entire TMA scenario. This is clearly shown by the concentration of NORVASE samples in the Work Load and Capacity diagrams that present a very similar work load for different traffic loads.

The position of the different samples in the fourth quadrant of the state diagram represents a sector with a capacity limited by the RWY throughput and, in many cases for the increased separation to prevent wake turbulence effects.

The coordination with collateral sectors is almost unnecessary which is an indication of the good adaptation of the operational procedures applied.

The number of controller's intervention per movement (3.44) explains the low complexity value (996) of the sector.

4.1.2.1.7.2Sector AFWS results (P-RNAV)

This sector manages the grid and final approach to RWY 18R The sector is included in the GROUP 1 (Final Approach Sectors). The sector will be managed from Madrid ACC. Vertical limits are from GND to 11500 ft. Evolution time in the sector is 100%

DEPENDENCY SECTOR		LI	LEO EMD	CM AFW	s					YEAR	OF STI	JDY:		2011		
Complexity Time in evolution (%) Mean flight time (min)	mplexity1894ne in evolution (%)100an flight time (min)11			Workload 1302				Simultaneous aircrafts Communications / 10 min.							Máx. 11,0 39,0	
	1ª	2ª	3ª	4ª	5ª	6ª	7ª	8ª	9ª	10ª	11ª	12ª	13ª	14ª	15ª	Media
Incidents actions	0	0	0													0,0
Departures/Arrivals actions	146	176	125													149,0
Over-flights actions	0	0	0													0,0
Incidents surveillance	0	0	0													0,0
Departures/Arrivals surveillance	449	448	382													426,3
Over-flights surveillance	0	0	0													0,0
Arrivals/Departures Sep/Seq act	34	80	49													54,3
Over-flights Sep/Seq actions	0	0	0													0,0
Holdings	0	0	0													0,0
Number of visual flights	0	0	0													0,0
Shared Traffic	0	0	0													0,0
Coordination	0	0	0													0,0
System Coordination	0	0	0													0,0
Incident radar vectoring	0	0	0													0,0
Departure/Arrivals radar vectori	0	3	2													1,7
Over-flights radar vectoring	0	0	0													0,0
Standar radar vectoring (X)	0	0	0													0,0
Movements per test run (IFR)	43	41	36													40

Run date	OC19	OC24	0025
Day	х	L	M
Hour	13:00	10:50	12:35

Departures
Actions per departure
Coordinations per departure
Radar Vectoring per departure
Complexity per departure

0.00	Arriva	k

.00	Arr	ival	s

0,00 Actions per arrival

0.00 Coordinations per arrival 0.00 Radar Vectoring per arrival

0.00 Complexity per arrival

40,00	Number of movements - Run	40
3,72	Actions per movement	3,72
0,00	Coordinations per movement	0,00
0,04	Radar Vectoring per movement	0,04
47,10	Complexity per movement	47,10

Figure 65: AFWS spreadsheet runs

Project ID 05.07.04. D003 - Final OSED for Madrid TMA (Annex Validation Report)

Figure 66: AFWS Status

Figure 68: AFWS descriptive 2011

Figure 69: AFWS descriptive 2009

Due to a simulator failure the number of samples available for this sector does not allow the calculation of a capacity value.

Comparing this sector with the actual final approach sector to RWY 18 in Madrid, the complexity and WL values obtained are significantly lower (1894complexity and 1302WL for LEMDFWS versus 2469 complexity and 1878 WL for actual sector).

Taking this into account and the position of the samples in the state diagram, we can think on a capacity between 45 and 50 Movs/hour

4.1.2.1.8Sector DIS (P-RNAV)

This sector is in charge of the departures from both runways until 7 000 ft.

Figure 70: DIS Sector (with final approach sectors)

Due to technical limitations and the lack of Control Sector Units (UCS) it wasn't able to collect enough data to be representative of the sector capacity. Same is applicable to DES and DWS sectors:

Figure 71: DES and DWS Sectors

4.1.3 Results impacting regulation and standardisation initiatives

The simulated scenario is fully compliant with P-RNAV procedures design standards and regulations.

4.2 Analysis of Exercises Results

It has been compared the P-RNAV sectors with the actual Madrid TMA sectors data, provided by the NORVASE (report year availability) because is the most similar source to compare with.

(CONFIGURACIÓN NO	ORTE				
SECTOR P-RNAV	SECTOR	INFORME NORVASE				
LEMDAFEN						
LEMDAFIN	LEMDAIN	2008				
LEMDAFWN						
LEMDDIN	LECMDEN	2006				
LEMDREN	LEMDREN	2008				
LEMDRWN	LEMDRWN	2008				
LEMDENN	LECMENN	2006				
LEMDESN	LECMESN	2006				
LEMDWNN	LECMWNN	2006				
LEMDWSN	LEMDWSN	Sin informe				

CONFIGURACIÓN SUR											
SECTOR P-RNAV	SECTOR	INFORME NORVASE									
LEMAFES		2008									
LEMDAFWS	LEIVIDAIS	2008									
LEMDRES	LEMDRES	2008									
LEMDRWS	LEMDRWS	2008									
LEMDENS	LEMDENS	Sin informe									
LEMDESS	LEMDESS	Sin informe									

Eiguro	72.	Euturo	and	ourront	comporing	soctors
riyure	12.	Future	anu	current	companing	3601013

4.2.1 Actual sector ENN

East North Sector in North Configuration. The ATC service for this sector is provided from LECM (Air Traffic Control Centre of Madrid):

- TMA sector (FL 245 / GND)
- Declared capacity: 45 mov/hour
- Traffic in evolution (time): 95%

Hereby are listed the results obtained from 2006 report corresponding to this sector:

Figure 73: LECMENN graphical representation

DEPENDENCIA				LEC	CM						AÑO	DE E	STUD	IO:	2006		
SECTOR			LE	ECN	IENI	N										Mad	Máy
Complejidad		69	99			Worl	load	1098		Aero	naves	simu	ltànea	as		Med. 2.3	Max. 7.0
Tiempo en evolución (%)		9	5							Com	unica	cione	s / 10	min.		15.0	27.8
Tiempo Medio de Vuelo (min)		7	7														
CAMPOS		1ª	2ª	3ª	4ª	5ª	6 ª	7ª	8ª	9ª	10ª	11ª	12ª	13ª	14ª	15ª	Media
Actuaciones en imprevistos		0	0	0	0	0	0	0	0	0	0	0	0	0	0		0.0
Actuaciones en Salidas/Llegad	a	82	81	59	57	101	50	100	50	76	115	86	56	60	40		72.4
Actuaciones en Sobrevuelos		2	0	4	6	15	0	0	0	7	1	1	1	0	0		2.6
Vigilancia de Imprevistos		0	0	0	0	0	0	0	0	0	0	0	0	0	0		0.0
Vigilancia de Salidas/LLegadas	5	145	141	93	128	163	85	135	101	103	183	161	111	120	81		125.0
Vigilancia de Sobrevuelos		11	0	64	25	51	0	0	0	17	6	2	7	0	0		13.1
Act.sep/sec salidas/llegadas		3	4	1	0	16	5	32	8	7	19	6	5	8	4		8.4
Act.sep/sec sobrevuelos		0	0	0	0	5	0	0	0	0	0	0	0	0	0		0.4
Esperas		0	0	0	0	0	0	0	0	0	0	0	0	0	0		0.0
Nº de vuelos visuales		0	0	1	0	0	0	0	0	0	0	0	1	0	0		0.1
Coordinación		9	16	6	14	12	10	11	7	5	14	9	7	12	11		10 2
Coordinación en sistema		1	17	3	0	5	0	4	1	2	3	3	0	1	0		2.9
Guia Vectorial Imprevisto		0	0	0	0	0	0	0	0	0	0	0	0	0	0		0.0
Guía Vectorial Salida/LLegada		1	0	1	0	7	0	1	0	3	3	1	0	1	2		1.4
Guía Vectorial Sobrevuelo		0	0	0	0	2	0	0	0	0	0	0	0	0	0		0.1
Guia Vectorial Estàndar (X)		0	0	0	0	2	0	0	0	0	0	0	0	0	0		0.1
Movimientos por Toma (IFR)		22	24	17	19	28	15	22	11	19	30	27	20	16	11		20 0
Fecha Toma		OC06	0006	OC06	OC06	0009	0C09	0C09	OC09	OC09	OC09	OC11	OC11	OC11	OC11		
Día		v	v	v	v	L	L	L	L	L	L	x	x	х	х		
Hora		06:32	07:34	09:18	10:18	06:47	07:47	09:44	10:45	14:00	15:00	06:47	07:48	09:25	10:24		
Salidas	9.2 L	LLeg	adas						10.5	Nº Mo	ovimie	entos	-Toma	3			20
Actuaciones por salida	3.09	Actua	acion	es po	r llega	Ida			4.23	Actua	acione	es poi	r Movi	imien	to		3.75
Coordinaciones por salida	0.64	Coor	dinac	iones	porl	egad	3		0.67	Coor	dinac	iones	por N	/lovim	iento		0.67
Guía Vectorial por salida	0.07	Guía	Vecto	orial n	or lie	dada	-		0.05	Guía	Vecto	orial n	or mo	vimie	ento		0.07
Complejidad nor salida	20 0 (Com	Joiid	ad no	r lloga	da			37 4	Com	aloiid	ad no	- mov	imion	to		34.4
complejiuau por saliua	20.0	com	nejia	au po	r nega	aua			51.4	Com	nejia	au po	mov	nnen	10		34.1

Figure 74: LECMENN Spreadsheet runs

Figure 75: LECMENN Descriptive 2006

Here is shown the status diagram with the sector evolution till 2006. The average figures corresponds to the last 4 years runs:

Figure 76: LECMENN Status

Finally, it is shown the calculated capacity of this sector where it can be noticed the tendency curve of the corresponding sector.

Figure 77: LECMENN Calculated capacity

Here are the results comparing the new situation with the previous one regarding LECMENN sector:

YEAR	2006	2011	Comparison results
SECTOR	LECMENN	ENN	
GROUP	Feeder	Feeder	
COMPLEXITY	698,6	579	-17%
	34,09	33,04	-3%
	0,67	0,06	-91%
ACTIONS/MOV	3,75	3,6	-4%

RADAR VECTORING/MOV			
	0,07	0	Reduced to cero
WORKLOAD			
STATE &	1098	933	-15%
PERCENTILE 70	26		
Nb OF MOV	20	18	-10%
CALCULATED CAPACITY	40 ³	25	-38%
DECLARED ⁴ - CALCULATED	5		

Table 8: ENN comparison results

The number of runs regarding LEMDENN is very low (only two) so the calculated capacity (25) is not representative and it doesn't assure that the capacity of this sector has been reduced. It is necessary to establish in a future a deeper number of runs within these external sectors. However, here are listed the main results comparison:

- The complexity has been reduced in a 17% compared with 2006 situation.
- The complexity per movement within this airspace has been reduced in a 3% compared with 2006.
- The coordination actions per movements have been reduced in a 91% compared to 2006.
- The actions per movements have been reduced within this airspace jurisdiction in a 4%.
- The usage of radar vectoring has been reduced to zero.
- The workload has been reduced in a 15% compared to 2006 within external sectors jurisdiction.
- The number of movements has been reduced in a 10%.⁵
- The calculated capacity has been reduced in a 38% compared to 2006.⁶

4.2.2 Actual sector REN

³ Declared capacity value as used: 45

⁴ Group limit capacity

⁵ This is a bad result and it's due to the lack of traffic sample in the exercise runs. That is the reason why the runs have to be increased in number during exercises with higher traffic samples.

⁶ It is the same here. The number of runs is too low to establish a very well fitted extrapolation to calculate a decent capacity. This result is not relevant

Project ID 05.07.04. D003 - Final OSED for Madrid TMA (Annex Validation Report)

East Director Sector in North Configuration. The ATC service for this sector is provided from LECM (Air Traffic Control Centre of Madrid):

- TMA sector (FL 135 / GND)
- Declared capacity: 43 mov/hour •
- Traffic in evolution (time): 100% ٠

Hereby are listed the results obtained from 2008 report corresponding to this sector:

Figure 78: LEMDREN graphical representation

DEPENDENCIA SECTOR		LECM LEMDREN								AÑO DE ESTUDIO:			2008				
Complejidad Tiempo en evolución (%) Tiempo Medio de Vuelo (min)		12 10	55 00 7		Workload <mark>1610</mark>					Aeronaves simultáneas Comunicaciones / 10 min.						Med. 2.5 20.4	Máx. 6.0 34.6
		1ª	2°	3°	4ª	5°	6.0	7°	8.0	92	10°	11°	12°	13°	14ª	15°	Media
Actuaciones en imprevistos		0	0	0	0	0	0	0	0								0.0
Actuaciones en Salidas/Llegada		120	96	79	75	112	139	128	111								107.5
Actuaciones en Sobrevuelos		0	0	0	0	0	0	0	0								0.0
Vigilancia de Imprevistos		0	0	0	0	0	0	0	0								0.0
Vigilancia de Salidas/LLegadas		147	128	121	120	149	196	161	178								150.0
Vigilancia de Sobrevuelos		0	0	0	0	0	0	1	0								0.1
Act.sep/sec salidas/llegadas		43	29	25	22	33	49	44	16								32.6
Act.sep/sec sobrevuelos		0	0	0	0	0	0	0	0								0.0
Esperas		0	1	0	0	0	0	0	1								0.3
Nº de vuelos visuales		0	0	0	0	0	0	0	0								0.0
Coordinación		10	10	8	3	8	18	17	11								10.6
Coordinación en sistema		0	0	0	0	0	0	0	0								0.0
Guía Vectorial Imprevisto		0	0	0	0	0	0	0	0								0.0
Guía Vectorial Salida/LLegada		9	7	2	4	7	11	11	13								8.0
Guía Vectorial Sobrevuelo		0	0	0	0	0	0	0	0								0.0
Guía Vectorial Estándar (X)		0	0	0	0	0	0	0	0								0.0
Movimientos por Toma (IFR)		23	18	16	16	24	26	23	24								21.3
Fecha Toma		AB11	AB11	AB11	AB11	AB15	AB15	AB15	AB17								
Día		v	v	V	v	м	м	м	J								
Hora		07:30	08:30	10:01	11:01	07:41	08:41	09:52	08:58								
Salidas	0.63	Llega	das						20.50	№ Mo	vimier	ntos-T	oma				21
Actuaciones por salida	0.50	Actua	ciones	por II	egada				5.19	Actua	ciones	s por l	lovimi	iento			5.05
Coordinaciones por salida	0.88	Coord	linacio	nes pe	or lleg	ada			0.46	Coord	linacio	nes p	or Mov	/imien	to		0.49
Guía Vectorial por salida	0.00 Guía Vectorial por llegada 0.38 Guía Vectorial por movimiento						0.36										
Complejidad por salida	6.38	Comp	lejidad	d por llegada 59.59 Complejidad por movimiento							57.91						

0.46	Coordinaciones por Movimiento	0.49
0.38	Guía Vectorial por movimiento	0.36
59.59	Complejidad por movimiento	57.91

Figure 79: LEMDREN Spreadsheet runs

Figure 80: LEMDREN Descriptive 2008

Figure 81: LEMDREN Descriptive 2007

Figure 82: LEMDREN Descriptive 2006

Project ID 05.	07.04.				
D003 - Final O	SED for M	ladrid TMA	(Annex)	Validation	Report)

Here is shown the status diagram with the sector evolution till 2008. The average figures corresponds to the last 4 years runs:

Figure 83: LEMDREN Status

Finally, it is shown the calculated capacity of this sector where it can be noticed the tendency curve of the corresponding sector.

Figure 84: LEMDREN Calculated capacity

Project ID 05.07.04. D003 - Final OSED for Madrid TMA (Annex Validation Report)

Here are the results comparing the new situation with the previous one regarding LEMDREN sector:

YEAR	2008	2011	Comparison results
SECTOR	LEMDREN	REN	
GROUP	Feeder A	Director	
COMPLEXITY	1255	1612	28%
COMPLEXITY/MOV			
2 2?	57,91	43,92	-24%
CORRDINATIONS/MOV			
For and	0,49	0,26	-47%
ACTIONS/MOV			
-	5,05	4,40	-13%
RADAR VECTORING/MOV			
	0,36	0,03	-92%
WORKLOAD			
STRATE &	1610	2156	34%
PERCENTILE 70	23		
Nb OF MOV	21	35	67%
CALCULATED CAPACITY	33 ⁷	39	18%
DECLARED - CALCULATED	10		

Table 9: LEMDREN comparison results

⁷ Declared capacity value as used: 43

The number of runs regarding LEMDREN is quite representative in order to establish a feasible capacity (39). Here are listed the main results comparison:

- The complexity **has been increased in 28%** compared with 2008 situation. This result in reasonable taking into account the existence of conventional and P-RNAV procedures, Getafe and Torrejón procedures as well cohabiting in the same airspace.
- The complexity per movement within this airspace has been reduced in a 24% compared with 2008. This is a good figure knowing that the procedures designs are simpler and more intuitive.
- The coordination actions per movements **have been reduced in 47%** compared to 2008. This shows that with this new scenarios there is no much need in coordinate with collateral sectors, being at every moment situational aware of what is going on in the scenario
- The actions per movements **have been reduced** within this airspace jurisdiction in a **13%**. This is one of the most important figures now that in the critical area known as director, the number of actions that ATCs have to performed have been reduced
- The usage of radar vectoring has been reduced in a 92%. One of the main goals of the project was to reduce radar vectoring but maintaining it in case of emergency. This figure shows that even though the ATCs have to back up with radar vectoring usage, it has been reduced in over 90/ of them.
- The workload has been increased in a 34% compared to 2008 within external sectors jurisdiction. This is a comprehensive number due to the increase of complexity in the sector and the incremental capacity. This is a critical sector where the workload will be increased
- The number of movements has been increased in a 34%
- The calculated capacity has been increased in 18% compared to 2008.

4.2.3 Actual sector RWN

West Director Sector in North Configuration. The ATC service for this sector is provided from LECM (Air Traffic Control Centre of Madrid):

- TMA sector (FL 135 / GND)
- Declared capacity: 43 mov/hour
- Traffic in evolution (time): 100%

Hereby are listed the results obtained from 2008 report corresponding to this sector:

Figure 85: LEMDRWN graphical representation

DEPENDENCIA SECTOR			L	LE0 EMD	CM Alio de estudio: 2008 DRWN									Máy			
Complejidad Tiempo en evolución (%) Tiempo Medio de Vuelo (min)		12 1(32 00 8		Workload 1536 Aeronaves simultáneas 2. Comunicaciones / 10 min. 15								2.9 19.2	7.0 36.4			
		1ª	23	30	4ª	50	6°	79	83	92	103	11°	123	13°	143	15°	Media
Actuaciones en imprevistos		0	0	0	0	0	0	0	0	0	10		15	10		10	0.0
Actuaciones en Salidas/Llegada		99	131	127	104	93	161	84	62	66							103.0
Actuaciones en Sobrevuelos		0	0	0	0	0	0	0	0	0							0.0
Vigilancia de Imprevistos		0	0	0	0	0	0	0	0	0							0.0
Vigilancia de Salidas/LLegadas		174	208	204	176	131	219	133	181	147							174.8
Vigilancia de Sobrevuelos		0	0	0	0	0	0	0	0	0							0.0
Act.sep/sec salidas/llegadas		14	21	13	14	15	24	19	9	21							16.7
Act.sep/sec sobrevuelos		0	0	0	0	0	0	0	0	0							0.0
Esperas		0	0	0	0	0	0	0	0	0							0.0
Nº de vuelos visuales		0	0	0	0	0	0	0	1	1							0.2
Coordinación		5	7	2	4	9	8	2	7	12							6.2
Coordinación en sistema		4	0	30	11	2	26	1	2	0							8.4
Guía Vectorial Imprevisto		0	0	0	0	0	0	0	0	0							0.0
Guía Vectorial Salida/LLegada		9	19	9	10	10	22	5	5	13							11.3
Guía Vectorial Sobrevuelo		0	0	0	0	0	0	0	0	0							0.0
Guía Vectorial Estándar (X)		1	1	3	1	0	0	1	0	0							0.8
Movimientos por Toma (IFR)		22	24	26	19	19	29	24	23	13							22.1
Fecha Toma		AB11	AB11	AB15	AB15	AB17	AB17	AG05	DI19	OC15							
Día		v	v	м	м	J	J	м	v	х							
Hora		07:33	11:01	07:35	08:36	08:58	10:18	09:40	10:26	10:37							
Salidas	0.89	Llega	das						21.22	Nº Mo	vimier	ntos-T	oma				22
Actuaciones por salida	2.15	Actua	ciones	s por ll	egada				4.68	Actua	ciones	s por l	lovimi	iento			4.67

ciones por sa . Coordinaciones por salida Guía Vectorial por salida Complejidad por salida

Actuaciones por llegada 0.70 Coordinaciones por llegada

0.30 Guía Vectorial por llegada 28.80 Complejidad por llegada

0.60 Coordinaciones por Movimiento 0.56 Guía Vectorial por movimiento 55.45 Complejidad por movimiento

Figure 86: LEMDRWN Spreadsheet runs

0.66

0.56

55.66

Figure 87: LEMDRWN Descriptive 2008

Figure 88: LEMDRWN Descriptive 2007

Figure 89: LEMDRWN Descriptive 2006

Project ID 05.07.04	l			
D003 - Final OSED	for Madrid	TMA (Annex	Validation	Report)

Here is shown the status diagram with the sector evolution till 2008. The average figures corresponds to the last 4 years runs:

Figure 90: LEMDRWN Status

Finally, it is shown the calculated capacity of this sector where it can be noticed the tendency curve of the corresponding sector.

Figure 91: LEMDRWN Calculated capacity

Project ID 05.07.04. D003 - Final OSED for Madrid TMA (Annex Validation Report)

Here are the results comparing the new situation with the previous one regarding LEMDRWN sector:

YEAR	2008	2011	Comparison results			
SECTOR	LEMDRWN	REN				
GROUP	Feeder A	Director				
COMPLEXITY	1231,9	1405	14%			
COMPLEXITY/MOV						
2 2 ?	55,66	35,50	-36%			
CORRDINATIONS/MOV						
And the second	0,66	0,13	-80%			
ACTIONS/MOV						
	4,67	4,13	-12%			
RADAR VECTORING/MOV						
	0,56	0,03	-95%			
WORKLOAD						
CARDINA P	1536	1868	22%			
PERCENTILE 70	22					
Nb OF MOV	22	38	73%			
CALCULATED CAPACITY	36 ⁸	44	22%			
DECLARED - CALCULATED	7					

Table 10: LEMDRWN comparison results

⁸ Declared capacity value as used: 43

The number of runs regarding LEMDREN is quite representative in order to establish a feasible capacity (39). Here are listed the main results comparison:

- The complexity **has been increased in 14%** compared with 2008 situation. This result in reasonable taking into account the existence of conventional and P-RNAV procedures, Getafe and Torrejón procedures as well cohabiting in the same airspace.
- The complexity per movement within this airspace has been reduced in a 36% compared with 2008. This is a good figure knowing that the procedures designs are simpler and more intuitive.
- The coordination actions per movements **have been reduced in 80%** compared to 2008. This shows that with this new scenarios there is no much need in coordinate with collateral sectors, being at every moment situational aware of what is going on in the scenario
- The actions per movements **have been reduced** within this airspace jurisdiction in a **12%**. This is one of the most important figures now that in the critical area known as director, the number of actions that ATCs have to performed have been reduced
- The usage of radar vectoring **has been reduced in a 95%.** One of the main goals of the project was to reduce radar vectoring but maintaining it in case of emergency. This figure shows that even though the ATCs have to back up with radar vectoring usage, it has been reduced in over 90/ of them.
- The workload has been increased in a 22% compared to 2008 within external sectors jurisdiction. This is a comprehensive number due to the increase of complexity in the sector and the incremental capacity. This is a critical sector where the workload will be increased
- The number of movements has been increased in a 73%
- The calculated capacity has been increased in 22% compared to 2008.
- The results are basically the same compared with REN. Complexity is increased due to the different procedures in the sector (P-RNAV, conventional, military, etc).

4.2.4 Actual sector AIN

Initial Approach Sector in North Configuration. The ATC service for this sector is provided from LECM (Air Traffic Control Centre of Madrid):

- TMA sector (FL 70 / GND)
- Declared capacity: 48 mov/hour
- Traffic in evolution (time): 100%

Hereby are listed the results obtained from the 2008 report corresponding to this sector (compared also with 2007 and 2006 descriptive figures). This is one of the most difficult sectors to compare to. Nowadays, the current arrivals in Madrid-Barajas are segregated, implying a unique single sector of Initial Approach for both runways. Now, 5.7.4 wants to implement independent parallel runways, with one final approach sector for each runway (AFEN & AFWN). There is a need to establish the NTZ (NO transgression zone) in order to assure the safety of the independent arrivals.

The only scenario where we could compare KPIs is when one runway is declared closed and there is a need to integrate both initial approach sectors (SCN-005).

Here is where the main difference in cost-benefit from ANSP perspective will be, when ANSP has to decide between ATC hour cost and number of movement benefit. Here is presented how the initial approach sector integrated and its figures is:

Figure 92: LEMDAIN graphical representation

DEPENDENCIA SECTOR	LECM LEMDAIN							AÏIO DE ESTUDIO:					2008			
Complejidad Tiempo en evolución (%) Tiempo Medio de Vuelo (min)	2253 100 5			Workload 1847				Aeronaves simultáneas Comunicaciones / 10 min.						Med. 2.9 27.9	Máx. 6.0 42.4	
	1ª	2ª	3°	4ª	5°	6°	7ª	8ª	9°	10°	11ª	12°	13°	14°	15°	Media
Actuaciones en imprevistos	0	0	0	0	0	0	0	0	0							0.0
Actuaciones en Salidas/Llegada	219	163	189	205	118	86	130	161	169							160.0
Actuaciones en Sobrevuelos	0	0	0	0	0	0	0	0	0							0.0
Vigilancia de Imprevistos	0	0	0	0	0	0	0	0	0							0.0
Vigilancia de Salidas/LLegadas	226	178	196	241	127	108	186	137	169							174.2
Vigilancia de Sobrevuelos	0	0	0	0	0	0	0	0	0							0.0
Act.sep/sec salidas/llegadas	0	0	0	60	17	12	20	8	19							15.1
Act.sep/sec sobrevuelos	0	0	0	0	0	0	0	0	0							0.0
Esperas	0	0	0	0	0	0	0	0	0							0.0
Nº de vuelos visuales	0	0	0	0	0	0	0	0	0							0.0
Coordinación	1	0	0	3	0	0	1	2	2							1.0
Coordinación en sistema	0	6	4	1	20	0	2	15	9							6.3
Guía Vectorial Imprevisto	0	0	0	0	0	0	0	0	0							0.0
Guía Vectorial Salida/LLegada	76	42	58	32	22	13	20	55	46							40.4
Guía Vectorial Sobrevuelo	0	0	0	0	0	0	0	0	0							0.0
Guía Vectorial Estándar (X)	46	39	44	53	28	11	26	31	34							34.7
Movimientos por Toma (IFR)	47	41	44	52	29	21	28	29	36							36.3
Fecha Toma	AB15	AB15	AB15	AG07	AG31	OC11	OC12	OC15	OC16							
Día	м	м	м	J	D	s	D	х	J							
Hora	07:50	08:50	09:50	07:49	09:35	13:50	10:08	10:51	08:45							

Salidas Actuaciones por salida Coordinaciones por salida Guía Vectorial por salida Complejidad por salida

0.00 Llegadas

0.00 Actuaciones por llegada

- 0.00 Coordinaciones por llegada
- 0.00 Guía Vectorial por llegada
- 0.00 Complejidad por llegada
- 36.33 Nº Movimientos-Toma 36 4.44 Actuaciones por Movimiento 4.44 0.22 Coordinaciones por Movimiento 0.22 2.02 Guía Vectorial por movimiento 2.02 61.06 Complejidad por movimiento 61.06

Figure 93: LEMDAIN Spreadsheet runs

Figure 94: LEMDAIN Descriptive 2008

Figure 95: LEMDAIN Descriptive 2007

Figure 96: LEMDAIN Descriptive 2006
Here is shown the status diagram with the sector evolution till 2008. The average figures corresponds to the last 4 years runs:

Figure 97: LEMDAIN Status

Finally, it is shown the calculated capacity of this sector where it can be noticed the tendency curve of the corresponding sector.

Figure 98: LEMDAIN Calculated capacity

During the validation exercises there were some of the exercises related with one single runway operations where the final approach sectors were integrated in one single controlling position. The difficulty arrives when there were not enough runs to establish a feasible declared capacity. It is impossible to compare KPIs because they are completely different configurations: 2 dependent parallel runways with one single initial approach sector and one single final approach sector; and 2 independent parallel runways with two initial approach sectors and one NTZ sector:

Project ID 05.07.04				
D003 - Final OSED	for Madrid	TMA (Annex	Validation	Report)

YEAR	2008	2011	2011	2011
SECTOR	LEMDAIN	AFEN	AFWN	NTZ
RUNWAYS	33R/33L	33R	33L	33R/33L
GROUP	Final	Final	Final	N/A
COMPLEXITY				N/A
	2253	1207	1476	
COMPLEXITY/MOV				N/A
2 7?	61,06	35,56	40,05	
CORRDINATIONS/MOV				N/A
American	0,22	0,11	0,04	
ACTIONS/MOV				N/A
	4,44	3,56	3,06	
RADAR VECTORING/MOV				N/A
	2,02	0,14	0,04	
WORKLOAD				N/A
STATE F	1847	806	979	
PERCENTILE 70	41			N/A
Nb OF MOV	36	34	35	N/A
CALCULATED CAPACITY	48 ⁹	50	47	N/A
DECLARED - CALCULATED	0			N/A

Table 11: LEMDAIN, AFEN & AFWN results

⁹ Declared capacity value as used: 48

2

The number of runs regarding LEMDREN is quite representative in order to establish a feasible capacity (39). Here are listed the main results comparison:

- The usage of radar vectoring per movement has been reduced to 0,04 0,14.
- The workload has been decreased in 47 57%. The number of ATCs has been changed from one single initial approach position and one final approach position (executive + planner) to 2 final approach positions (executive + planner) and 1 NTZ controller.
- The number of movements has been increased from 36 (2 Dependent PARALLEL RUNWAYS) to 34 + 35 (2 Independent PARALLEL RUNWAYS)
- The calculated capacity has been increased from 48 (2 Dependent PARALLEL RUNWAYS) to 50 + 47 (2 Independent PARALLEL RUNWAYS)
- The results are incomparable and the adding expression has to be taking as a mathematical complex operation and not the basic adding operation.

4.2.5 Sector LECMDEN

East Departures in North Configuration. The ATC service for this sector is provided from LECM (Air Traffic Control Centre of Madrid):

- TMA sector (FL 160 / GND)
- Declared capacity: 49 mov/hour
- Traffic in evolution (time): 98%

Hereby are listed the results obtained from 2006 report corresponding to this sector:

Figure 99: LECMDEN graphical representation

Project ID 05.07.04. D003 - Final OSED for Madrid TMA (Annex Validation Report)

DEPENDENCIA	LECM					AÑO DE ESTUDIO: 2000					2006						
SECTOR		LECMDEN												Mod	May		
Complejidad		6	45			Wor	kload	851		Aero	naves	simu	iltàne	as		1.9	6.0
Tiempo en evolución (%)		9	-							Com	unica	cione	s / 10	min.		13.8	28.0
Tiempo Medio de Vuelo (min)			5														
CAMPOS		1ª	2 ª	3ª	4 ª	5 ª	6 ª	7ª	8 ª	9ª	10ª	11ª	12ª	13ª	14ª	15ª	Media
Actuaciones en imprevistos		0	0	0	0	0	0	0	0	0	0						0.0
Actuaciones en Salidas/Llega	da	48	84	44	59	58	50	80	86	71	70						65 0
Actuaciones en Sobrevuelos		0	0	0	0	0	2	0	0	0	0						0.2
Vigilancia de Imprevistos		0	0	0	0	0	0	0	0	0	0						0.0
Vigilancia de Salidas/LLegada	S	73	142	87	113	109	93	99	112	146	142						111.6
Vigilancia de Sobrevuelos		0	0	0	0	0	24	0	0	0	0						2.4
Act.sep/sec salidas/llegadas		4	8	2	8	2	2	5	4	3	1						3.9
Act.sep/sec sobrevuelos		0	0	0	0	0	0	0	0	0	0						0.0
Esperas		0	0	0	0	0	0	2	0	0	0						0.2
Nº de vuelos visuales		0	0	0	0	0	0	0	0	0	0						0.0
Coordinación		9	8	7	10	11	6	27	21	17	27						14 3
Coordinación en sistema		1	1	0	0	3	2	3	0	0	0						1.0
Guia vectorial imprevisto		0	0	0	0	0	0	0	0	0	0						0.0
Guia Vectorial Salida/LLegada	1	1	6	0	0	0	0	9	8	3	2						2.9
Guia Vectorial Sobrevuelo		0	0	0	0	0	1	0	0	0	0						0.1
Guia vectorial Estandar (X)		0	0	0	0	0	1	0	0	0	0						0.1
Movimientos por Toma (IFR)		15	29	18	22	26	23	22	25	23	21						22 0
Fecha Toma		OC06	OC06	OC06	OC06	0C09	0009	0C09	OC09	0009	OC09						
Día		v	v	v	v	L	L	L	L	L	L						
Hora		06:33	07:33	09:19	10:19	06:47	07:48	09:43	10:44	14:00	15:00						
Salidas	20.6	LLeg	adas						1.8	Nº M	ovimie	entos	-Toma	a			22
Actuaciones por salida	2.79	Actu	acion	es po	r llega	ida			2.77	Actu	acione	es poi	r Mov	imien	to		2.92
Coordinaciones por salida	0.46	Coor	dinac	iones	nor	legad	a		2 16	Coor	dinac	iones	nor M	Novim	iento		0.69
Guía Vectorial por salida	0.40	Guía	Vecto	orial r	orlia	nada			0.14	Guía	Vecto	vrial n	ormo	vimi	anto		0.05
Complojidad por calida	37.0	Corre	ploiid	ad no		yaua			20.14	Com	ploiid	ad ne		imica	to		30.7
Complejidad por salida	21.0	com	piejia	au po	r nega	aua			28.1	com	piejida	au po	mov	imier	110		28.7

Figure 100: LECMDEN Spreadsheet runs

Figure 101: LEMDRWN Descriptive 2006

Here is shown the status diagram with the sector evolution till 2008. The average figures corresponds to the last 4 years runs:

Project ID 05.07.04. D003 - Final OSED for Madrid TMA (Annex Validation Report)

Figure 102: LECMDEN Status

Finally, it is shown the calculated capacity of this sector where it can be noticed the tendency curve of the corresponding sector.

Figure 103: LECMDEN Calculated capacity

Project ID 05.07.04. D003 - Final OSED for Madrid TMA (Annex Validation Report)

Here are the results comparing the new situation with the previous one regarding LECMDEN sector:

YEAR	2006	2011	Comparison results
SECTOR	LECMDEN	DIN	
GROUP	Departures	Departures	
COMPLEXITY	644,5	462	-28%
COMPLEXITY/MOV			
2 2 ?	28,65	13,56	-53%
CORRDINATIONS/MOV			
For a set	0,69	0,03	-96%
ACTIONS/MOV			
	2,92	1,49	-49%
RADAR VECTORING/MOV			
	0,13	0	Reduction to zero
WORKLOAD			
Canada P	851	592	-30%
PERCENTILE 70	23		
Nb OF MOV	22	35	
CALCULATED CAPACITY	63 ¹⁰		
DECLARED - CALCULATED	-13		

Table 12: DIN comparison results

¹⁰ Declared capacity value as used: 49

The number of runs regarding LEMDREN is quite representative in order to establish a feasible capacity (39). Here are listed the main results comparison:

- The complexity has been decreased in 28% compared with 2006 situation.
- The complexity per movement within this airspace has been reduced in a 53% compared with 2006. This is a good figure knowing that the procedures designs are simpler and more intuitive.
- The coordination actions per movements have been reduced in 96% compared to 2006. This shows that with these new scenarios there is no much need in coordinating with collateral sectors.
- The actions per movements have been reduced within this airspace jurisdiction in a 49%.
- The usage of radar vectoring has been reduced to zero.
- The workload has been decreased in a 30% compared to 2008 within external sectors jurisdiction. This is a comprehensive number due to the increase of complexity in the sector and the incremental capacity. This is a critical sector where the workload will be increased
- The runs are not good enough in number to establish a feasible calculated capacity. It is recommended to re-run the NORVASE data pick-up of this sector.

Here is represented the comparative figures in graphical terms where it can be observed the difference in volumetric terms, geometry, location and sector configuration and how this affect to the final results of the validation:

Figure 104: Complexity comparative results – External sectors

5.7.4. - FULL IMPLEMENTATION OF P-RNAV IN COMPLEX TMA

Figure 105: Complexity/mov comparative results – External sectors

5.7.4. - FULL IMPLEMENTATION OF P-RNAV IN COMPLEX TMA

Figure 106: Coordinations/mov comparative results – External sectors

Figure 107: Actions/mov comparative results – External sectors

5.7.4. - FULL IMPLEMENTATION OF P-RNAV IN COMPLEX TMA

Figure 108: Radar vectoring/mov comparative results – External sectors

5.7.4. - FULL IMPLEMENTATION OF P-RNAV IN COMPLEX TMA

Figure 109: Workload comparative results – External sectors

Figure 110: Nb of movements comparative results - External sectors

5.7.4. - FULL IMPLEMENTATION OF P-RNAV IN COMPLEX TMA

Figure 111: Calculated capacity comparative results – External sectors

Figure 112: Complexity comparative results – Director sectors

5.7.4. - FULL IMPLEMENTATION OF P-RNAV IN COMPLEX TMA

Figure 113: Complexity/mov comparative results – Director sectors

Figure 114: Coordinations/mov comparative results - Director sectors

Figure 115: Actions/mov comparative results – Director sectors

5.7.4. - FULL IMPLEMENTATION OF P-RNAV IN COMPLEX TMA

Figure 116: Radar vectoring/mov comparative results - Director sectors

5.7.4. - FULL IMPLEMENTATION OF P-RNAV IN COMPLEX TMA

Figure 117: Workload comparative results – Director sectors

5.7.4. - FULL IMPLEMENTATION OF P-RNAV IN COMPLEX TMA

Figure 118: Nb of movements comparative results – Director sectors

Figure 119: Calculated capacity comparative results – Director sectors

5.7.4. - FULL IMPLEMENTATION OF P-RNAV IN COMPLEX TMA

Figure 120: Complexity comparative results – Final approach sectors

5.7.4. - FULL IMPLEMENTATION OF P-RNAV IN COMPLEX TMA

Figure 121: Complexity/mov comparative results – Final approach sectors

5.7.4. - FULL IMPLEMENTATION OF P-RNAV IN COMPLEX TMA

Figure 122: Coordinations/mov comparative results - Final approach sectors

5.7.4. - FULL IMPLEMENTATION OF P-RNAV IN COMPLEX TMA

Figure 123: Actions/mov comparative results – Final approach sectors

5.7.4. - FULL IMPLEMENTATION OF P-RNAV IN COMPLEX TMA

Figure 124: Radar vectoring comparative results – Final approach sectors

5.7.4. - FULL IMPLEMENTATION OF P-RNAV IN COMPLEX TMA

Figure 125: Workload comparative results – Final approach sectors

5.7.4. - FULL IMPLEMENTATION OF P-RNAV IN COMPLEX TMA

Figure 126: Nb of movements comparative results – Final approach sectors

5.7.4. - FULL IMPLEMENTATION OF P-RNAV IN COMPLEX TMA

Figure 127: Calculated capacity comparative results - Final approach sectors

5.7.4. - FULL IMPLEMENTATION OF P-RNAV IN COMPLEX TMA

Figure 128: Complexity comparative results – Departure sectors

5.7.4. - FULL IMPLEMENTATION OF P-RNAV IN COMPLEX TMA

Figure 129: Complexity comparative results – External sectors

5.7.4. - FULL IMPLEMENTATION OF P-RNAV IN COMPLEX TMA

Figure 130: Complexity comparative results – External sectors

5.7.4. - FULL IMPLEMENTATION OF P-RNAV IN COMPLEX TMA

Figure 131: Complexity/mov comparative results – Departure sectors

5.7.4. - FULL IMPLEMENTATION OF P-RNAV IN COMPLEX TMA

Figure 132: Radar vectoring comparative results – Departure sectors
Edition: 00.00.01

5.7.4. - FULL IMPLEMENTATION OF P-RNAV IN COMPLEX TMA

Figure 133: Workload comparative results – Departure sectors

Edition: 00.00.01

5.7.4. - FULL IMPLEMENTATION OF P-RNAV IN COMPLEX TMA

Figure 134: Nb of movements comparative results – Departure sectors

Edition: 00.00.01

5.7.4. - FULL IMPLEMENTATION OF P-RNAV IN COMPLEX TMA

Figure 135: Calculated capacity comparative results – Departure sectors

Validation Objective ID	Validation Objective Title	Exercise ID	Exercise Title	Success Criteria ¹¹	Exercise Results	Validation Objective Analysis Status per exercise	Validation Objective Analysis Status
Obj #1	Mixed Mode Operations: Integration of P-RNAV & conventional routes used by a mix of P- RNAV- compliant and Conventional aircraft in high traffic density TMAs.	EXE- 05.07.04- VALP-142	Full Implementat ion of P- RNAV in Madrid TMA	New procedures have been accepted by controllers and it has been demonstrat ed the feasibility of P-RNAV and conventiona I procedures compliance.	Convention al traffic increases workload significantly. A better support from system is needed to reduce coordination s	ОК	ОК
Obj #2	High Terrain and bad weather	EXE- 05.07.04- VALP-142	Full Implementat ion of P- RNAV in Madrid TMA	New procedures have been accepted by controllers and it has been demonstrat ed the feasibility of P-RNAV and conventiona I procedures with high terrain and bad weather	The 5 th transition in South configuratio n (18R) should be avoided due to high terrain in bad weather conditions	ОК	ОК
Obj #3	Maximum capacity of P- RNAV Arrivals/Transiti ons/SIDs/STAR s	EXE- 05.07.04- VALP-142	Full Implementat ion of P- RNAV in Madrid TMA	Increase Capacity compared to previous mode of operations	See exercises results per KPA (Capacity) – 4.1.2	ОК	ок
Obj #4	Suitable descent slope for P-RNAV Arrivals in all meteorological conditions	EXE- 05.07.04- VALP-142	Full Implementat ion of P- RNAV in Madrid TMA				
Obj #5	P-RNAV CDAs in high density traffic	EXE- 05.07.04- VALP-142	Full Implementat ion of P- RNAV in Madrid TMA	New procedures have been accepted by controllers and it has been demonstrat	The CDAs proposal are suitable with the new TMA design	NON TESTED	NON TESTED

¹¹ Note that a validation objective can have more than 1 success criterion, please make them appear in the same cell.

Edition: 00.00.01

Validation Objective ID	Validation Objective Title	Exercise ID	Exercise Title	Success Criteria ¹¹	Exercise Results	Validation Objective Analysis Status per exercise	Validation Objective Analysis Status
				ed the feasibility of CDAs in the new scenario			
Obj #6	Continuous Climb Departures enabled by the enhanced horizontal performance of P-RNAV	EXE- 05.07.04- VALP-142	Full Implementat ion of P- RNAV in Madrid TMA	New departure procedures have been accepted by controllers and it has been demonstrat ed the integration of these new procedures with arrivals and Torrejon and Getafe ones	It would be interesting to study more SID's to facilitate the air traffic flow (e.g. heading North direct to DGO or via RBO- DGO).	ОК	ОК
Obj #7	Impact on departure sequencing due to aircraft performance mix (climb rates, turn capability, etc), which creates different departure routes for different performance levels	EXE- 05.07.04- VALP-142	Full Implementat ion of P- RNAV in Madrid TMA	New departure procedures have been accepted by controllers and Demonstrat e that the new scenario holds different departures procedures depending on aircraft performanc e	The different departures (e.g. NVS and NVS long) fulfil with aircraft performanc e requirement s	ОК	ОК

Table 13: Overview: Validation Objectives, Exercises Results and Validation Objectives Analysis Status

The impact of conventional traffic is significant and increases workload due to the need of coordination between controllers. Procedures have been accepted, but in order to reduce workload, it has been recommended by controllers to have a support from system. This support basically consists in an advice through the radar label about the condition of conventional traffic. This can be done by adding an extra symbol to the label of traffic or by using a different colour in the presentation of this label. CDA procedures have been analyzed for inclusion in the scenario. They have not been simulated due to the impossibility of the simulator to offer realistic traffic behaviour when performing a CDA. Nevertheless we are convinced that CDA procedures are feasible in the P-RNAV scenario, but only with med/low traffic demand. The status in the table has been changed to "Non Tested"

4.2.6 Analysis of Airspace

Comments:

"The approach procedures are impaired regarding the operations for a single runway"

Comments:

"It is necessary to analyze and improve the connecting points with ACC"

100%

4.2.7 Analysis of Procedures

Comments

"Trajectories shortcut and ask for lower flight levels for some traffic" "Longitudinal separation due o inbound traffic coming too close from preceding sectors"

Comments

"The traffic is flying very low with a huge amount of miles flown" "The defined FLs for arrivals are excessively low"

Comments "It is necessary to test it"

Comments

"It seems to be that in a single runway operations the closed transitions aren't effective" "Flexibility is reduced compared to radar vectoring (test it)"

4.2.8 Analysis of Communications

4.2.9 Analysis of Tasks

Comments

"Due to lack of final approach sector capacity some traffic had to be put on hold"

4.2.10Analysis of Cost-Benefit & Environment

Comments

"It is necessary to demonstrate if the increase of miles flown worth" "FLs too low for too long routes, companies should evaluate if it is worthy"

4.2.11Unexpected Behaviours/Results

Here is the list of the problems identified in the context of 5.7.4 WS1 validation exercises preparation, execution and analysis:

- All the exercises could not be performed as planned because of lack of simulator availability (Madrid ACC was able to schedule 2 weeks for 5.7.4 simulation activities). The lack of training sessions for controllers (derived from simulator availability to perform training sessions) led to exercises repeated and delayed. Moreover, the problems with communications channel between controllers and pseudo-pilots led to exercises cancellation and delays.
- There were no sufficient results for some sectors due to the lack of NORVASE data pick-up. The limited number of runs made necessary to exclude the less significant sectors of the total scenario (external feeders).
- The exported files from the simulation to PALESTRA didn't contain enough information (only 2D reproduction of what was shown in the radar screen) to provide a quantitative environmental case.

4.3 Confidence in Results of Validation Exercises

4.3.1 Quality of Validation Exercises Results

Some factors have to be taken into account to evaluate quality of results:

- Insufficient time of training for controllers and pilots •
- Lack of Sector Control Units availability •
- Lack of resources (controllers, pseudo-pilots and NORVASE data pick-up experts) •
- The recorded files resulting from the validation activities are limited •
- Lack of export data options in simulator units and PAPOs (support positions) •
- Frequent communication failures

4.3.2 Significance of Validation Exercises Results

Some factors have to be taken into account to evaluate significance of results:

- The impacts in some current restricted areas haven't been taken into account due to current • negotiation process.
- Coordination and influence of Torrejon GCA have not been simulated

Conclusions and recommendations 5

5.1 Conclusions

- System should be able to pre-advice, by automated means to final approach controller about the arrival of non P-RNAV equipped aircrafts, as well as to the initial approach controller. This will avoid extra coordinations between both controllers, to ask the initial approach controller to open a gap between two P-RNAV equipped traffic, to allow final controller to put in sequence the non equipped aircraft.
- Feeder sectors should pre-sequence traffic to facilitate management of initial approach • sectors.
- Silent coordination procedures supported by the system should be implemented to reduce coordinations between feeders and initial approach sectors.
- For high traffic demands as simulated in the higher traffic samples, the support of tools such as AMAN is needed to help pre-sequencing traffic to feeder sectors.
- In strong wind conditions, the separation between traffics at the deliverance from initial to final approach sectors needs to be increased from seven to ten miles to prevent overtaking in the final approach path.
- For single RWY operation closed transitions have been observed as non manageable by NORVASE specialists and also by controllers. Open transitions and radar vectoring to localizer has conducted all right, always accompanied by a reduction in capacity.
- If at a given time it is necessary to change a pre-assigned transition to localizer, once the aircraft has passed the IAF, it is recommended to instruct the traffic to turn to localizer by using radar vectors better than assigning a new transition, since pilot may not be able to introduce the change in the FMS.

5.2 Recommendations

This section contains recommendations for close out of V3 and looking forward to future projects and implementation phases. Here are listed the main recommendations for P-RNAV Madrid TMA:

- Possibility to elevate of superior TMA limits till FL245
- To study the possibility of traffic coming at higher levels from clearance limits (e.g. FL 210) • due to the distance left to IAWP's.
- To change the procedures so that departure sectors could climb the traffic before transferring it to en-route sectors (e.g.FL200)
- To carry out a deeper study of missed approach procedures in order to send them to the • IAWP.
- In South Configuration, MEA's in the final grids are below MVA. Alternative procedures should be studied for the event of need of radar vectoring.
- To handle non-PRNAV traffic in the approach sequence with high traffic workload is difficult. •
- Incidences of departing traffic from Torreion and Getafe in the departure sectors should be further analysed.
- Redesign sector limits and its jurisdictions in order to well include in them the corresponding aerodromes in their space.

- It would be interesting to study more SID's to facilitate the air traffic flow (e.g. heading North • direct to DGO or via RBO-DGO).
- It is suggested that director sectors receive the traffic from external feeders sectors at FL 150 • via TERES and PILAR; and FL 160 via GRECO and DULCI.
- Sequencing tools (AMAN) are needed for the scenario to accommodate high traffic loads • without increasing workload or provoking delays.
- Solutions for specific CDO manoeuvres have been analysed, although not tested. CDO in • high traffic periods seems to be not feasible.

6 References

6.1 Applicable Documents

- [1] V&V Plan Latest version
- [2] SESAR V&V Strategy Latest version
- [3] Template Toolbox 02.00.00
- [4] Requirements and V&V Guidelines 02.00.00
- [5] Toolbox User Manual 02.00.00
- [6] European Operational Concept Validation Methodology (E-OCVM) 2.0 [March 2007]
- [7] 05.07.04 D003 Madrid OSED
- [8] 5.2. DOD

6.2 Reference Documents

The following documents provide input/guidance/further information/other:

- [9] 5.7.4 Validation Plan
- [10]5.7.4 Updated OSED for Madrid TMA
- [11]5.7.4 Benefit Mechanisms

Project ID 05.07.04.

D003 - Final OSED for Madrid TMA (Annex Validation

Edition: 00.00.01

END OF DOCUMENT -

-

